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Vegetation indices are important remotely sensed metrics for ecosystem monitoring and land surface process
assessment, among which Normalized Difference Vegetation Index (NDVI) has been most widely used. The
newly launched Landsat 8 Operational Land Imager (OLI) sensor, together with its predecessor Landsat 7
Enhanced Thematic Mapper Plus (ETM+), provides continuous earth observations with an 8-day interval. The
design improvements of the new sensor, including narrower near-infrared waveband, higher signal-to-noise
ratio (SNR), and greater radiometric sensitivity highlight the need for investigating the land surface observation
properties, especially its consistency with data from its predecessors and other satellite sensors. This study aims
to evaluate the characteristics of Landsat 8 OLI-derived NDVI against Landsat 7 ETM+ by cross-comparison and
by comparing with Moderate Resolution Imaging Spectroradiometer (MODIS) and Geostationary Ocean Color
Imager (GOCI)-derived NDVIs as well as in-situ NDVI measurements. Simulations of Top of Atmosphere (TOA)
reflectance and surface reflectance of broadleaf trees and water were conducted for Landsat 8 OLI, Landsat 7
ETM+, andMODIS in order to evaluate the impact of band pass difference on NDVI calculation. Four consecutive
pairs of Landsat 8 OLI and Landsat 7 ETM+ data over China and Korea were examined, and NDVIs derived from
TOA reflectance and surface reflectance by three atmospheric correction methods were evaluated. Both simula-
tions and comparisons showed that NDVIs derived from atmospherically-corrected surface reflectance had good
consistency, while the simulation showed that the agreement varied with atmospheric characteristics. The four
pairs of Landsat 8 OLI and Landsat 7 ETM+ NDVI had a mean bias error within ±0.05, and R2 from 0.84 to 0.98.
Vegetated land cover types were found to have better NDVI agreement than non-vegetated land cover types.
Especially, Landsat 8 OLI consistently generated lower NDVI values in water area than Landsat 7 ETM+, which
resulted from higher aerosol optical thickness in atmosphere. Landsat 8 OLI-derived NDVI showed better agree-
ment with MODIS and GOCI NDVI than Landsat 7 ETM+, mainly on vegetated surfaces. Both Landsat 8 OLI and
Landsat 7 ETM+ surface reflectance-derived NDVI agreed well with in-situ light emitting diode (LED) NDVI
measurements at a homogeneous deciduous forest site. Landsat 8 OLI was also found to produce higher spatial
variability of NDVIs than Landsat 7 ETM+ at vegetated and urban areas, but lower variability on water area.
The overall good agreement between Landsat 8 OLI NDVI and Landsat 7 ETM+, MODIS and GOCI NDVIs as
well as in-situ measurements ensures that it is reliable to integrate the new sensor observations with those
from the multiple satellite sensors, given that the same atmospheric correction methods are applied. Further-
more, the greater NDVI contrast between vegetated areas and water areas, and the higher spatial variability of
Landsat 8 OLI NDVI indicated that the new sensor has better capability in land surface process monitoring,
such as land cover mapping, spatiotemporal dynamics of vegetation growth, and drought assessment.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Vegetation indices, based on remotely-sensed spectral reflectance in
the near-infrared and visible bands, have beenwidely used formonitor-
ing vegetation cover and health condition, plant phenology, and
ironmental Engineering Ulsan
UNIST-gil, Eonyang-eup, Ulju-
ecosystem changes (Chen, Chen, & Son, 2012; De Beurs & Henebry,
2004; Glenn, Huete, Nagler, & Nelson, 2008; Gong et al., 2012;
Lambert, Drenou, Denux, Balent, & Cheret, 2013). They have been
used to assess climate–terrestrial interactions such as evapotranspira-
tion (ET), heat waves, and droughts (Black & Stephen, 2014; Gao,
Wang, Cao, & Gao, 2014; Pervez, Budde, & Rowland, 2014; Rhee, Im, &
Carbone, 2010), and assist land cover mapping and change detection
(Bhatti & Tripathi, 2014; Im, Lu, Rhee, & Jensen, 2012a; Kleynhans
et al., 2011; Liu, Wang, Tani, Matsuoka, & Matsumura, 2011; Lunetta,
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Knight, Ediriwickrema, Lyon, &Worthy, 2006). Amongmany vegetation
indices such asNormalizedDifference Vegetation Index (NDVI), Soil Ad-
justed Vegetation Index (SAVI) and Enhanced Vegetation Index (EVI),
NDVI has been most commonly used for vegetation-related monitoring
in numerous studies (Cheret & Denux, 2011; Hielkema, Prince, & Astle,
1986; Im, Lu, Rhee, & Quackenbush, 2012b; Li, Im, & Beier, 2013;
Meng, Cooke, & Rodgers, 2013; Ozdemir, 2014; Yuan, Wang, &
Mitchell, 2014; Zhang et al., 2003). During the recent decades, the in-
creasing number of satellite sensors provides great opportunity for
NDVI derivation at various spatial and temporal scales, and enables
the synergistic use of observations from multiple satellite sensors to
better understand land processes such as ET and carbon fluxes (Hong,
Hendrickx, & Borchers, 2009; Tucker et al., 2005). However, a major
challenge is that differences in sensor viewing conditions, spectral
band responses, instrument performances, and atmospheric conditions
at the time of observation increase inconsistencies inmeasuring surface
reflectance. This contributes to difficulties in using NDVI data derived
from multiple sensors (Brown, Pinzón, Didan, Morisette, & Tucker,
2006; Van Leeuwen et al. 2006; Hadjimitsis et al., 2010). Teillet and
Ren (2008) pointed out that the differences in spectral wavelength of
various sensors alone can lead to as large as 10% of theNDVI differences.
Such inconsistency can result in unreliablemonitoring of vegetation dy-
namics and produce uncertainties in the estimation of secondary
remotely-sensed products such as ET.

While previous studies have evaluated the agreement in surface re-
flectance and vegetation indices derived from multiple sensors, mainly
focusing on Landsat TM/ETM+ and MODIS instruments (Feng et al.,
2012; Ju, Roy, Vermote, Masek, & Kovalsky, 2012; Maiersperger et al.,
2013), this study examines the characteristics of the NDVI derived
from the newly launched Landsat 8 OLI sensor. Landsat 8 satellite, the
latest member of Landsat family, was launched on February 11, 2013
and the data have been publicly available since May 2013. The satellite
extends the 40+ years of the Landsat program and provides the conti-
nuity of earth surface observations at high spatial resolutions and
multiple spectral wavebands. It carries two sensors, the Operational
Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). While the
continuity of spectral coverage between Landsat-8 and the predecessor
Landsat ETM+ was a mission consideration, the new sensors provide
significant improvements. Besides the addition of two spectral bands
(one deep blue visible band at 430–450 nm and a shortwave infrared
band at 1360–1390 nm) and one thermal band, the other reflective
wavebands corresponding to the previous Landsat ETM+ bands have
narrower wavelength (Fig. 1). In particular, the previous near-infrared
Fig. 1. Band average relative spectral response of Landsat 7 ETM+
(NIR) band used in the ETM+ instrument is narrowed down to 850–
880 nm similar to the MODIS NIR band to avoid water vapor absorption
at 825 nmwavelength. Second, the OLI sensor employs the pushbroom
technologywhich enables the data acquisitionwithmuch better signal-
to-noise (SNR) performance and higher radiometric resolution (Roy
et al., 2014). Compared to 256 gray-level images from the previous
8-bit Landsat ETM+ instrument, the new Landsat 8 OLI images have a
dynamic range of 12-bits (4096 levels) (Roy et al., 2014). The narrower
NIR band, higher SNR, and better radiometric resolution indicate that
the newOLI sensor has the potential to be less impacted by atmospheric
conditions and to be more sensitive to surface reflectance variability.
Thus, it may better represent the spectral properties of vegetation and
enhance the detection of temporal and spatial heterogeneity of vegeta-
tion compared to Landsat 7 ETM+ data (Ding, Zhao, Zheng, & Jiang,
2014). Moreover, Landsat 8, in conjunction with Landsat 7, currently
acquires images of a same scene every 8 days, enabling more temporal
repetition of earth observations from the Landsat series.

Nonetheless, the difference in the spectral bands and the instrument
performances between Landsat 8 OLI and its predecessors may cause
variations on the derived NDVI. Although atmospheric correction
methods can be applied to eliminate the effect of solar or viewing
conditions and sensor spectral responses, the atmospheric effects,
especially the scattering and absorption caused by aerosols still pose
correction challenges (Roy et al., 2014). Besides, atmospheric correction
methods, even with the same radiative transfer algorithm but different
atmospheric parameterization, can produce statistically different esti-
mations of surface reflectance, and thus NDVI (Ju et al., 2012). Thus, it
is necessary to examine the NDVIs derived from different atmospheric
correction methods.

To date, only a few studies have examined the characteristics of
Landsat 8OLI-basedNDVI. Ding et al. (2014) examined the temporal dy-
namics of spatial heterogeneity of cropland NDVI based on time-series
Landsat 8 OLI imagery, but did not include the agreement analysis
with Landsat 7 ETM+. Li, Jiang, and Feng (2014) compared vegetation
indices from Landsat 7 ETM+ and Landsat 8 OLI imagery over Mekong
River Basin and found extremely high consistency of vegetation indices
(R2 N 0.99). In Li et al. (2014), the Fast Line-of-sight Atmospheric
Analysis of Hypercubes (FLAASH) atmospheric correction was applied
to both sensor images for surface reflectance retrieval, but itwas unclear
how the selection of atmospheric correction methods affects the resul-
tant consistency of vegetation indices. In the present study, we conduct-
ed a comprehensive examination of the characteristics of the Landsat 8
OLI-derived NDVI using the Landsat ETM+ as a baseline comparison
(solid line), Landsat 8 OLI (dash line) and MODIS (black).



