
FACTA UNIVERSITATIS (NIŠ)
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A NEW APPROACH TO GEODESIC CURVATURE AND GEODESIC TORSION
OF TRANSVERSAL INTERSECTION IN R3 ∗

Mohamd Saleem Lone, Mehraj Ahmad Lone and Mohammad Hasan Shahid

Abstract. In this paper, we formulate a new method to obtain the geodesic curvature and geodesic
torsion of two regular parametric surfaces in R3. Our new method will be different from the older
ones in the sense that we will be making use of Rodrigues rotation formula and defining a new
operator D .
Keywords: Geodesic curvature, geodesic torsion, parametric surfaces.

1. Introduction

The geometry of intersection problems of surfaces is a fundamental process needed in
formulating complex shapes in CAD/CAM system. Intersections are useful in the repre-
sentation of the design of complex objects, in computer animations and in NC machining
for trimming off the region bounded by self intersection curves of offset surfaces. The
two types of surfaces commonly used in geometric designing systems are parametric and
implicit surfaces, that results in three types of surface-surface intersection (SSI) problems
i.e., parametric-parametric(P-P), implicit-implicit(I-I), implicit-parametric(I-P). The SSI is
called transversal or tangential if the normal vectors of the surfaces are linearly indepen-
dent or linearly dependent, respectively at the intersection point. In transversal intersection
problems, the tangent vectors of the intersection curve can be found by the vector product
of the normal vectors of the surfaces as in [11, 22], but in our paper, we shall not rely on
this technique of cross product of normal vectors. We will develop a whole new method to
obtain the tangent and curvature vector.
The geometric properties of the parametrically defined curves can be found in the classical
literature on differential geometry in [16, 20] and in the contemporary literature of geomet-
ric modelling [5, 7]. Also the higher curvatures of curves in Rn can be found in textbooks
such as [21] and papers such as[6]. On the other hand, for the differential geometry of the
intersection curves, there exists little literature. Willmore [20] obtained the unit tangent,
the unit principal normal and unit binormal, as well as the curvature and the torsion of the
intersection curve of two implicit surfaces in R3. Ye and Maekawa [22] in 1999 provide
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algorithms for obtaining the Frenet apparatus of the intersection curves of two parametric
surfaces in R3, they also provide algorithms for the evaluation of higher order derivatives
for transversal as well as tangential intersections. Then Hartmann [4] provides formulae
for computing the curvature and geodesic curvature of the intersection curves of all the
three types of intersection problems in R3 using the implicit function theorem. Similarly
Abdel-All et al.[13] provide an algorithm for the evaluation of the Frenet apparatus of the
intersection curves of two implicit surfaces using implicit function theorem. Soliman et
al.[9] obtained an algorithm for the Frenet apparatus of the intersection curves of two sur-
faces (implicit-parametric) in R3. Goldmann [17] derived closed formulae for computing
the curvature and the torsion of the intersection curve of two implicit surfaces in R3 and
the curvature of the intersection curves in Rn+1.
In this study, we give new method to calculate the geodesic curvature and geodesic torsion
of the transversal intersection curve of two regular parametric surface in R3. Although the
same things are discussed in [2], we try to obtain them using a new technique. In sec-
tion 2 basic definitions and other required geometric terms are compiled. In section 3, we
show how we make use of Rodrigues’ rotation formula to obtain the geodesic curvature
and geodesic torsion. Finally to be more constructive, we present an example in section 4.

2. Preliminaries

Definition 2.1. Let e1,e2,e3 be the standard basis of three dimensional Euclidean space
R3. The vector product of vectors x = ∑

3
i=1 xiei, y = ∑

3
i=1 yiei is defined as

(2.1) x× y =

∣∣∣∣∣∣
e1 e2 e3
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣ .
The vector product yields a vector that is orthogonal to x and y.

Definition 2.2. Let M ⊂ E3 be a regular surface given by R = R(u,v) and α : I ⊂R→ E3

be an arbitrary curve with arc length parametrization. If {T,V,N} is the darboux frame of
α , where T is the unit tangent, N is the unit normal restricted to α and V = T ×N, then we
have

(2.2)

 T ′ = κgV +κnN
V ′ =−κgT + τgN
N′ =−κnT − τgV

where κn is a normal curvature of the surface in T direction, κg is the geodesic curvature
and τg is the geodesic torsion of α , respectively. From (2.2), we obtain

(2.3) κg = 〈T ′,V 〉, τg = 〈V ′,N〉.

where 〈,〉 denotes the scalar product.
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Definition 2.3. Suppose the curve α(s) lies on M, we can write α(s) = R(u(s),v(s)), then
we have

α
′(s) = R1u′+R2v′,(2.4)

α
′′(s) = R11(u′)2 +2R12u′v′+R22(v′)2 +R1u′′+R2v′′,(2.5)

α
′′′(s) = R111(u′)3 +3R112(u′)2v′+3R122u′(v′)2 +R222(v′)3 +3[R11u′u′′

+R12(u′′v′+u′v′′)+R22v′v′′]+R1u′′′+R2v′′′,(2.6)

where R1 =
∂R
∂u and R2 =

∂R
∂v .

