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Can artificial substrates enriched with crustose coralline
algae enhance larval settlement and recruitment
in the fluted giant clam (Tridacna squamosa)?
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Abstract Habitat recognition and selection can

greatly increase the early-life survival of sessile reef

organisms. This study describes the settlement and

recruitment responses of the fluted giant clam,

Tridacna squamosa, to concrete tablets and tiles

containing different concentrations of crustose coral-

line algae covered coral rubble (CCACR). Crustose

coralline algae is known to induce settlement in a

variety benthic animals, but it has not been used

previously as an aggregate in concrete—potentially a

way of encouraging colonization of man-made

structures erected on or near coral reefs. After being

given the choice of small tablets made with 0%, 30%

or 60% CCACR for 4 days, 11 days old larvae

preferred the substrate containing the most CCACR.

Recruitment responses of juvenile clams to larger

tiles made with the same three CCACR concentra-

tions were also tested. These tiles were further

divided into rough and smooth surface textures. After

6 weeks, more juvenile clams had recruited to the

rough surfaced tiles than the smooth ones, but no

significant differences among the CCACR treatments

were found. Thus, even though concrete made with

CCACR is initially attractive to larvae, it has no

effect on recruitment of juvenile T. squamosa.
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Introduction

Giant clams (Bivalvia: Tridacnidae), the largest

bivalve molluscs in the world, inhabit the shallow

coral reefs of the Indo-Pacific region (Rosewater,

1965). They derive nutrition by filter feeding (Klumpp

et al., 1992), as well as via a symbiotic relationship

with photosynthesizing dinoflagellate algae (zooxan-

thellae) (Yonge, 1936, 1975). Giant clams provide

important ecological roles on coral reefs; for example,

their shells act as nurseries to various other reef

organisms (Mingoa-Licuanan & Gomez, 2002), how-

ever, they have been over-harvested for food and the

live aquarium trade (Gomez & Mingoa-Licuanan,

2006). Because of this high demand, prior investiga-

tions into the biology of giant clams have focused on

their mariculture (e.g. Beckvar, 1981; Heslinga et al.,

1984; Copland & Lucas, 1988) and there exists limited
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information regarding their early larval behaviour

and settlement patterns (but see Jameson, 1976;

Gwyther & Munro, 1981; Fitt et al., 1984; Alcala

et al., 1986).

The majority of benthic marine invertebrates,

including giant clams, display complex life-cycles

that comprise of a planktonic larval period followed by

bottom-dwelling juvenile and adult stages (Thorson,

1950; Watzin, 1986). Accordingly, there exists a

wide range of processes that can affect populations

at life cycle points such as settlement and recruitment

(Eckman, 1996). These aspects are have been stud-

ied extensively in many bivalve species including

oysters, Crassostrea virginica and Crassostrea gigas,

dwarf surf clams, Mulinia lateralis, and mussels,

Mytilus galloprovincialis (Luckenbach, 1984; Fitt &

Coon, 1992), but remain poorly understood in giant

clams. There is a distinction between settlement and

recruitment, and it is important to differentiate them as

separately occurring events. For benthic marine

invertebrates with pelagic larvae, settlement is

described as the inception of behavioural searching

for a suitable substrate, attachment to the substrate

and, finally, metamorphosis to the later life stages

(Keough & Downes, 1982). There are several chem-

ical, physical or biological factors that can exert

positive settlement responses on marine invertebrate

larvae. For example, epinephrine acts as a neurotrans-

mitter and has been identified as an active inducer of

settlement and metamorphosis for several bivalve

molluscs (Garcı́a-Lavandeira et al., 2005). Also, corals

and many other sessile marine invertebrates (e.g. soli-

tary ascidian, Styela plicata and barnacle, Balanus sp.)

are known to settle preferentially on topologically

complex surfaces (Harriott & Fisk, 1987). Recruitment,

on the other hand, describes the newly settled individ-

uals (recruits) that have survived a period of time to a

specified size after settlement (Luckenbach, 1984;

Roegner, 1991). These processes are fundamentally

important at individual, population and community

levels, as well as for mariculture and conservation

(Rodŕiguez et al., 1993).