Fig. 2. (a) Location of four study sites, and Landsat 8 OLI color-infrared images showing the study sites: (b) site 1 (P122, R32); (c) site 2 (P122, R39); (d) site 3 (P116, R34); and (e) Site 4
(P114, R35).
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from the following four aspects: (1) the effect of band pass differences
and atmospheric condition on NDVI calculation by TOA and surface re-
flectance simulation for Landsat 8 OLI, Landsat 7 ETM+, and MODIS;
(2)NDVI agreement between Landsat 8OLI and the consecutive Landsat
7 ETM+ acquisition during leaf-on season with most abundant vegeta-
tion at four study sites in China and Korea; (3) the agreements of
Landsat 8 OLI (Landsat 7 ETM+) NDVI with NDVI derived from
MODIS instrument, Geostationary Ocean Color Imager (GOCI) data ac-
quired on the same day, and in-situ LEDmeasurement; and (4) the spa-
tial variability of NDVI revealed by Landsat 8 OLI in comparison with
Landsat 7 ETM+. Both Landsat 8 OLI and Landsat 7 ETM+ NDVIs at
the four study sites were derived based on TOA reflectance, and surface
reflectance computed from three different atmospheric correction
methods including Second Simulation of a Satellite Signal in the Solar
Spectrum Vector (6SV) radiative transfer algorithm, Dark Object
Table 1
Pairs of Landsat 8 OLI and Landsat 7 ETM+ data.

Site no. Path/row Acquisition date

Landsat 8 L

1 122/32 9 August 2013 1
2 122/39 9 August 2013 1
3 116/34 16 September 2013 8
4 114/35 17 August 2013 9
Subtraction (DOS), and FLAASH in the ENVI software. All comparisons
were conducted over different land cover types.

2. Data and preprocessing

2.1. Landsat 8 OLI and Landsat 7 ETM+ data

Landsat 8 acquires data over the earth surface every 16 days with an
8-day offset from Landsat 7. In this study, four consecutive pairs of
Landsat 8 OLI and Landsat 7 ETM+ Level 1 terrain-corrected (L1T)
products over China and Korea were selected based on the following
criteria: (1) images were collected during the leaf-on season with
most abundant leafage (usually July to September) in order tominimize
the phenological (and thus spectral) variability during the 8-day
interval; (2) images hadminimal cloud cover (b1%) at the scene center;
Coordinates (lon, lat) Area (km2)

andsat 7

7 August 2013 118.2, 40.3 2022
7 August 2013 115.3, 30.3 2060
September 2013 126.8, 37.9 1802
August 2013 129.3, 35.7 1829



Table 2
Land cover reclassification.

Global land cover products Reclassification

MCD12Q1 IGBP GlobCover 2009 FROM-GLC (level 1)

Evergreen Needleleaf forest Closed to open broadleaved evergreen or semi-deciduous forest Forest Forest
Evergreen Broadleaf forest Closed broadleaved deciduous forest
Deciduous broadleaf forest Closed needleleaved evergreen forest
Mixed forest
Cropland Post-flooding or irrigated croplands (or aquatic) Crop Crop
Cropland/natural vegetation mosaic Rainfed croplands

Mosaic cropland (50–70%)/vegetation (grassland/shrubland/forest) (20–50%)
Urban and built-up Artificial areas Impervious Urban
Water Water bodies Water Water
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only the sub-image at the scene center was used because of the SLC-off
problemof Landsat 7 ETM+; and (3) images over the study sites includ-
ed different land cover types so that the NDVI comparison by land cover
type can be conducted. The selected study sites are summarized in
Table 1 and located in Fig. 2. All study sites have forest, crop, urban,
and water body cover types according to MODIS Land Cover Type
(MCD12Q1) products during 2012.

Cloud and cloud shadow in each of Landsat 8 OLI and Landsat 7
ETM+ images were detected and the mask layers were generated
using the “Fmask” algorithm (Zhu & Woodcock, 2012; https://
code.google.com/p/fmask/). For Landsat 8 OLI images, the cloud and
cloud shadow masks, in combination with Landsat 8 OLI L1T-provided
Quality Assurance (QA) data were used to remove contamination by
clouds or shadows.

2.2. MODIS and GOCI data

MODIS data on the same days of the Landsat 8 and 7 acquisitions
were obtained as a baseline comparison. It is ideal to use MODIS Terra
daily gridded surface products (MOD09GA Collection 5) because the
local crossing time of MODIS Terra sensor is approximately 10:30 am,
only 15–30 min past Landsat observations (10:00–10:15 am), and col-
lect the data for both in a descending mode. In case of poor quality
issues caused by MODIS calibration errors (Feng et al., 2012), MODIS
Terra products collected within ±2 days were also considered as
valid. If none of these products were cloud free at the study area, the
MODIS Aqua surface reflectance products (MYD09GA) on the same
days of Landsat 7 and 8 collection were used instead. The 500 m
MOD09GA (or MYD09GA) product was re-projected with the same
Fig. 3. Surface reflectance curve of green broadleaf trees (green) and water (blue) used to
simulate TOA radiance.
projection system as Landsat 7 and 8 data. Clouds, cloud shadows, cir-
rus, or areaswith high aerosol amounts detected in the product's quality
assurance (QA) band were removed. It should be noted that theMODIS
surface reflectance product was derived based on 6SV radiative transfer
model (Vermote & Vermeulen, 1999).

Geostationary Ocean Color Imager (GOCI), the world's first geosta-
tionary satellite sensor for monitoring ocean color, provides 8 images
per day from 9:00 am to 4:00 pm with an hour interval at 8 bands
with 500 m spatial resolution covering Korea, Japan, and parts of
China, Mongolia, and Russia (Yeom& Kim, 2013). GOCI data are collect-
ed approximately 30 min after each hour over the study sites in Korea.
GOCI data collected at 10:30 am on the same day of the Landsat 8 and
7 acquisitions were used for comparison. Surface reflectance for each
scene was derived using MODIS-based 6S radiative transfer model
(Section 2.5.1). GOCI bands 5 (650–670 nm) and 8 (845–885 nm)
were used to calculate NDVI similar to the MODIS bands used for
NDVI calculation. While GOCI data have been mainly used for ocean
water applications, they have proved useful for land applications as
well (Yeom & Kim, 2013).

2.3. Ground reflectance by LED

To evaluate Landsat NDVI, we used in-situ NDVI data using light
emitting diode (LED)-sensors at the Gwangneung Experimental Forest
in South Korea. The sensors were installed at the top of two towers
located in a deciduous broadleaf forest (latitude: 37.748717°N,
longitude: 127.148176°E, elevation: 260m, slope: 10–20°) and an ever-
green needleleaf forest (latitude: 37.74843°N, longitude: 127.162593°E,
elevation: 128 m, slope: b3°). The deciduous forest is dominated
by Quercus acutissima, Quercus serrate and Carpinus laxiflora and the
peak LAI was around 4 (Ryu, Lee, Jeon, Song, & Kimm, 2014). The
semivariogram analysis revealed the scale of heterogeneity, defined as
“range”, in this site was ~1 km (Ryu, Kang, Moon, & Kim, 2008). The
evergreen site is an artificially planted andmanaged forest with a single
dominant species, Abies holophylla and the peak LAI was 8.3. The
homogeneous evergreen forest that is surrounded by deciduous forest,
resulted in 50% coverage of deciduous forest within a 500 m pixel
centered on the evergreen forest tower (Ryu et al., 2014). LED-sensors
measured bi-hemispheric spectral reflectance of red, green, blue and
NIR bands. Here, we used red (peak: 646 nm, Full Width at Half
Maximum (FWHM): 56 nm) and NIR (peak: 843 nm, FWHM: 72 nm)
Table 3
Geometry and atmosphere parameters used in MODTRAN.

Date Solar
zenith
angle (°)

Water vapor
content (g/cm2)

Aerosol optical
thickness (km)

AOT corresponding
visibility (km)

9 August 2013 32.94 0.1 0.16 50
0.5 0.19 40
1.0 0.25 30
2.0 0.4 20
3.0 0.65 10

https://code.google.com/p/fmask/
https://code.google.com/p/fmask/


Fig. 4.NDVI derived from simulated reflectance of Landsat 8 OLI (solid line), Landsat 7 ETM+(dash-dotted line), andMODIS Terra (dotted line) instruments for tree andwater on 9August
2013. (a) Tree NDVI derived fromMODTRAN-simulated TOA reflectance; (b)water NDVI derived fromMODTRAN-simulated TOA reflectance; (c) tree NDVI fromMOTRAN-6SV simulated
surface reflectance; (d) water NDVI from MOTRAN-6SV simulated surface reflectance.
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bi-hemispheric reflectancedata to compute forNDVI. Datawere collected
every second and stored as half-hourly mean values. Development and
evaluationof LED-sensorswere reported inRyu et al. (2010), anddetailed
descriptions on the LED-sensor settings in theGwangneung forest appear
in Ryu et al. (2014).

