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Abstract
Polyamines (PAs) are positively charged amines such as putrescine, spermidine and spermine that ubiquitously exist in all 
organisms. They have been considered as a new type of plant biostimulants, with pivotal roles in many physiological pro-
cesses. Polyamine levels are controlled by intricate regulatory feedback mechanisms. PAs are directly or indirectly regulated 
through interaction with signaling metabolites  (H202, NO), aminobutyric acid (GABA), phytohormones (abscisic acid, gib-
berellins, ethylene, cytokinins, auxin, jasmonic acid and brassinosteroids) and nitrogen metabolism (maintaining the balance 
of C:N in plants). Exogenous applications of PAs enhance the stress resistance, flowering and fruit set, synthesis of bioactive 
compounds and extension of agricultural crops shelf life. Up-regulation of PAs biosynthesis by genetic manipulation can 
be a novel strategy to increase the productivity of agricultural crops. Recently, the role of PAs in symbiosis relationships 
between plants and beneficial microorganisms has been confirmed. PA metabolism has also been targeted to design new 
harmless fungicides.
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Introduction

Polyamines (PAs), including putrescine, spermidine and 
spermine, have been known as aliphatic biogenic amines 
which are present in most prokaryotes and all eukaryotic 
organisms [100]. PAs have been used in a wide range of bio-
logical processes in plant growth and development, such as 
seed germination, root growth, embryogenesis, rhizogenesis, 
organogenesis, floral initiation and development, vascular 
development, fruit development, biofilm formation, ripen-
ing, leaf senescence and programmed cell death [46, 75]. 
PAs also play important roles in resistance against different 
abiotic stresses, including low and high temperatures, salt, 
drought, wounding, ozone, flooding, acid, heavy metals (Cu, 

Cr, Fe and Ni) and oxidative stresses [106]. In plant, PAs 
interplay with a variety of fundamental cellular processes, 
including membrane stabilization, nucleic acids and protein 
synthesis, modulating RNAses, proteases and other enzymes 
activities, gene expression, DNA replication, transcription, 
RNA modification, ion-channel regulation, cation–anion 
balance, free radical scavenging activity, cell cycle regula-
tion, protein modification, interaction with phytohormones, 
regulation of buffering mechanism, ethylene biosynthesis 
and N metabolism (they serve as N reserve, play a role in 
proline synthesis and N: C ratio regulation) [70].

Polyamine biosynthesis

Metabolic pathways and numerous enzymes involved in PA 
synthesis and conversion of Put into the higher polyamines 
have been discovered over the last two decades. The process 
of synthesis is carried out by two aminopropyl transferase 
enzymes: Spermidine and spermine synthase S-adenosyl-
methionine (SAM) is also needed for ethylene biosynthesis 
which is made by ACC synthase and ACC oxidase [109]. 
Thus, both ethylene and polyamine biosynthetic pathway 
compete for SAM as substrate.

 * Fereshteh Kamiab 
 f.kamiab56@gmail.com; f.kamiab56@iaurafsanjan.ac.ir

1 Department of Horticulture, Faculty of Agriculture, 
Rafsanjan Branch, Islamic Azad University, Rafsanjan, Iran

2 Research and Technology Institute of Plant Production, 
Shahid Bahonar University of Kerman, Kerman, Iran

3 Department of Horticulture, Faculty of Agriculture, Shahid 
Bahonar University of Kerman, Kerman, Iran

4 Department of Horticultural Science, Yasooj Branch, Islamic 
Azad University, Yasooj, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s42977-020-00027-3&domain=pdf