Definition 2.4. D operator: Let u be a non-zero vector in R3, then for any arbitrary choice
of linearly independent vector(υ) with u, we define

D(x) = υ×u.

Hence D gives a nonzero vector orthogonal to u.

Definition 2.5. For any choice of a unit vector Q = (q1,q2,q3) in R3, a vector can be
rotated about the axis in the direction of Q with a rotation angle θ by Rodrigues’ rotation
formula given as[18]

(2.7) R = I3 +(sinθ)P+(1− cosθ)P2,

where I3 is a 3×3 identity matrix and

P =

 0 −q3 q2
q3 0 −q1
−q2 q1 0

 ,
or, in matrix form as
(2.8)

R =

 q2
1 +(1−q2

1)cosθ q1q2(1− cosθ)−q3 sinθ q1q3(1− cosθ)+q2 sinθ

q1q2(1− cosθ)+q3 sinθ q2
2 +(1−q2

2)cosθ q2q3(1− cosθ)−q1 sinθ

q1q3(1− cosθ)−q2 sinθ q2q3(1− cosθ)+q1 sinθ q2
3 +(1−q2

3)cosθ


Remark 2.1. We assume that the intersection curve has a tangential direction at each point. The
method do not work in at least second order contact.

3. Parametric-parametric surface intersection

3.1. Geodesic torsion

Let X and Y be two regular surfaces given by their parametric representation X = X(u,v)
and Y = Y (p,q), respectively and α(s) be their intersecting curve of unit speed with arc
length parametrization. Then , their unit normals are defined as

NX =
Xu×Xv

‖Xu×Xv‖
, NY =

Yp×Yq

‖Yp×Yq‖
.
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Denoting the darboux frame of α with respect to surface X and Y by {T X ,V X ,NX} and
{TY ,VY ,NY}, respectively, then from (2.3), we obtain the geodesic torsion of the intersect-
ing curve α with respect to surface X and Y as

(3.1) τ
X
g = 〈(V X )

′
,NX 〉 τ

Y
g = 〈(VY )

′
,NY 〉

or, we can write (3.1) as [2]
τX

g = 1√
EX GX−(FX )2

{(EX MX −FX LX )(u′)2 +(EX NX −GX LX )u′v′

+(FX NX −GX MX )(v′)2},
τY

g = 1√
EY GY−(FY )2

{(EY MY −FY LY )(p′)2 +(EY NY −GY LY )p′q′

+(FY NY −GY MY )(q′)2}.

(3.2)

where (E,G,F) and (L,M,N) are the first and second fundamental coefficients respectively.
From (3.2), we see that, to obtain τX

g and τY
g , we need to find u′,v′, p′ and q′. For that, we

have the following method.

3.2. New Method:

By the definition of D , the vectors D(NX ) and D(NY ) lies in the tangent plane of X and Y ,
respectively. Then after a suitable choice of rotation angles θ and φ , (0≤ θ ,φ < π) around
the axis of rotations in the direction of NX and NY , respectively, the normalized vectors
D(NX ) and D(NY ) coincides with the unit tangent vector T of the intersection curve at
point c, then we have

T = Xuu′+Xvv′ = R(θ ,NX )
D(N1)

‖D(N1‖
,(3.3)

T = Yp p′+Yqq′ = R(φ ,NY )
D(N2)

‖D(N2‖
.(3.4)

Since the T is the common tangent, rotation angles can be find by equating

R(θ ,NX )
D(N1)

‖D(N1‖
= R(φ ,NY )

D(N2)

‖D(N2‖
= f (θ ,φ)(say).

Rewriting (3.3)and (3.4) in matrix form as

(3.5)

 Xu


3×1

u′+

 Xv


3×1

v′ =

 f (θ ,φ)


3×1

and

(3.6)

 Xp


3×1

p′+

 Yq


3×1

q′ =

 f (θ ,φ)


3×1

.

From (3.5) and (3.6), (u′,v′),(p′,q′) can be easily found respectively. Finally substituting
their values in (3.2), we get the geodesic torsion of the intersection curve with respect to X
and Y , respectively. Consequently, the unit tangent vector follows from (3.3) or (3.4).
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3.3. Geodesic curvature

In this subsection, we evaluate the geodesic curvature of the intersection curve α with
respect to X and Y , respectively.
From (2.3) the geodesic curvature can be written as

κ
X
g =

1√
EX GX − (FX )2

([(
FX

u −
EX

v

2

)
〈Xu,T 〉−

EX
u

2
〈Xv,T 〉

]
(u′)2

+(GX
u 〈Xu,T 〉

−EX
v 〈Xv,T 〉)u′v′+

[
GX

v

2
〈Xu,T 〉−

(
FX

v −
GX

u

2

)
〈Xv,T 〉

]
(v′)2

)