2.4. Land cover map

Three land cover products: MODIS Global 500 m Terra and Aqua
combined the yearly gridded land cover product (MCD12Q1 IGBP)
from NASA (https://lpdaac.usgs.gov/products/modis_products_table/
mcd12q1), European Space Agency (ESA) Global Land Cover Map
2009 products (also called GlobCover 2009) with 300 m resolution,
and the Finer Resolution Observation and Monitoring of Global Land
Cover (FROM-GLC) with 30 m resolution developed by Tsinghua
University, China (Gong et al., 2013) were downloaded, re-projected
to the same projection system as Landsat 7 and 8 data, and combined
to create a new ensemble 30m land cover map in the study sites to en-
sure the most accurate land cover classification. Due to the differences
in the classification schemes used in these products, each land cover
product was simply reclassified to forest, crop, urban, and water body
classes based on the criteria listed in Table 2. To minimize uncertainties
in each land cover product, only the overlapping patches with the same
class from all three reclassified maps and with area over 0.25 km2 were
used to produce the new land cover map, which was used as reference
land cover data for subsequent NDVI analyses.

2.5. Atmospheric correction for Landsat 7 ETM+ and 8 OLI data

Each Landsat 7 and 8 L1T Digital Number (DN) image was
converted to TOA reflectance based on the available Landsat 8 OLI and
Landsat 7 ETM+ calibration coefficients and standard correction for-
mulas (http://landsat.usgs.gov/Landsat8_Using_Product.php; Chander,
Markham, &Helder, 2009). Although theDisturbance Adaptive Process-
ing System (LEDAPS) surface reflectance product provided from theU.S.
Geological Survey (USGS) Earth Resources Observation and Science
(EROS) Center was available for Landsat 7 ETM+, to be consistent,
both Landsat 7 ETM+ and Landsat 8 OLI images were processed using

https://lpdaac.usgs.gov/products/modis_products_table/mcd12q1
https://lpdaac.usgs.gov/products/modis_products_table/mcd12q1


Fig. 5. Mean differences (MBE) derived from Landsat 8 OLI and Landsat 7 ETM+ at the
four study sites, with error bars showing the standard deviation (SDBE). (a) Overall;
(b) forest; (c) crop; (d) urban; (e) water.
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the same atmospheric correction methods includingMODIS-based 6SV,
Dark Object Subtraction (DOS), and FLAASH models.

2.5.1. 6SV atmospheric correction
Ju et al. (2012) presented a MODIS-based 6SV atmospheric

correction method for Landsat 7 ETM+ data. Both MODIS-based and
LEDAPS methods are based on the 6SV radiative transfer model, but
differ in the atmospheric parameterization approaches, with the
biggest difference in Aerosol Optical Thickness (AOT) characterization.
The MODIS-based method uses MODIS Terra-derived AOT, while the
LEDAPS algorithm derives AOT independently from each Landsat 7
ETM+ image using a dense dark vegetation (DDV) approach. Using
AERONET in-situmeasurements as reference, theMODIS-basedmethod
was reported to have better performance than the LEDAPSmethod. The
latter tended to overestimate surface reflectance (Ju et al., 2012). Our
study adopted a similar approach as the MODIS-based method to
build an atmospheric correction model for both Landsat 7 ETM+ and
Landsat 8 OLI data. The MODIS aerosol product (MOD04L2 Collection
5.1) and the water vapor product (MOD05L2 Collection 5.1) were
downloaded for each study area on the dates of the Landsat data acqui-
sition. Ozone data from the NASA Earth Probe Total Ozone Mapping
Spectrometer (EP TOMS) (Masek et al., 2006) and elevation data from
Shuttle Radar TopographyMission (SRTM) 90mglobal Digital Elevation
Model (DEM) product were used for the 6SV implementation. The
aerosol optical depth at 550 nm from MOD04L2, water vapor at
near-infrared band from MOD05L2, ozone, and SRTM DEM were all
interpolated to 0.05° grid. Using these parameters, with assumption of
the continental aerosol type and mid-latitude summer aerosol model,
a look-up table of the atmosphere coefficients was built and the surface
reflectance values were then estimated from each of the Landsat TOA
reflectance values.

2.5.2. DOS atmospheric correction method
The dark object subtraction method (Chavez, 1988) was applied to

both Landsat 8 OLI and Landsat 7 ETM+ images. In Landsat 8 OLI data,
dark objects were first established as pixels with the “lowest valid
value” in visible bands. The “lowest valid” DN value was determined
as the one that has an interval of ≤100 with its near neighbor in the
low end of the histogram. For example, if three lowest DN values in
the histogram are 4028, 5159, and 5231 respectively, the DN of 5159
was identified as “lowest valid value” as the lowest DN 4028 was
deemed as noise. The haze radiance in the near infrared bands were
then found from the continuous relative scatter lookup table established
following Chavez' (1988) method that assumes a power relationship
between band haze radiance (GIS Ag Maps, 2014). Haze radiance in
Landsat 7 ETM+ images were calculated in similar way as in Landsat
8 OLI images (GIS Ag Maps, 2014).

2.5.3. FLAASH atmospheric correction method
The FLAASH atmospheric correction model embedded in the ENVI

software was applied for both Landsat 7 ETM+ and Landsat 8 OLI
images. The FLAASH method was developed based on the MODTRAN
radiation transfer code. Uniform parameters were specified for both
types of images: the mid-latitude summer atmospheric model, the
rural aerosol model, and the 2-Band aerosol retrieval method.

3. Methods

3.1. NDVI simulation and comparison

To evaluate the impact of band pass difference on NDVI calculation,
TOA radiancewas simulated for red/NIR bands of Landsat 8 OLI, Landsat
7 ETM+, andMODIS Terra based onUSGS spectral surface reflectance of
broadleaf trees andwater (Fig. 3) usingMODTRAN. 6SV radiative trans-
fer codewas then used to derive simulated surface reflectance fromTOA
radiance. The ground pixel was assumed to be located at the center of



Table 4
Comparison between Landsat 8 OLI NDVI and Landsat 7 ETM+ NDVI derived from TOA reflectance and surface reflectance from three atmospheric correction methods.

Site 1 Site 2 Site 3 Site 4

N R2 RMSD a b n R2 RMSD a b n R2 RMSD a b n R2 RMSD a b

Overall
TOA 220,924 0.980 0.040 1.126 −0.064 487,243 0.967 0.086 1.153 −0.025 141,261 0.903 0.132 1.172 0.029 629,412 0.896 0.068 1.064 0.013
6SV 0.972 0.043 1.167 −0.116 0.950 0.094 1.207 −0.085 0.890 0.113 1.146 −0.058 0.918 0.045 1.123 −0.100
DOS 0.964 0.061 1.311 −0.216 0.947 0.085 1.174 −0.093 0.891 0.107 1.140 −0.116 0.845 0.049 1.095 −0.036
FLAASH 0.970 0.042 1.173 −0.136 0.937 0.084 1.098 −0.052 0.913 0.089 1.029 −0.008 0.908 0.049 0.976 −0.002

Forest
TOA 198,596 0.902 0.034 0.969 0.050 69,655 0.687 0.069 0.773 0.210 44,603 0.629 0.151 1.124 0.071 460,422 0.788 0.065 0.877 0.143
6SV 0.879 0.032 1.025 0.001 0.798 0.054 0.923 0.108 0.641 0.084 1.088 −0.014 0.808 0.043 1.002 0.005
DOS 0.894 0.036 1.007 0.023 0.634 0.038 0.735 0.229 0.674 0.058 1.060 −0.061 0.774 0.031 0.914 0.071
FLAASH 0.884 0.025 1.025 −0.012 0.641 0.040 0.716 0.245 0.664 0.065 0.854 0.134 0.756 0.042 0.848 0.108

Crop
TOA 14,365 0.936 0.036 1.006 0.019 377,338 0.785 0.085 0.890 0.128 47,082 0.828 0.108 1.208 −0.022 167,440 0.892 0.075 1.153 −0.039
6SV 0.938 0.035 1.058 −0.029 0.803 0.081 0.953 0.088 0.819 0.086 1.208 −0.125 0.897 0.070 1.130 −0.113
DOS 0.937 0.037 1.030 0.001 0.769 0.066 0.870 0.119 0.825 0.089 1.214 −0.179 0.895 0.062 1.141 −0.100
FLAASH 0.935 0.032 1.036 −0.024 0.775 0.071 0.827 0.140 0.835 0.075 1.015 −0.019 0.899 0.066 1.024 −0.034

Urban
TOA 1082 0.825 0.041 0.993 0.024 626 0.871 0.065 1.151 0.034 43,238 0.684 0.120 1.397 0.026 1361 0.853 0.067 1.103 0.026
6SV 0.824 0.041 1.047 −0.016 0.853 0.037 1.119 −0.023 0.667 0.096 1.371 −0.066 0.813 0.059 1.003 −0.019
DOS 0.822 0.038 1.009 0.008 0.847 0.043 1.104 0.000 0.686 0.085 1.339 −0.137 0.845 0.049 1.095 −0.036
FLAASH 0.823 0.041 0.985 −0.005 0.841 0.045 1.042 0.009 0.737 0.083 1.190 −0.021 0.858 0.052 0.963 0.009

Water
TOA 6881 0.397 0.120 0.607 −0.154 39,624 0.491 0.112 0.554 −0.202 6338 0.578 0.208 1.758 −0.024 189 0.565 0.086 1.230 −0.063
6SV 0.217 0.157 0.349 −0.088 0.471 0.207 0.563 −0.247 0.620 0.343 1.987 −0.174 0.460 0.093 0.449 −0.019
DOS 0.231 0.282 0.621 −0.250 0.749 0.190 0.588 −0.201 0.574 0.359 2.024 −0.363 0.204 0.102 0.497 0.008
FLAASH 0.167 0.187 0.260 −0.120 0.334 0.191 0.340 −0.279 0.590 0.245 1.484 −0.090 0.241 0.053 0.396 −0.003
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Fig. 6. Scatter plots of Landsat 8 OLI NDVI versus Landsat 7 ETM+NDVI at site 1 based on reflectance derived from (a) TOA radiance; (b) 6SV atmospheric correction; (c) DOS atmospheric
correction and (d) FLAASH atmospheric correction methods. The solid lines show linear regression model fits of the NDVIs. The dashed lines are 1:1 lines for reference. The color of the
points illustrate the frequency of the NDVI values (red most frequent, blue least frequent).
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site 1 (40.3°N, 118.3°E), and the Landsat/MODIS datawas assumed to be
acquired at 10:30 am on 9 August 2013, the same date and time as the
Landsat 8 OLI data collection at site 1. Although the actual Landsat 8
OLI and Landsat 7 ETM+ acquisition is 8-day apart, the solar geometry
does not vary significantly at the same time of the day. Themid-latitude
summer atmosphere model and rural aerosol model were used to
represent atmospheric condition in MODTRAN. Atmospheric multiple
scattering was simulated using the 8-stream DISORT algorithm with
azimuthal dependence. Since the amount of water vapor and aerosol
content can vary day by day and can significantly affect TOA radiance,
different water vapor and aerosol properties were customized as
shown in Table 3. Water vapor content ranged from 0.1 to 3.0 which
were typical inmid-latitude summer atmosphere. Aerosol optical thick-
ness values were set from 0.16 to 0.4, with corresponding visibility dis-
tance from50 kmto10 km. A total of 25 combinations of the parameters
were used to simulate TOA radiance in MODTRAN.