 Biologia Futura

1 3

Regulatory feedback mechanisms 
of polyamines

Ornithine as a non-proteinogenic amino acid plays an 
important role in regulation of PAs biosynthesis. De-Oli-
vera et al. [25] showed that arginine (Arg) or ornithine 
(Orn) act as regulators of PA metabolites in Araucaria 
angustifolia cell lines. Exogenous Arg and Orn led to the 
increase in cellular PAs contents and expression of genes 
related to PAs biosynthesis and catabolism. Also, these 
compounds demonstrate distinct roles in embryogenesis 
of plants. Exogenous D-Orn promotes the expression of 
genes involved in Orn, Arg and S-adenosyl methionine 
metabolisms [32]. PA levels are controlled by intricate 
regulatory feedback mechanisms [55]. PAs control the 
level of OAZ (ODC antizyme) through multiple mecha-
nisms that provide a homeostatic feedback regulation of 
PA levels [116]. Az1 temporally attaches to ODC then, 
Az1 binding triggers ODC degradation by increasing the 
breakdown of cryptic proteasome-interacting surface of 
ODC. Yordanova et al. [120] reported that some cis-acting 
elements in antizyme mRNAs such as specific RNA struc-
tures are needed to induce the frame-shifting efficiency. In 
fact, a nascent polypeptide stimulates frame-shifting effi-
ciency in response to PAs within the ribosome exit tunnel. 
A feedback in PA-dependent translational regulation indi-
cated that the synthesis of full-length OAZ requires a ribo-
somal frame-shifting (RFS) event that leads to the transla-
tion beyond the interrupting STOP codon [39]. Feedback 
in PA-dependent translational regulation indicated that 
AZIN1, a repressor of OAZ, is modulated by PA at the 
translational level. The more the PA level increases, the 
more the translation of AZIN1 decreases. Thus, synthesis 
of full-length OAZ is stimulated by high PA concentra-
tions. In another study, Yordanova et al. [120] reported a 
new mechanism, indicating that an amount of gene trans-
lation inhibits further translation of the signal message 
by creating a ‘‘queue’’ in ribosomes which eventually 
interrupts the translation of AMD1 coding sequences and 
shows a regulatory feedback mechanism of PAs.

Polyamine and phytohormone cross‑talk

The interactions among the three main PAs (putrescine, 
spermidine and spermine) and phytohormones biosynthe-
sis and signaling are quite complex. These PAs regulate 
the phytohormones gene expression. Studies on different 
plants have shown that PA-derived  H2O2 acts as a mediator 
in ABA signaling during stomatal closure and antioxidant 
defense system [5]. PA-derived  H2O2 also acts as a signal 

and plays key roles in cell wall maturation, stress-induced 
stiffening, stomata opening and programmed cell death 
(PCD) [7]. Agurla et al. [3] revealed the possible over-
lap of signaling components during stomatal closure by 
ABA and PAs. An increased nitric oxide (NO) and reactive 
oxygen species (ROS) as essential signaling components 
in guard cells of a plant were observed during stomatal 
closure. Increased ROS seems to be a prerequisite for NO 
production and can be considered as an upstream event 
of ROS. Similarly, increased levels of ROS and NO were 
observed when guard cells were exposed to ABA [97]. 
Also, it has been reported that a certain threshold of PAs 
may elevate degradation or generation of  H2O2 [118].

In many studies, the cross-talks among PAs, abscisic acid 
and NO were confirmed during plant responses to biotic 
stresses. NO is a mediator in ABA-dependent stomatal closure 
[5]. Nahar et al. [69] showed that PA and NO cross-talk could 
alter some physiological processes to promote Cd-toxicity 
tolerance.

PAs have also showed a positive feedback with gibberellin 
(GA), and both hormones synergistically promote cell divi-
sion [47].

Ethylene and PAs can act as inducers of resistance against 
abiotic stresses [122]. Ethylene triggers salt tolerance by acti-
vation of a complex pathway of  H2O2 signaling that is PA 
catabolism-dependent. In this sense, a model for cross-talk 
regulation among ethylene, PAs and  H2O2 in salt-tolerant 
maize genotypes has been reported (Fig. 1; [29]).

PA has a strong link with ethylene (Eth). During PA bio-
synthesis, S-Adenosyl methionine (SAM) is used which is 
also an Eth precursor. Therefore, PA and Eth compete with 
each other for SAM [109]. It is reported that PAs and Eth play 
an important role in the regulation of somatic embryogenesis 
of cultured cell/tissues, and Eth alone cannot make somatic 
embryogenesis [9]. Asgher et al. [13] confirmed the PA and 
Eth cross-talk in plants.

The jasmonate (JA) family acts as signaling molecules 
that play an important role in regulation of PAs biosynthesis 
[88]. A relationship between brassinosteroids and PAs was 
suggested by Choudhary et al. [21] that showed this fact that 
the interaction of brassinosteroids and PAs improved copper 
stress tolerance in Raphanus sativus. Application of 24-epi-
brassinolide (EBL) and spermidine enhanced plant drought 
tolerance by altering PA, Eth and protein levels in Maize 
[102]. EBL increased the levels of soluble conjugated and 
insoluble bound PAs, particularly putrescine, and consequently 
improved the cucumber growth under Ca  (NO3)2 stress [121].
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Role of polyamines in biotic and abiotic 
stresses

There are evidences that confirm the critical role of PAs 
in stress tolerance such as the increased expression of PAs 
biosynthetic genes under stress conditions [5]. Also, the 
elevation of endogenous PA levels by exogenous supply of 
PAs in stress conditions [5, 51, 52, 53] and the relation of 
decreased stress tolerance with reduction in endogenous PAs 
[81]. Evidence indicates that PA-triggered salinity tolerance 
may be involved in  Ca2+ signaling [79], various ion-channel 
activities, especially cation, and  K+ channels [124], activity 
of PM  H+-ATPase [79], protein post-translational modifi-
cations such as S-nitrosylation, carbonylation and tyrosine 
nitration [103] and enzymatic and non-enzymatic ROS 
detoxifications [59]. The size of PAs pool can be correlated 
with the stress tolerance capacity, and it has been confirmed 
that there is more accumulation of Spd and Spm in tolerant 
genotypes while the sensitive genotypes of the same plant 
species accumulated more Put under the same stresses [58].