The pediveligers of giant clams, which develop

after 7–10 days, are capable of some locomotion on

bottom substrates (Yamaguchi, 1977). The emer-

gence of an active foot indicates readiness for

settlement and locomotion is achieved by attaching

the tip of the foot to the substrate, which is then

retracted to effect crawling (LaBarbera, 1975). The

foot is also used for orientating the larvae into a

vertical position (Jameson, 1976). Even though

tridacnid clams demonstrate some searching behav-

iour (Alcazar & Solis, 1986; Courtois de Viscose,

2000) no empirical studies have examined the

underlying cues that trigger substrate choice and

settlement. As giant clams are found on coral reefs, it

is possible that their larvae could respond to the same

cues used by other reef marine invertebrates. Crus-

tose coralline algae (CCA) is known to induce high

rates of settlement and metamorphosis in a large

diversity of marine invertebrate larvae, including

agariciid corals, Agaricia sp. (Morse et al., 1988),

starfish, Acanthaster planci (Johnson & Sutton,

1994), scleractinian corals, Acropora sp. and Favia

sp., (Morse et al., 1996), and abalone, Haliotis iris

(Roberts et al., 2004). The origins of these settlement

cues could be from the algae itself or from

CCA-associated bacteria (Morse & Morse, 1984;

Johnson et al., 1991). Even though giant clam larvae

are cultivated in large numbers in hatcheries, their

substrate preferences remain relatively unknown.

To date, research on CCA-induced settlement has

used living CCA or extracts of CCA. Here, for the

first time, we incorporate ground CCACR into

concrete to determine whether this will enhance

T. squamosa settlement and recruitment. We

hypothesize that concrete tiles containing CCACR

will be more attractive to early stage (11 day old)

clams, and also host more later stage (49 day old)

clams, than tiles with no CCACR. As large concrete

structures continue to be erected on or near coral

reefs, encouraging colonization by using ground

CCACR as an aggregate may mitigate against some

of the negative effects often associated with such

building projects. Furthermore, more knowledge of

T. squamosa settlement and recruitment ecology

can only benefit clam restocking and restoration

efforts.

Materials and methods

General experimental procedures

All experiments were conducted at the marine

aquaculture facility at the Tropical Marine Science

Institute (TMSI) on St. John’s Island, Singapore,

from January 2007 to September 2007. There were
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four stages to this study: spawning, rearing, settle-

ment of larvae and recruitment of juveniles. Mature

T. squamosa brood stock was first retrieved from a

local reef (Raffles Lighthouse) located 13.7 km

southwest of St. John’s Island. The giant clams were

induced to spawn in cubic tanks (length = 1.0 m,

width = 1.0 m, height = 0.7 m) by injecting 2 ml of

20 lM concentration serotonin solution (crystalline

5-hydroxytryptamine, creatine sulfate complex,

Sigma-Aldrich Pte Ltd, Product No. H7752-1G) into

the gonads through the mantle tissue at the excurrent

siphon region (Braley, 1985). After approximately

30 min, the clams spawned and the resultant sperm-

water was collected in a 10 l bucket at a density of

*10,000 sperm ml-1 (determined with a Neubauer

haemocytometer). The unfertilized eggs were then

collected on a 22 lm plankton screen and washed

with 1 lm-filtered and UV-treated seawater before

being stored at a density of *22 eggs ml-1 (counted

on a Bogorov tray).

The eggs were fertilized with an egg-sperm ratio

of 1:50 as this ratio greatly reduced the risk of

polyspermy and self-fertilization (Neo et al., 2009).

The developing larvae were placed in six 20 l funnel

tanks (diameter = 0.5 m, depth = 1.1 m) containing

lightly aerated 30 PSU, *30�C, 1 lm-filtered and

UV-treated seawater. From the veliger stage (days 4

and 6), the larvae were fed with a mixed-algal diet,

Tetraselmis suecica ? Chaetoceros mulleri ? yeast,

at a total concentration of *10,000 cells ml-1. At

day five, zooxanthellae cells were introduced to the

larvae. The zooxanthellae were acquired from a small

piece of adult mantle tissue (400 mm2), which was

homogenized to release the cells and rinsed through a

25 lm plankton screen.