TOA radiance simulated byMODTRANwas used to calculate TOA re-
flectance at red and NIR bands for Landsat 8 OLI and Landsat 7 ETM+,
and then TOA NDVI was calculated and compared. The 6S radiative
transfer code with the same combinations of atmospheric and geomet-
ric parameters was used calculate surface reflectance for Landsat 8 OLI,
Landsat 7 ETM+, andMODIS, NDVIwas then calculated for comparison.

3.2. NDVI generation from Landsat, MODIS and GOCI sensor

For each of the Landsat 8 OLI and Landsat 7 ETM+ images in the four
study sites, four sets of 30 m NDVI (Eq. 1) were calculated based on red
and near-infrared TOA reflectance, surface reflectance derived from
the MODIS-based 6SV model, DOS, and FLAASH methods. NDVIs at a
resolution of 500mwere also calculated fromMODISMOD09GA surface
reflectance products and GOCI-derived surface reflectance. Landsat
cloud, cloud shadow, and cirrus masks and MODIS QA masks were
used to remove pixels with low quality so that only NDVI values from
good-quality reflectance retrieval were evaluated. Since GOCI does not
provide cloud, cloud shadow, and cirrus masks, visual inspection was
applied to identify pixels with low quality for removal.

NDVI ¼ ρnir− ρred

ρnir þ ρred
ð1Þ

where ρred and ρnir are TOA or surface reflectance at red and near-
infrared band, respectively.

3.3. NDVI comparisons between Landsat 8 OLI and Landsat ETM+

For each study site, the NDVI agreements between Landsat 8 OLI and
Landsat 7 ETM+were measured based on (1) TOA reflectance-derived
NDVI; (2) 6SV-derived NDVI; (3) DOS-derived NDVI; and (4) FLAASH-
derived NDVI. The reclassified land cover maps were used to locate
NDVI pixels with forest, crop, urban, or water land cover types. For
each of and all land cover types, a simple linear regression model
(Eq. 2) was built to examine the relationship between Landsat 8 and 7
NDVI. The R2 and Root Mean Square Differences (RMSD) were used to
evaluate the model goodness-of-fit. Consistency metrics such as Mean



306 Y. Ke et al. / Remote Sensing of Environment 164 (2015) 298–313
Bias Error (MBE) (Eq. 3) and the standard deviation of the bias error
(SDBE) were calculated to assess the agreement between Landsat 8
and 7 NDVIs.

NDVIL8 ¼ a� NDVIL7 þ b ð2Þ

MBE ¼
Xn

i¼1

NDVIL8 ið Þ− NDVIL7 ið Þ
n

ð3Þ

where NDVIL8 and NDVIL7 are NDVI derived from Landsat 8 OLI and
Landsat 7 ETM+, respectively; a represents the linear slope and b is
the linearmodel intercept; and n represents the number of NDVI pixels.
3.4. Comparisons of Landsat NDVI with MODIS, GOCI and LED

Because of the coarser resolution of MODIS and GOCI, Landsat 30 m
NDVIs with pixel centroid within each MODIS 500 m grid were aver-
aged to generate Landsat 500 m NDVI. The 500 m land cover map was
also produced with majority (N75%) of land cover type within each
500 m MODIS pixel. For each study area and land cover type, Landsat
8 OLI and Landsat 7 ETM+ NDVI derived from each of the above TOA
or surface reflectance were compared with the same day MODIS and
GOCI NDVIs. Agreement analysis was conducted with the same metrics
stated in the above section. Statistical analysis was performed with the
null hypothesis ofmean absolute differences between Landsat 8 OLI and
MODIS/GOCI NDVI greater than or equal that between Landsat 7 ETM+
andMODIS/GOCI NDVI. Rejection of the null hypothesis means that the
Landsat 8 OLI NDVI is statistically closer to MODIS/GOCI NDVI than
Landsat 7 ETM+.

LED-NDVI data are generated from a LED-sensor mounted at the top
of towers which were 3–10 m higher than top of canopies. Thus, LED-
NDVI data are almost free from atmospheric contaminations such as
clouds, haze, and aerosols. We selected the half-hour LED-NDVI data
which was closest to the Landsat overpass time. Landsat, MODIS, and
GOCI NDVI were computed within the single pixel containing the site
location and compared with LED-NDVI data.
3.5. Spatial variability analysis

The NDVI spatial variability was analyzed at various spatial scales.
Both Landsat 8 OLI and Landsat 7 ETM+NDVI pixels with 30m resolu-
tion were aggregated to bigger grids with 90 m, 150 m, 300 m, and
500 m cell sizes, and the standard deviation of the NDVI values within
each grid was calculated. The mean standard deviation (MSD) across
the study sites and each land cover type (Eq. 4) was used to represent
the average spatial variability and comparisons between Landsat 8 OLI
and Landsat 7 ETM+ MSD were performed.

MSD ¼ 1
N

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
k¼1

NDVI kð Þ− NDVI
� �2r

ð4Þ

where NDVI(k) is the NDVI in the kth pixel in the bigger grid cell with a
total of n 30m pixels inside.NDVI is the mean NDVI within the grid cell,
and N is the total number of bigger grid cells.
Fig. 7. The mean NDVI differences between Landsat 8 OLI/Landsat 7 ETM+ and MODIS.
The error bars show the standard deviation of the differences. (a) Overall; (b) forest;
(c) crop; (d) urban; (e) water. No information was given due to few urban samples for
sites 1 and 2 in (d). * denotes that the absolute differences between Landsat 8 OLI and
MODIS NDVI are significantly smaller than that between Landsat 7 ETM+ and MODIS
NDVI.



Table 5
Comparisons between Landsat NDVI derived from TOA or atmospherically corrected surface reflectance and the same-day MODIS NDVI for the study sites 1–4.

Site 1 Site 2

Landsat 8 OLI vs. MODIS Landsat 7 ETM+ vs. MODIS Landsat 8 OLI vs. MODIS Landsat 7 ETM+ vs. MODIS

n R2 a b RMSD R2 a b RMSD n R2 a b RMSD R2 a b RMSD

TOA 665 0.947 1.360 −0.386 0.111 0.931 1.039 −0.142 0.118 1887 0.977 1.002 −0.058 0.072 0.977 0.865 −0.009 0.100
6S 0.958 1.289 −0.242 0.049 0.947 0.945 0.027 0.037 0.983 1.124 −0.059 0.055 0.981 0.929 0.040 0.039
DOS 0.951 1.423 −0.378 0.074 0.936 0.918 0.018 0.060 0.985 1.001 0.019 0.041 0.973 0.830 0.123 0.068
FLAASH 0.957 1.349 −0.293 0.057 0.944 0.975 0.013 0.035 0.974 1.131 −0.067 0.062 0.974 1.011 0.019 0.050

Site 3 Site 4

Landsat 8 OLI vs. MODIS Landsat 7 ETM+ vs. MODIS Landsat 8 OLI vs. MODIS Landsat 7 ETM+ vs. MODIS

n R2 a b RMSD R2 a b RMSD n R2 a b RMSD R2 a b RMSD

TOA 654 0.969 0.963 −0.054 0.083 0.893 0.955 −0.144 0.175 2287 0.851 0.889 −0.002 0.099 0.821 0.854 −0.043 0.168
6S 0.948 1.022 −0.031 0.069 0.910 0.832 0.047 0.100 0.887 1.062 −0.051 0.041 0.871 0.985 −0.006 0.043
DOS 0.919 0.853 0.063 0.081 0.896 0.764 0.139 0.093 0.875 0.942 0.042 0.038 0.862 0.946 0.023 0.045
FLAASH 0.925 0.882 0.055 0.089 0.924 0.924 0.065 0.091 0.876 1.056 −0.051 0.043 0.864 1.108 −0.092 0.047
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4. Results and discussions

4.1. Comparison of simulated NDVI

At the same solar geometry and meteorological visibility, i.e., the
same level of aerosols, Landsat 8 OLI produced slightly higher TOA
NDVI for trees and lower NDVI for water (Fig. 4a, b). For both tree and
water, Landsat 8 OLI NDVI barely changes with varying water vapor,
while Landsat 7 ETM+ NDVI slightly decreased with increasing water
vapor content. The lower water NDVI, the higher tree NDVI, and unvar-
ied NDVI with water vapor from Landsat 8 OLI sensor simulation can be
explained by the TOA radiance of narrower NIR band being less influ-
enced bywater vapor absorption. Compared towater vapor content, at-
mosphere aerosol optical thickness is amajor factor affecting TOANDVI.
High level of aerosol content corresponds to lower NDVI values. Both
tree and water NDVIs derived from the simulated TOA reflectance of
Landsat 8 OLI and Landsat 7 ETM+ sensors decreased with decreasing
meteorological visibility, i.e., increasing aerosol optical depth: from 0.76
to 0.64 for tree NDVI and−0.18 to−0.21 for water NDVI (Fig. 4a, b).