+

√
EX GX − (FX )2(u′v′′− v′u′′)(3.7)

and

κ
Y
g =

1√
EY GY − (FY )2

([(
FY

p −
EY

q

2

)
〈Yp,T 〉−

EY
p

2
〈Yq,T 〉

]
(p′)2

+(GY
p〈Yp,T 〉

−EY
q 〈Yq,T 〉)p′q′+

[
GY

q

2
〈Yp,T 〉−

(
FY

q −
GY

p

2

)
〈Yq,T 〉

]
(q′)2

)

+

√
EY GY − (FY )2(p′q′′−q′p′′).(3.8)

The formula (3.7,3.8) can be found in any classical book of differential geometry. Since
(u′,v′) and (p′,q′) are known from (3.5) and (3.6), respectively, we need to evaluate (u′′,v′′)
and (p′′,q′′) to find the geodesic curvature of the intersection curve with respect to surfaces
X and Y , respectively. Applying operator D to unit tangent vector T , D(T ) yields a vector
lying in the normal plane of the intersection curve. After a suitable desired rotation around
the axis in the direction T with the rotation angle ϑ , the normalised vector D(T ) will
coincide with the principal normal vector n. Since, we know that α ′′ = κn, where κ is the
curvature. We may write

α
′′ = Xuu′′+Xvv′′+Xuu(u′)

2
+2Xuvu′v′+Xvv(v′)

2
= κR(ϑ ,T )

D(T )
‖D(T )‖

,(3.9)

α
′′ = Yp p′′+Yqq′′+Ypp(p′)2

+2Ypq p′q′+Yqq(q′)
2
= κR(ϑ ,T )

D(T )
‖D(T )‖

.(3.10)

(3.9) and (3.10) yields a linear equation depending on ϑ for (u′′,v′′) and (p′′,q′′), respec-
tively. Considering α on X and Y and substituting the results in 〈α ′′,T 〉 = 0, gives the
second equation for each pair, respectively. Consequently (u′′,v′′) and (p′′,q′′) can be
found from (3.9) and (3.10), respectively. Substituting (u′′,v′′) and (p′′,q′′) in (3.7) and
(3.8) gives the geodesic curvature of the transversal intersection curve α with respect to
surface X and Y , respectively.

Theorem 3.1. Let α be a unit speed intersection curve of two regular surfaces X and Y .
Then, we have

κ =
1

sinθ

√
(κX

g )
2 +(κY

g )
2−2κX

g κY
g cosθ
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where θ is the angel between the normal vectors[2].

4. Example:

Example 4.1. Consider the surfaces

X = (sinu,vcosu,v−1); 0≤ u,v≤ π

and
Y = (u−1,cosv,sinv); 0≤ u,v≤ π.

We find the geodesic curvature and the geodesic torsion at the intersection point

c = X(0,1) = Y (1,0) = (0,1,0).

Since the unit normal vectors of X and Y are

NX =

(
0,− 1√

2
,

1√
2

)
, NY = (0,−1,0),

respectively, we see that X and Y intersect transversally at c.
Choosing υ = (−1,0,0) which is in fact linearly independent to NX , we have

D(NX )

‖D(NX )‖
=

υ×NX

‖υ×NX‖
= (0,

1√
2
,

1√
2
).

Now

R(NX ,θ)
D(NX )

‖D(NX )‖
=

 cosθ − 1√
2

sinθ − 1√
2

sinθ

1√
2

sinθ
1
2 (1+ cosθ) − 1

2 (1− cosθ)
1√
2

sinθ − 1
2 (1− cosθ) 1

2 (1+ cosθ)


 0

1√
2

1√
2


=

(
−sinθ ,

1√
2

cosθ ,
1√
2

cosθ

)
.(4.1)

Choosing υ = (−1,0,0) being linearly independent with NY , we have

D(NY )

‖D(NY )‖
=

υ×NY

‖υ×NY ‖
= (0,0,1).

Then

R(NY ,φ)
D(NY )

‖D(NY )‖
=

 cosφ 0 sinφ

0 1 0)
sinφ 0 cosφ

 0
0
1


= (−sinφ ,0,cosφ).(4.2)

On comparing (4.1) and (4.2), we obtain θ = φ = π

2 .
Hence from (3.5) and (3.6), we obtain (u′,v′) = (−1,0) and (p′,q′) = (−1,0), respectively.
Now from (3.5) or (3.6), we obtain

t = (−1,0,0).
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Thus from (3.2), we obtain τX
g = 0 and τY

g = 0, respectively.
Now for ϑ = (0,0,1), we have

κR(ϑ ,T )
D(T )
‖D(T )‖

= (0,κ cosθ ,−κ sinθ).

Therefore, from (3.9) and (3.10), we obtain

(u′′,v′′−1,v′′) = (p′′+1,1,q′′+1) = (0,κ cosθ ,−κ sinθ).

Using 〈α ′,α ′′〉= 0, we obtain

(u′′,v′′) = (0,2) and (p′′,q′′) = (−1,1).

Hence from (3.7) and (3.8), we obtain κX
g =− 3√

2
and κY

g =−1, respectively.
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10. M. Düldül: On the intersection curve of three parametric hypersurfaces. Comput. Aided
Geom. Des., 27 (1), 2010, 118-127.
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