Artificial substrates

Tiles were made of washed and inert quartz sand

(silicon dioxide), cement and fresh coral rubble (CR)

that was encrusted with at least 50% CCA, collected

from reef slopes around Singapore. The rubble was

cleaned of any excess sediments and sessile organ-

isms before being oven-dried for 24 h. The dried

rubble was ground into *1 mm grains in an indus-

trial crusher. This aggregate we termed CCACR. The

proportions of the component materials for each tile

type were as follows: 0% CCACR = 4 parts

sand ? 1 part cement; 30% CCACR = 1.5 parts

CCACR ? 2.5 parts sand ? 1 part cement; and 60%

CCACR = 3 parts CCACR ?1 part sand ? 1 part

cement. The mixtures were hydrated with tap water

and shallow plastic trays were used as moulds. The

smaller tablets used in the choice experiment were

cut out of tiles made for the recruitment experiment,

thus the substrates in both experiments were identical

in composition.

Choice experiment

After the tiles were fully cured, six (two of each

CCACR concentration) were selected haphazardly and

cut into tablets (length = 15 mm, width = 10 mm,

height = 5 mm), using a stone saw. All surfaces of

these tablets were equally smooth. Each of 30 standard

plastic Petri dishes was divided into three equal sectors

by drawing on their undersides. Three tablets (one of

each type: 0%, 30% and 60% CCACR) were distrib-

uted among these three sectors while ensuring every

tablet touched the inside edge of the dish. The dishes

were haphazardly pivoted around their centre before

being laid out in a 6 9 5 Latin square in a culture

facility (12:12 h LD photoperiod). All larvae used

were 7 days old and came from the same stock (density

5.5 larvae ml-1). To the centre of each Petri dish,

50 ml containing *275 larvae was added. The Petri

dishes were then covered to prevent evaporation, and

the experiment was left undisturbed for 4 days. At

termination, a three-way divider was inserted to

prevent any movement of larvae among sectors while

the Petri dish was transferred to a stereomicroscope.

The number of live larvae in the 0% CCACR sector of

10 randomly selected Petri dishes was counted.

Another 10 dishes were selected randomly for the

30% sectors and another 10 for the 60% sectors. Thus,

all data were independent.

Recruitment experiment

Twenty-four tiles (length = 100 mm, width = 100 mm,

height = 10 mm) of each of the three CCACR

concentrations were used. When these were removed

from the moulds, one large surface, the exposed side

was rough whereas the opposite side, which had been

in contact with the plastic mould, was glassy smooth.

To quantify surface roughness, we cut five tiles of

each type in half and traced the cross-sectional
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profile of the rough and smooth surfaces using

SigmaScan/Image (Jandel Scientific) measurement

software. The mean ratio of smooth to rough distance

traced was 1:1.08 (i.e. 100:108 mm). We used these

surface textures as an additional factor in the

experiment; thus, there were 12 rough-side-up and

12 smooth-side-up tiles of each CCACR concentra-

tion. These were positioned on the bottom of a large

fibreglass tank (length = 243 cm, width = 122 cm,

height = 77 cm) in a Latin square design. Approx-

imately 10,000 7-day-old larvae were thoroughly

mixed with 2,500 l of 30 PSU, 1 lm-filtered seawa-

ter, which was gently aerated throughout the

experiment. After 7 weeks, all tiles were removed

and examined under a stereomicroscope for juvenile

clams.

Data analyses

A one-factor ANOVA and post hoc Tukey HSD tests

were performed to determine differences in the mean

number of live larvae found in each of the three Petri

dish sectors. All data fulfilled assumptions of nor-

mality and homogeneity of variances. A two-factor

ANOVA and post hoc Tukey HSD tests were

performed to determine differences in the number

of juvenile clams found on the tiles in the large tank;

with surface texture as one factor and CCACR

treatments as the other. For this test, data were log-

transformed to fulfil assumptions of normality and

homogeneity of variances. All statistical analyses

were performed on Statistica (version 5.5).