After 6SV correction on TOA radiance at the same solar zenith
angle, all three sensors produced stable tree NDVI with varying
water vapor. Although Landsat 8 OLI produced slightly higher tree
NDVI than the other instruments, the differences were minimal,
within 0.03 at the same aerosol level. Aerosol optical thickness af-
fects water NDVI more than tree NDVI. When meteorological visibil-
ity decreases from 50 km to 10 km, NDVI values dropped from above
−0.05 to around −0.15. At the same level of aerosol optical thick-
ness, all three sensors produced similar water NDVI despite of atmo-
sphere water vapor. Comparison of Fig. 4b and 4d demonstrated that
water NDVI from surface reflectance was more sensitive to atmo-
spheric condition than tree NDVI. After 6SV correction, water NDVI
varied from −0.05 to −0.16. Because NIR and red reflectance are
both low for water, small change in the reflectance measurement
may produce great differences in NDVI.

When Terra MODIS imagerywas not available due to its low quality,
Aqua MODIS data were used instead. It is found from NDVI simulations
using different solar zenith angles that small changes in the angles
did not influence the NDVI results much (not shown). However, it
should be noted that BRDF differences between the two sensors
caused by different azimuth angles and rugged terrains could be
considerable.

4.2. Comparisons with Landsat 7 ETM+ NDVI

A total of 220,924, 487,243, 141,261 and 629,412 30 m pixels with
good quality (not covered by cloud and cloud shadow or high aerosol)
in both Landsat 7/8 and MODIS data were extracted from the four
study sites by land cover type determined based on the three land
cover products, respectively. The average differences (i.e., MBE) be-
tween Landsat 8 OLI-derived and Landsat 7 ETM+-derived NDVI were
within ±0.1 at all study sites and the standard deviation of the differ-
ences (i.e., SDBE) were within also 0.1 (Fig. 5a). Compared to TOA
reflectance-derived NDVI, the atmospherically corrected NDVIs be-
tween Landsat 8 OLI and Landsat 7 ETM+ had better agreement, with
MBEwithin±0.05. Landsat 8 OLI NDVI shows strong linear relationship
with Landsat 7 ETM+NDVI at all study sites, with R2 ranging from 0.84
to 0.98, and the expected deviationmeasured by RMSDwerewithin 0.1,
with the exception of TOA NDVI regression at site 3 (Table 4). All linear
models were statistically significant at the confidence level of 95%.
Although the R2 values of the TOA reflectance-derived NDVI regression
models were similar or even slightly higher than those derived from
atmospherically-corrected reflectance, for all study sites and non-
water land cover types, the biases of TOA reflectance-derived NDVI
were greater than those derived from atmospherically-corrected reflec-
tance (Fig. 5a–d). For example, at site 3 the TOA NDVI mean difference
between Landsat 8 OLI and Landsat 7 ETM+ was around 0.1, while
the differences decreased to 0.03 and below when atmospheric correc-
tion was applied. Examination of the images over site 3 reveals that
large amount of haze and water vapor content exists on the date of
Landsat 7 ETM+ image acquisition. This reduced the at-sensor radiance
measured by the instrument and thus produced lower NDVI. This indi-
cates that atmospheric correction is needed for both Landsat datasets in
applications using NDVI. This atmospheric condition also explained the
greater dispersion of NDVI bias error in any land cover types and the
whole area (Fig. 5a–e). The scatter plots between Landsat 8 OLI and
Landsat 7 ETM+ NDVI are shown in Fig. 6 with site 1 as an example.
It is evident that Landsat 8 OLI and Landsat 7 ETM+ NDVI agree better
at positive and higher NDVIs (i.e., Landsat 8 OLI NDVI N 0.1), while less
comparable at low NDVI values typically in water area (i.e., Landsat 8
OLI NDVI b 0.1).

The mean bias of both vegetated (i.e., forest and crop) and urban
NDVI derived from surface reflectance by three atmospheric correction
methods were all smaller than ±0.06, while the bias of forest NDVI
has a smaller variation than crop and urban NDVIs at all study sites
(Fig. 5b, c). Nonetheless, crop and urban NDVIs derived from surface
reflectance of Landsat 8 OLI images and that from Landsat 7 ETM+ re-
flectance show stronger correlation than forest NDVI, with over 75% of
Landsat 7 ETM+ NDVI explained by Landsat 8 OLI NDVI at all study
sites. The slope of the regression close to one and the intercept close
to zero indicate a 1:1 relationship between Landsat 8 OLI and Landsat
7 ETM+ NDVI. This can be explained by the evidence that crop and
urban areas generally show higher dynamic range of NDVI. It is also
likely that Landsat 8 OLI has a greater capability of capturing small
NDVI variance due to its higher SNR and wider radiometric range.
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Table 6
Comparisons between Landsat NDVI derived from TOA or surface reflectance and the same-day 6S corrected GOCI NDVI.

Site 1 Site 2

Landsat 8 OLI vs. GOCI Landsat 7 ETM+ vs. GOCI Landsat 8 OLI vs. GOCI Landsat 7 ETM+ vs. GOCI

n R2 a b RMSD R2 a b RMSD n R2 a b RMSD R2 a b RMSD

TOA 665 0.861 1.814 −0.691 0.113 0.851 1.541 −0.461 0.094 – – – – – – – – –

6S 0.869 1.712 −0.526 0.090 0.869 1.406 −0.266 0.072 – – – – – – – – –

DOS 0.859 1.892 −0.694 0.102 0.862 1.367 −0.268 0.059 – – – – – – – – –

FLAASH 0.869 1.793 −0.592 0.096 0.865 1.451 −0.290 0.082 – – – – – – – – –

Site 3 Site 4

Landsat 8 OLI vs. GOCI Landsat 7 ETM+ vs. GOCI Landsat 8 OLI vs. GOCI Landsat 7 ETM+ vs. GOCI

n R2 a b RMSD R2 a b RMSD n R2 a b RMSD R2 a b RMSD

TOA 654 0.719 0.924 −0.025 0.130 0.662 0.844 0.006 0.122 2392 0.625 0.750 0.128 0.092 0.505 0.622 0.168 0.148
6S 0.713 1.031 −0.037 0.123 0.659 0.997 0.059 0.128 0.658 0.924 0.083 0.075 0.536 0.735 0.224 0.083
DOS 0.709 0.939 0.019 0.112 0.660 0.903 0.160 0.154 0.636 0.816 0.162 0.072 0.526 0.693 0.253 0.084
FLAASH 0.706 1.023 −0.022 0.124 0.621 1.045 0.055 0.152 0.632 0.902 0.094 0.076 0.516 0.807 0.181 0.095
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It is noticeable that water NDVI from Landsat 8 OLI reflectance was
much lower than that from Landsat 7 ETM+ reflectance (negative
MBE in Fig. 5e, especially at sites 1 and 2). Further examination revealed
significantly higher aerosol optical thickness on the day of Landsat 8 OLI
image acquisition compared to Landsat 7 ETM+ acquisition (1.4 km
compared to 0.15 km at site 1 and 1.05 km compared to 0.05 km
at site 2), which was shown to result in lower water NDVI from
MODTRAN simulation and 6SV atmospheric correction (Fig. 4d).

4.3. Comparisons with MODIS, GOCI and LED NDVI

The comparisons between Landsat 8 OLI and Landsat 7 ETM+NDVI
and the same-dayMODIS NDVI are shown in Fig. 7. A total of 665, 1887,
654 and 2392 500m-resolution pixelswere extracted at study sites 1–4,
respectively. Both Landsat 8 OLI and Landsat 7 ETM+ NDVIs derived
from atmospherically corrected surface reflectance agreed well with
the same-day MODIS NDVI, with the mean bias within ±0.05 (Fig. 7a)
and R2 over 0.85 (Table 5). The variation of the NDVI bias was within
0.1 except that from TOA reflectance at site 3, where haze was signifi-
cant. Statistical analysis showed that in most cases Landsat 8 OLI
produced significantly smaller NDVI discrepancy (i.e., mean absolute
difference) than Landsat 7 ETM+ with MODIS as reference (Fig. 7).
The Landsat 8 OLI NDVI also had marginally better linear correlation
with MODIS, i.e., greater R2 and lower RMSD than Landsat 7 ETM+
(Table 5). For example, at site 1, the R2 of the linear fit between Landsat
8 OLI andMODIS NDVI is consistently higher than that between Landsat
7 ETM+ and MODIS NDVI (Fig. 7). However, at the low range of NDVI,
the Landsat 7 ETM+ NDVI agreed with MODIS NDVI better than
Landsat 8 OLI. The latter produced substantially lower NDVI than
MODIS. Similarly, as shown in Fig. 3, atmospheric correction methods
dramatically reduced the bias between Landsat and MODIS NDVI
compared to TOA reflectance-derived NDVI.