Results

Choice experiment

The late D-veligers and pediveligers swam or crawled

around the Petri dishes but, by the end of the

experiment, no swimming larvae were observed.

Pediveligers tended to lie on their sides when in close

proximity to the tablets and significantly more larvae

were found in the sectors with 60% CCACR tablets

(Tukey HSD, P \ 0.01; Table 1) than in sectors with

0% CCACR tablets. The mean number of larvae

found in sectors with 30% CCACR tablets was not

significantly different from sectors with 60% CCACR

or 0% CCACR tablets (Fig. 1).

Recruitment experiment

After 42 days (the termination of the experiment),

many juvenile clams were visible to the naked eye,

with sizes ranging from *1 to 3 mm shell length.

The juvenile clams were firmly attached to the

surfaces of the tiles with byssal threads. ANOVA

results indicated no differences in the mean number

of clams among the three concentrations of ground

CCACR. Significantly more clams, however, were

found on rough surfaces than on smooth surfaces

(Tukey HSD, P \ 0.05; Table 2, Fig. 2).

Table 1 One-way analysis of variance comparing mean

number of live larvae found in the three Petri dish sectors (each

sector containing a tablet with a different concentration of

CCACR)

Source of variation d.f. MS F-ratio P-value

Treatment 2 172.2333 7.2729 0.0030

Residual 27 23.6815

Total 29

Fig. 1 The mean number of live larvae found in the three

Petri dish sectors (each sector containing a tablet with a

different concentration of CCACR). Error bars indicate

standard error

Table 2 Two-way analysis of variance comparing mean

number of juvenile clams found on the six different tile types

(two surfaces 9 three CCACR concentrations)

Source of variation d.f. MS F-ratio P-value

Surface 1 0.2898 5.3502 0.0239

Concentration 2 0.0522 0.9643 0.3866

Surface 9 Concentration 2 0.0077 0.1429 0.8671
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Discussion

Choice experiment

The selection of settlement site is critical for the

subsequent survival of benthic marine invertebrates as

their choice will largely determine the environmental

conditions experienced by later life stages (Keough &

Downes, 1982; Rodŕiguez et al., 1993). When

presented with concrete tablets enriched with three

different percentages of CCACR, more T. squamosa

larvae were attracted to the tablets containing the

highest concentration. Many studies have shown that

a wide diversity of marine invertebrate larvae have a

strong settlement response to live CCA, which also

rapidly induces metamorphosis (Kaspar, 1992; Web-

ster et al., 2004). For giant clam larvae, we know only

that Hippopus hippopus (Alcala et al., 1986) and

T. maxima (Alcazar & Solis, 1986) larvae prefer coral

fragments and rubble compared to stones or pebbles,

and this substrate preference may be related to the

presence of CCA. However, unlike other marine

invertebrates such as the starfish, Acanthaster planci

(Johnson & Sutton, 1994) and abalone, Haliotis

rufescens (Morse & Morse, 1984), the T. squamosa

larvae observed in the present study were not induced

to settle by direct contact with CCA surfaces.

Larvae responded to ground CCACR that had been

oven-dried and used as an aggregate in concrete, as

opposed to live CCA as used in previous studies on

other species (e.g. Morse & Morse, 1984; Harrington

et al., 2004). These results suggest that whatever the

larvae were attracted to was water-soluble and

capable of being emitted from a concrete matrix.

This is not wholly unexpected as, for instance, water-

soluble cues from prey can induce activity responses

that affect the subsequent settlement patterns of

larvae (Krug & Manzi, 1999; Hadfield & Koehl,

2004) and chemicals leaching from concrete is a

well-studied phenomenon (e.g. Jo et al., 2007). Clam

larvae seemed to use their feet to sense their

surroundings before propelling themselves towards

the direction of their chosen substrate. Similar

behaviour has been documented by Jameson (1976)

where giant clam pediveligers crawled until a settling

spot that provided maximum protection was found.