For vegetated areas such as forest and crop, the Landsat surface
reflectance-derived NDVI and MODIS NDVI showed good agreement,
with mean bias less than±0.05, whichwas consistent with the simula-
tion results. It can be found in Fig. 7b that at the forested area the bias of
Landsat 8 OLI NDVI had slightly smaller dispersion than that of Landsat
7 ETM+ NDVI, suggesting that Landsat 8 OLI NDVI was more precise
and better agreed with MODIS than Landsat 7 over vegetated surfaces.
The lower dispersion between Landsat 8 OLI and MODIS may be attrib-
uted to higher SNRperformance of the new instrument (222 at red band
and 199 at NIR band) compared to Landsat 7 ETM+ instrument (26 at
Fig. 8. Scatter plots of Landsat 8 OLI and Landsat 7 ETM+NDVI versus same-day MODIS NDVI a
correction; (e)–(f) DOS atmospheric correction and (g)–(h) FLAASH atmospheric correction
ETM+NDVI versusMODIS NDVI. The solid lines show linear regressionmodel fits of the NDVIs
of the NDVI values (red most frequent, blue least frequent).
red band and 34 at NIR band) (http://ldcm.nasa.gov/spacecraft_
instruments/oli_perf.html). The SNR is also more comparable with
MODIS instrument (128 at red band and 201 at NIR band) (http://
modis.gsfc.nasa.gov/about/specifications.php), so that Landsat 8 OLI-
derived NDVI is more precise. There were only 2, 3, and 6 urban pixels
at sites 1, 2 and 4, respectively. At site 3, Landsat 8 OLI NDVI within
urban area (n = 250) had better agreement with MODIS NDVI except
for those derived from DOS corrected surface reflectance.

Within water area, the agreement between Landsat 8 OLI and
MODIS NDVI was worse than that between Landsat 7 ETM+ and
MODIS NDVI except at site 3. At sites 1, 2, and 4, because of MODIS
Terra calibration errors on the day of Landsat 8 OLI acquisition, MODIS
Terra data within±2 days were used. Different atmospheric conditions
could lead to considerable difference in water NDVI, which could
explain the worse agreement of Landsat 8 OLI water NDVI than Landsat
7 ETM+ with MODIS. High water turbidity might decrease the water
NDVI difference between Landsat 8 OLI and MODIS, which possibly
increased NIR reflectance due to high concentration of suspended
sediments thus relatively smaller difference in NDVI between the two
sensors. Estuaries in site 3 are known to be turbid due to shallow
bathymetry, strong tidal currents, and significant amounts of sediment
coming fromupstream(Kim, Im,Ha, Choi, &Ha, 2014).Weather records
also show that there were heavy rains between 10 and 14 September
2013, which possibly contributed to turbid water in site 3. For all
study sites, 6SV, and FLAASH atmospheric correction methods that are
based on radiation transfer models yielded better agreement between
Landsat and MODIS NDVIs, with generally smaller mean and standard
deviation of the biases and higher R2 (Table 5). Although the 6SV
models used for Landsat atmospheric correction were similar as
those used for MODIS surface reflectance product generation, FLAASH
atmospheric correction methods did not result in significantly different
Landsat NDVIs from MODIS. However, linear models between
6S-corrected Landsat NDVI and MODIS NDVI yielded slightly better
goodness-of-fit and lower RMSD than those between FLAASH Landsat
NDVI and MODIS NDVI. This suggests that 6SV atmospheric correction
methods are preferred when Landsat NDVI is used in conjunction with
MODIS NDVI. For consistency with the atmospheric correctionmethods
used for MODIS generation, other methods based on radiative transfer
models are also sufficient and should be used rather than image-based
methods such as DOS.

Fig. 8 shows the comparisons between Landsat and GOCI NDVI at
sites 1, 3, and 4 as site 2 is not covered by GOCI data. For consistency
t site 1 based on reflectance derived from (a)–(b) TOA radiance; (c)–(d) 6SV atmospheric
methods. Left column: Landsat 8 OLI NDVI versus MODIS NDVI; right column: Landsat 7
. The dashed lines are 1:1 lines for reference. The color of the points illustrate the frequency

http://ldcm.nasa.gov/spacecraft_instruments/oli_perf.html
http://ldcm.nasa.gov/spacecraft_instruments/oli_perf.html
http://modis.gsfc.nasa.gov/about/specifications.php
http://modis.gsfc.nasa.gov/about/specifications.php
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with Landsat-MODIS comparison, surface reflectance fromGOCI images
was calculated using MODIS-based 6SV radiative transfer code. The
mean NDVI differences between Landsat and GOCI NDVI were within
0.1 except for that between DOS-corrected Landsat 7 ETM+ and GOCI
NDVI at site 3 (Fig. 8a). Compared to the differences between Landsat
and MODIS NDVI, the Landsat-GOCI NDVI bias was overall greater and
had considerably bigger variation. R2 values of the Landsat-GOCI linear
regression models ranged from 0.51 to 0.87, lower than that of the
Landsat-MODIS linear models (Table 6 and Fig. 8) and the RMSD values
of the models ranged from 0.05 to 0.15 (Table 6). At site 1, R2 values of
the linear models between Landsat and GOCI decreased from over 0.94
(Table 5) to around 0.87 when GOCI NDVI was used as reference
(Table 6). It was also found that the Landsat 8 OLI and Landsat 7
ETM+ NDVI were higher than GOCI NDVI except in the lower range
which corresponds to water area (Fig. 9). In the study by Yeom and
Kim (2013) that evaluated the feasibility of GOCI data for land applica-
tions, it was reported that RMSD betweenMODIS and GOCI NDVIwas at
least 0.126. In our study, we found better agreement between Landsat
and GOCI. This may be attributed to the spatial variation and dynamic
atmospheric parameters such as AOT and water vapor applied in the
6SV models that yielded more consistent NDVI with MODIS. At both
sites 3 and 4, Landsat 8 OLI NDVI generally had noticeably better agree-
ment (higher R2 and lower RMSD) with MODIS than Landsat 7 ETM+;
similar patterns were shown in Landsat-GOCI comparisons.

The comparisons of Landsat and in-situNDVI observationsmeasured
by LED sensors are displayed in Fig. 10. At both sites, using uncorrected
Landsat 7 OLI or Landsat 8 OLI TOA reflectance resulted in a large
negative bias in NDVI estimation. Especially on 8 September 2013,
both deciduous and evergreen forest sites showed very low NDVI
from Landsat 7 ETM+, indicating strong atmospheric scattering and at-
tenuation impact on at-sensor radiance acquisition. Examination of
MODIS atmosphere products showed high content of water vapor and
aerosol optical thickness on that date compared to 16 September
2013, with water content approximately 2.01 g/cm2 compared to
1.02 g/cm2, and aerosol optical thickness around 0.62 km compared to
0.028 km. Atmospheric correction significantly reduced the NDVI
error. At the deciduous forest site, both Landsat 7 ETM+ and Landsat
8 OLI NDVI derived by atmospherically corrected surface reflectance
agreed well with the LED observations, with NDVI differences less
than 0.05, except for an overestimation of 0.07 resulting from 6SV cor-
rection on Landsat 7 ETM+ on 8 September 2013. MODIS and GOCI
also showed good agreement with LED NDVI. Unlike the deciduous for-
est site where tree species were homogenous within the Landsat and
MODIS pixels, the coniferous site was more spatially heterogeneous
and single Landsat and MODIS pixels contained mixed deciduous and
evergreen trees (Ryu et al., 2014). Therefore, NDVIswere overestimated
in Landsat, MODIS, andGOCI pixels. Nonetheless, at both sites, Landsat 8
OLI tends to produce more consistent NDVI values regardless of atmo-
spheric correction methods used.

4.4. Spatial variability of Landsat 8 OLI NDVI

Landsat 30 m NDVI pixels were aggregated to 90 m, 150 m, 300 m,
and 500 m grids, and the mean standard deviation within the new
grids was calculated to represent the spatial variability of the NDVIs.
For brevity, Fig. 11 only demonstrates the spatial variability of NDVI
derived from the 6S corrected surface reflectance. Since different atmo-
spheric correctionmethods produced similar NDVI results (Sections 4.2
and 4.3), it is reasonable to assume that the spatial variability of NDVIs
fromDOS and FLAASHmethods have similar pattern as shown in Fig. 11.
Fig. 9. Themean NDVI differences between Landsat 8 OLI/Landsat 7 ETM+ and GOCI. The
error bars show the standard deviation of the differences. (a) Overall; (b) forest; (c) crop;
(d) urban; (e)water. Site 2 is excluded as GOCI does not cover the site. No informationwas
given due to few urban samples for site 1 in (d). * denotes rejection of null hypothesis of
mean absolute differences between Landsat 8 OLI and GOCI NDVI greater than or equal
that between Landsat 7 ETM+ and GOCI NDVI.



Fig. 10.NDVI generated from LED sensors, Landsat 7 and 8, MODIS, and GOCI instruments on 8 (Landsat 7 ETM+) and 16 September 2013 (Landsat 8 OLI) at the deciduous forest site and
coniferous forest site.
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Both Landsat 8 OLI and Landsat 7 ETM+NDVI at the four study sites
showed increasing variability with expanding grid sizes. Compared to
the forest land cover, crop, and urban areas in both Landsat 8 OLI and
Landsat 7 ETM+ images showed a more significantly rising trend, indi-
cating higher spatial heterogeneity of crop (and urban) NDVI with
increasing grid size.