The ciliated structures on the foot (LaBarbera, 1975)

could possibly be the sensory mechanism which aids

the detection of CCA-associated signals.

Recruitment experiment

The results of the choice experiment indicated that

high concentrations of ground CCACR attracted

11-day-old T. squamosa larvae (after 4 days of

exposure to the tablets). The recruitment study,

however, showed that CCACR had no effect on the

number of 49-day-old juvenile clams found on the

tiles (after 42 days of exposure to the tiles). There are

a number of potential explanations for this result.

1. Whatever was attracting the larvae in the choice

experiment was missing in the recruitment

experiment; possibly because the CCACR was

no longer emitting chemical morphogens and/or

there was a time-associated reduction in leaching

from the concrete tiles. Although no studies have

examined temporal patterns of morphogen

release from dead CCA, it is known that leaching

decreases with time for other chemicals (e.g.

Zbigniew & Król, 2008) and thus a similar

reduction in CCA emissions is expected.

2. The water-soluble cues emitted could have been

degraded by biofilm on the tiles. Biofilm bacteria

easily colonize coralline surfaces (Lewis et al.,

1985; Johnson et al., 1991) and they may affect

the larval settlement of T. squamosa larvae by

producing and/or degrading settlement-inducing

cues (Kaspar et al., 1989; Johnson et al., 1991).

Fig. 2 The mean number of live juvenile clams found on the

six different tile types (two surfaces 9 three CCACR concen-

trations). Error bars indicate standard error
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3. The function of CCACR might be concentration-

dependent, i.e. the diffusate was diluted by the

large volume of water and hence failed to present a

directional cue to the swimming larvae. Even in

still water, morphogen concentration will decrease

rapidly with increasing distance from the source

and it is generally thought that invertebrate larvae

must be very near the emitting substrate in order to

detect inducing chemicals (Pawlik, 1992).

4. The chemical morphogens were present but, as

the larvae continued to grow and metamorphose,

they had limited ability to swim or move across

the tank in search of a suitable substrate. This is

unlikely, however, as locomotory abilities in

T. squamosa continue into juvenile, and even

adult, life stages (Huang et al., 2007).

5. When the larvae had metamorphosed to juveniles

with larger body forms, their settlement site

requirements could have changed towards locat-

ing protection-providing refuges (Walters &

Wethey, 1991, 1996).

This latter point may explain why the tiles with

rough surfaces attracted more T. squamosa larvae

compared to the smooth-surfaced tiles. Studies on

coral recruitment patterns have also shown that rough

surfaces such as dead coral skeletons are more

attractive to larvae than substrate with smooth

surfaces—glazed tiles for example (Carleton &

Sammarco, 1987; Harriott & Fisk, 1987). It is known

that T. maxima larvae tend to move to the corners of

tanks and to the edges of plastic panels (Jameson,

1976; Gwyther & Munro, 1981) and, like corals,

clam larvae may prefer to settle on substrates

which provide shelter via grooves, pits and crevices

(Petersen et al., 2005a, b).

Conclusions and potential future research

Whereas the water-soluble cues from CCACR

attracted larvae in the choice experiment, there was

no overall effect on recruitment, i.e. the selection of

settlement substrates by giant clam larvae appears to

be life-stage dependent. Further experimentation,

however, is required to confirm this. For instance,

11-day-old T. squamosa larvae could be given the

choice of three CCACR concentrations, but only after

the tablets have been ‘aged’ in seawater for 6 weeks.

Correspondingly, 49-day-old juvenile clams could be

presented with freshly made tablets to see whether

CCACR really has no effect on substrate choice at

this life-stage. Nevertheless, overall, the findings

presented here suggest that CCA-enriched concrete

would not enhance recruitment on man-made subtidal

structures. In fact, simply ensuring the surfaces are

rough may be a more effective way to encourage

colonization.
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