Overall, NDVI derived from Landsat 8 OLI sensor data shows greater
spatial variability compared to that from Landsat 7 ETM+ (Fig. 11a).
This pattern was more prominent for crop and urban areas where
Landsat 8 OLI produced considerably higher mean standard deviation
(Eq. 4) of NDVI than Landsat 7 ETM+. While in the forested area, this
difference was not as apparent. Since crop and urban land cover types
typically show greater heterogeneity than the forested area, the in-
creased spatial variability of Landsat 8 OLI NDVI proved that the new
Landsat sensor has better capability of capturing small diversities of
land surface characteristics, which may be attributed to greater SNR
and the radiometric sensitivity. The Landsat 8 OLI instrument is
designed to have tens of thousands of highly sensitive detectors. It
was found that the detectors are so sensitive that tiny discrepancies in
radiance measurements are evident in dark, uniform areas such as
large expanses of water (USGS Landsat mission headline, February 14,
2014, http://landsat.usgs.gov/). Nonetheless, the present study found
that the standard deviation of Landsat 8 OLI NDVI was lower than that
of Landsat 7 ETM+ within uniform water at sites 1, 2 and 4. At site 3,
Landsat 8 OLI revealed higher spatial variability of turbid water that
was not shown in Landsat 7 ETM+ imagery. The negative differences
between Landsat 8 OLI and Landsat 7 ETM+ water NDVI reported in
Section 4.3 and the invariant NDVI values both indicate that Landsat 8
OLI NDVI has better capability to identify water area.

5. Conclusion

In this study, the characteristics of NDVI from the new instrument
Landsat 8 OLI were investigated in terms of the consistency with
Landsat 7 ETM+, MODIS, GOCI, and in-situ LED-derived NDVIs, and its
spatial variability. Simulations of TOA and surface reflectance were con-
ducted and the simulatedNDVIwere compared in order to assess the ef-
fect of band pass difference of the new instrument on NDVI calculation.
Four study sites in China and Korea with an average area of 1928 km2
during leaf-on growing season with minimum cloud cover were exam-
ined, and NDVIs from TOA reflectance and surface reflectance by 6SV,
DOS, and FLAASH atmospheric correctionmethods for each of the forest,
crop, urban, and water land cover types were derived and compared.

The simulation results showed that Landsat 8 OLI, Landsat 7 ETM+,
and MODIS NDVIs agreed well given the same atmospheric condition,
while aerosol optical depth was a major factor influencing NDVI, espe-
cially for water. The results from the four study sites were consistent
with the simulation results. Given the same atmospheric correction
methods applied to derive surface reflectance, Landsat 8 OLI and
Landsat 7 ETM+NDVIs had overall good agreement, withmean bias er-
rors within ±0.05, the standard deviations of errors b0.1, and R2 from
0.84 to 0.98. Both datasets had reasonable agreement with the same-
day MODIS and GOCI NDVI, with the mean bias within ±0.05 and
±0.1 respectively. Both datasets also showed good agreement with
in-situ LED NDVI measurements at homogeneous deciduous site, with
the bias error within ±0.07 Regardless of the type of reference data,
using NDVIs derived from TOA reflectance significantly increased the
measurement errors, indicating the necessities of atmospheric correc-
tion prior NDVI calculation. Vegetated areas had better NDVI agreement
than non-vegetated surfaces. Particularly, water NDVI from Landsat 8
OLI was considerably lower than that from Landsat 7 ETM+ due to
the narrower near-infrared band at the longer center wavelength,
which can assist in distinguishing water bodies and may help assess
vegetation water content.

In the present study, we found that Landsat 8 OLI NDVI produced
more precise agreement with MODIS and GOCI NDVI at vegetated
areas. Landsat NDVIs from 6SV and FLAASH atmospheric correction
methods that are based on radiative transfer models had better agree-
mentwithMODIS NDVI compared to DOSmethods. In addition, Landsat
8 OLI produced considerably greater spatial variability of NDVIs than
Landsat 7 ETM+ within heterogeneous land cover types such as crop,
urban, and turbid water areas. NDVIs in clear water area, in contrast,
have smaller spatial variability. Such characteristics, mainly associated
with higher SNR performance and radiometric sensitivity of Landsat
8 OLI instrument, suggest a greater potential for the use of Landsat 8
OLI in land surface process monitoring such as land cover
mapping and change detection, vegetation growth, and ET analysis. In
addition, many environmental models that have used Landsat

http://landsat.usgs.gov/


312 Y. Ke et al. / Remote Sensing of Environment 164 (2015) 298–313
TM/ETM+-derived NDVI such as energy balance models (e.g., SEBAL
and METRIC) may require new parameterization on Landsat 8 OLI-
derived NDVI based on its characteristics compared to the TM/ETM+
NDVI.

Acknowledgment

This research was supported by National Space Lab Program and
Basic Science Research Program through the National Foundation of
Korea (NRF) funded by the Ministry of Science, ICT, & Future Planning
(Grant: NRF-2013M1A3A3A02042391; NRF-2013R1A1A1009459), Na-
tional Science Foundation of China (Grant: 41401493; 41130744),
2015 Beijing Nova Program (Grant: xx2015B060) and Beijing Overseas
Talent Pool Program (Grant: BHTO201410062-QN). We thank Galam
Lee and Chongya Jiang for maintaining LED-sensors.

References

Bhatti, S., & Tripathi, N. (2014). Built-up area extraction using Landsat 8 OLI imagery.
GIScience and Remote Sensing, 51, 445–467.

Black, A., & Stephen, H. (2014). Relating temperature trends to the normalized difference
vegetation index in Las Vegas. GIScience and Remote Sensing, 51, 468–482.

Brown, M.E., Pinzón, J.E., Didan, K., Morisette, J.T., & Tucker, C.J. (2006). Evaluation of the
consistency of long-term NDVI time series derived from AVHRR, SPOT-Vegetation,
SeaWiFS, MODIS, and Landsat ETM+ sensors. IEEE Transactions on Geoscience and
Remote Sensing, 44(7), 1787–1793.

Chander, G., Markham, B., & Helder, D. (2009). Summary of current radiometric calibra-
tion coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing
of Environment, 113, 893–903.

Chavez, P. S. (1988). An improved dark-object subtraction technique for atmospheric
scattering correction of multispectral data. Remote sensing of environment, 24(3),
459–479.

Chen, C., Chen, C.R., & Son, N. (2012). Investigating rice cropping practices and growing
areas from MODIS data using empirical mode decomposition and support vector
machines. GIScience and Remote Sensing, 49, 117–138.

Cheret, V., & Denux, J. (2011). Analysis of MODIS NDVI time series to calculate indicators
of Mediterranean forest fire susceptibility. GIScience and Remote Sensing, 48, 171–194.

De Beurs, K.M., & Henebry, G.M. (2004). Land surface phenology, climatic variation, and
institutional change: Analyzing agricultural land cover change in Kazakhstan.
Remote Sensing of Environment, 89(4), 497–509.

Ding, Y., Zhao, K., Zheng, X., & Jiang, T. (2014). Temporal dynamics of spatial heterogene-
ity over cropland quantified by time-series NDVI, near infrared and red reflectance of
Landsat 8 OLI imagery. International Journal of Applied Earth Observation and
Geoinformation, 30, 139–145.

Feng, M., Huang, C., Channan, S., Vermote, E.F., Masek, J.G., & Townshend, J.R. (2012).
Quality assessment of Landsat surface reflectance products using MODIS data.
Computers & Geosciences, 38(1), 9–22.

Gao, Z., Wang, Q., Cao, X., & Gao, W. (2014). The responses of vegetation water content
(EWT) and assessment of drought monitoring along a coastal region using remote
sensing. GIScience and Remote Sensing, 51, 1–16.

GIS Ag Maps (2014). www.gisagmaps.com/ (last accessed: November 6th, 2014).
Glenn, E.P., Huete, A.R., Nagler, P.L., & Nelson, S.G. (2008). Relationship between

remotely-sensed vegetation indices, canopy attributes and plant physiological
processes: What vegetation indices can and cannot tell us about the landscape.
Sensors, 8, 2136–2160.

Gong, B., Im, J., Jensen, J., Coleman, M., Rhee, J., & Nelson, E. (2012). Characterization of
forest crops with a range of nutrient and water treatments using AISA hyperspectral
imagery. GIScience and Remote Sensing, 49, 463–497.

Gong, P., Wang, J., Yu, L., Zhao, Y.C., Zhao, Y.Y., Liang, L., et al. (2013). Finer resolution ob-
servation andmonitoring of global land cover: First mapping results with Landsat TM
and ETM+ data. International Journal of Remote Sensing, 34, 2607–2654.

Hadjimitsis, D.G., Papadavid, G., Agapiou, A., Themistocleous, K., Hadjimitsis, M.G., Retalis,
A., et al. (2010). Atmospheric correction for satellite remotely sensed data intended
for agricultural applications: Impact on vegetation indices. Natural Hazards and
Earth System Sciences, 10(1), 89–95.

Hielkema, J.U., Prince, S.D., & Astle, W.L. (1986). Rainfall and vegetation monitoring in the
savanna zone of the Democratic Republic of Sudan using the NOAA Advanced Very
High Resolution Radiometer. International Journal of Remote Sensing, 7(11),
1499–1513.

Hong, S.H., Hendrickx, J.M., & Borchers, B. (2009). Up-scaling of SEBAL derived evapo-
transpiration maps from Landsat (30 m) to MODIS (250 m) scale. Journal of
Hydrology, 370(1), 122–138.

Im, J., Lu, Z., Rhee, J., & Jensen, J.R. (2012a). Fusion of feature selection and optimized im-
mune networks for hyperspectral image classification of urban landscapes. Geocarto
International, 27, 373–393.
Fig. 11. Mean standard deviation of 6S-derived NDVI within 90 m, 150 m, 300 m, and
500 m grids. Squared symbol denotes Landsat 8 OLI and triangle symbol denote Landsat
7 ETM+. (a) Overall; (b) forest; (c) crop; (d) urban; (e) water.

http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0005
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0005
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0010
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0010
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0015
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0015
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0015
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0015
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0015
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0020
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0020
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0020
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0020
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf6000
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf6000
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf6000
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0025
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0025
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0025
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0030
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0030
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0035
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0035
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0035
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0040
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0040
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0040
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0040
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0045
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0045
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0050
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0050
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0050
http://www.gisagmaps.com/
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0055
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0055
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0055
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0055
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0060
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0060
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0060
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0065
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0065
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0065
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0065
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0070
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0070
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0070
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0075
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0075
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0075
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0075
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0080
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0080
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0080
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0085
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0085
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0085


313Y. Ke et al. / Remote Sensing of Environment 164 (2015) 298–313
Im, J., Lu, Z., Rhee, J., & Quackenbush, L.J. (2012b). Impervious surface quantification using
a synthesis of artificial immune networks and decision/regression trees from multi-
sensor data. Remote Sensing of Environment, 117, 102–113.

Ju, J., Roy, D., Vermote, E., Masek, J., & Kovalsky, V. (2012). Continental-scale validation of
MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote
Sensing of Environment, 122, 175–184.

Kim, Y., Im, J., Ha, H., Choi, J., & Ha, S. (2014). Machine learning approaches to coastal
water quality monitoring using GOCI satellite data. GIScience and Remote Sensing,
51, 158–174.

Kleynhans, W., Olivier, J.C., Wessels, K.J., Salmon, B.P., Van den Bergh, F., & Steenkamp, K.
(2011). Detecting land cover change using an extended Kalman filter onMODIS NDVI
time-series data. IEEE Geoscience and Remote Sensing Letters, 8(3), 507–511.

Lambert, J., Drenou, C., Denux, J., Balent, G., & Cheret, V. (2013). Monitoring forest decline
through remote sensing time series analysis. GIScience and Remote Sensing, 50,
437–457.

Li, M., Im, J., & Beier, C. (2013). Machine learning approaches for forest classification and
change analysis using multi-temporal Landsat TM images over Huntington Wildlife
Forest. GIScience and Remote Sensing, 50, 361–384.

Li, P., Jiang, L., & Feng, Z. (2014). Cross-comparison of vegetation indices derived from
Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational
Land Imager (OLI) sensors. Remote Sensing, 6, 310–329.

Liu, Y., Wang, X., Tani, H., Matsuoka, N., & Matsumura, S. (2011). Spatial and temporal
relationships among NDVI, climate factors, and land cover changes in Northeast
Asia from 1982 to 2009. GIScience and Remote Sensing, 48, 371–393.

Lunetta, R.S., Knight, J.F., Ediriwickrema, J., Lyon, J.G., & Worthy, L.D. (2006). Land-cover
change detection using multi-temporal MODIS NDVI data. Remote Sensing of
Environment, 105(2), 142–154.

Maiersperger, T.K., Scaramuzza, P.L., Leigh, L., Shrestha, S., Gallo, K.P., Jenkerson, C.B., et al.
(2013). Characterizing LEDAPS surface reflectance products by comparisons with
AERONET, field spectrometer, and MODIS data. Remote Sensing of Environment, 136,
1–13.

Masek, J. G., Vermote, E. F., Saleous, N. E., Wolfe, R., Hall, F. G., Huemmrich, K. F., et al.
(2006). A Landsat surface reflectance dataset for North America, 1990–2000. IEEE
Transactions on Geoscience and Remote Sensing Letters, 3(1), 68–72.

Meng, Q., Cooke, W., & Rodgers, J. (2013). Derivation of 16-day time-series NDVI data for
environmental studies using a data assimilation approach. GIScience and Remote
Sensing, 50, 500–514.

Ozdemir, I. (2014). Linear transformation to minimize the effects of variability in under-
story to estimate percent tree canopy cover using RapidEye data. GIScience and
Remote Sensing, 51, 288–300.

Pervez, S., Budde, M., & Rowland, J. (2014). Mapping irrigated areas in Afghanistan over
the past decade using MODIS NDVI. Remote Sensing of Environment, 149, 155–165.

Rhee, J., Im, J., & Carbone, G.J. (2010). Monitoring agricultural drought for arid and humid
regions using multi-sensor remote sensing data. Remote Sensing of Environment, 114,
2875–2887.
Roy, D., Wulder, M., Loveland, T., Woodcock, C., Allen, R., Anderson, M., et al. (2014).
LANDSAT-8: Science and product vision for terrestrial global change research.
Remote Sensing of Environment, 145, 154–172.

Ryu, Y., Baldocchi, D.D., Verfaillie, J., Ma, S., Falk, M., Ruiz-Mercado, I., et al. (2010).
Testing the performance of a novel spectral reflectance sensor, built with light emit-
ting diodes (LEDs), to monitor ecosystem metabolism, structure and function.
Agricultural and Forest Meteorology, 150, 1597–1606.

Ryu, Y., Kang, S., Moon, S.K., & Kim, J. (2008). Evaluation of land surface radiation balance
derived from Moderate Resolution Imaging Spectrometer (MODIS) over complex
terrain and heterogeneous landscape on clear sky days. Agricultural and Forest
Meteorology, 148, 1538–1552.

Ryu, Y., Lee, G., Jeon, S., Song, Y., & Kimm, H. (2014). Monitoringmulti-layer canopy spring
phenology of temperate deciduous and evergreen forests using low-cost spectral
sensors. Remote Sensing of Environment, 149, 227–238.

Teillet, P., & Ren, X. (2008). Spectral band difference effects on vegetation infices derived
from multiple satellite sensor data. Canadian Journal of Remote Sensing, 34, 159–173.

Tucker, C.J., Pinzon, J.E., Brown, M.E., Slayback, D.A., Pak, E.W., Mahoney, R., et al. (2005).
An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegeta-
tion NDVI data. International Journal of Remote Sensing, 26(20), 4485–4498.

USGS (2013). http://landsat.usgs.gov/Landsat8_Using_Product.php last accessed on Feb-
ruary 20th, 2015.

Van Leeuwen,W.J., Orr, B.J., Marsh, S.E., & Herrmann, S.M. (2006). Multi-sensor NDVI data
continuity: Uncertainties and implications for vegetation monitoring applications.
Remote Sensing of Environment, 100(1), 67–81.

Vermote, E.F., & Vermeulen, A. (1999). MODIS algorithm technical background docu-
ment: Atmospheric correction algorithm: Spectral reflectances (MOD09). https://
lpdaac.usgs.gov/products/modis_products_table/mod09ga (Last access: January 17,
2015).

Yeom, J., & Kim, H. (2013). Feasibility of using Geostationary Ocean Colour Imager (GOCI)
data for land applications after atmospheric correction and bidirectional reflectance
distribution function modelling. International Journal of Remote Sensing, 34,
7329–7339.

Yuan, F., Wang, C., & Mitchell, M. (2014). Spatial patterns of land surface phenology rela-
tive to monthly climate variations: US Great Plains. GIScience and Remote Sensing, 51,
30–50.

Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C., Gao, F., et al. (2003).
Monitoring vegetation phenology using MODIS. Remote Sensing of Environment,
84(3), 471–475.

Zhu, Z., & Woodcock, C.E. (2012). Object-based cloud and cloud shadow detection in
Landsat imagery. Remote Sensing of Environment, 118, 83–94.

http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0090
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0090
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0090
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0095
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0095
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0095
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0095
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0100
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0100
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0100
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0105
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0105
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0110
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0110
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0110
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0115
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0115
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0115
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0120
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0120
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0120
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0120
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0125
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0125
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0125
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0130
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0130
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0130
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0135
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0135
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0135
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf5000
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf5000
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0140
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0140
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0140
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0145
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0145
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0145
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0150
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0150
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0155
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0155
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0155
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0160
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0160
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0165
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0165
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0165
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0170
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0170
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0170
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0170
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0175
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0175
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0175
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0180
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0180
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0185
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0185
http://landsat.usgs.gov/Landsat8_Using_Product.php
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0200
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0200
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0200
https://lpdaac.usgs.gov/products/modis_products_table/mod09ga
https://lpdaac.usgs.gov/products/modis_products_table/mod09ga
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0190
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0190
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0190
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0190
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0195
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0195
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0195
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0220
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0220
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0210
http://refhub.elsevier.com/S0034-4257(15)00132-7/rf0210

	Characteristics of Landsat 8 OLI-�derived NDVI by comparison with multiple satellite sensors and in-�situ observations
	1. Introduction
	2. Data and preprocessing
	2.1. Landsat 8 OLI and Landsat 7 ETM+ data
	2.2. MODIS and GOCI data
	2.3. Ground reflectance by LED
	2.4. Land cover map
	2.5. Atmospheric correction for Landsat 7 ETM+ and 8 OLI data
	2.5.1. 6SV atmospheric correction
	2.5.2. DOS atmospheric correction method
	2.5.3. FLAASH atmospheric correction method


	3. Methods
	3.1. NDVI simulation and comparison
	3.2. NDVI generation from Landsat, MODIS and GOCI sensor
	3.3. NDVI comparisons between Landsat 8 OLI and Landsat ETM+
	3.4. Comparisons of Landsat NDVI with MODIS, GOCI and LED
	3.5. Spatial variability analysis

	4. Results and discussions
	4.1. Comparison of simulated NDVI
	4.2. Comparisons with Landsat 7 ETM+ NDVI
	4.3. Comparisons with MODIS, GOCI and LED NDVI
	4.4. Spatial variability of Landsat 8 OLI NDVI

	5. Conclusion
	Acknowledgment
	References