PAs have important roles in biotic stress tolerance, and 
PAs association has been demonstrated with both pathogenic 
and beneficial microorganisms in plants. A relationship 
between polyamines and disease resistance has been shown 
in plants. Kim et al. [46] revealed that interplay between 
PA metabolic enzymes and pathogen effectors could also 
be used by plants to trigger defense response. In this sense, 
from cotton genotypes tolerant to Verticillium wilt, a PA 
oxidase (PAO) gene was identified and cloned. It has been 
revealed that GhPAO participates in plant resistance against 
Verticillium through the intermediation of Spm and cama-
lexin (a phytoalexin) signaling [67].

Polyamines regulate protein synthesis 
during stresses

It is reported that PAs regulate the protein synthesis at many 
steps. Two transcription factors (SoxR and EmrR) and a glu-
tathione synthetic enzyme (GshA) have been found as PAs 

modulators under oxidative stress conditions. Thus, PAs 
are involved in reduction in oxidative stress by inducing 
the synthesis of SoxR, EmrR and GshA [86]. Li et al. [51, 
52, 53] also reported that interaction of Spe with phyto-
hormones could modulate differentially expressed proteins 
(DEPs) that are associated with drought tolerance in white 
clover. MYB transcription factors are important regulators 
of plant response to abiotic stress. Li et al. [54] reported that 
PbrMYB21 has a significant role in drought tolerance, which 
may be due to the regulation of PAs synthesis.

Cold-regulated (COR) genes associate with cold stress 
response [94]. MfERF1 as a cold effector of ethylene respon-
sive factor (ERF) was isolated from Medicago falcata, an 
important forage legume with great cold tolerance. Over-
expression of MfERF1 increased freezing and chilling toler-
ance by promoting PA turnover, antioxidant protection and 
proline accumulation in transgenic tobacco plants [125]. 
ICE1 (Inducer of CBF Expression 1) encodes a transcrip-
tion factor that acts as a central regulator of cold response. 
It was demonstrated that PtrICE1 has an essential role in 
cold tolerance in trifoliate orange (Poncirus trifoliata L.). It 
could regulate PA levels through interaction with the argi-
nine decarboxylase (ADC) gene [37].

In addition to the transcriptional networks, the COR 
genes are also subjected to post-transcriptional regulation 
by microRNAs (miRNAs). Gupta et al. [36] reported that 
over-expression of ptr-MIR396b in transgenic lemon (Citrus 
limon) plants caused an enhanced cold tolerance due to the 
regulation of ACC oxidase gene expression and modulation 
of ethylene polyamine homeostasis.

PAs in high-temperature conditions influence the syn-
thesis of heat shock proteins and also affect cell membrane 
properties [1]. Nucleic acid degeneration is increased by 
high temperature. It has been reported that PAs could adjust 
heat responsive genes expression by enhancing mRNA sta-
bility under heat stress conditions [93]. It was reported that 
PAs could protect nucleic acids against thermal depurination 
induced by high temperature and decrease depurination of 
nucleic acids (DNA and RNA) depending on the types of 

Fig. 1  Cross-talk regulation 
model among ethylene, PAs and 
 H2O2 in salt-tolerant maize [29]
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PAs [107]. Longer and complicated PAs play important roles 
to preserve the functional conformation of nucleic acids at 
high temperatures compared to standard PAs and  Mg2+. 
Similarly, unique polycation, N4-bis (aminopropyl) spermi-
dine 3(3)(3)4, was found in the hyperthermophilic archaeon 
Thermococcus kodakarensis, which grows at temperatures 
between 60 and 100  °C [72].

Genetic engineering of polyamines in stress 
resistant plants

Genetic engineering of genes involved in the PAs biosyn-
thesis or degradation has been used for the development of 
stress-resistant plants. Reverse genetics enables the identi-
fication of novel genes in the PA pathway. Atanasov et al. 
[14] generated a basic protocol for ethylmethanesulfonate 
(EMS)-mutagenized populations of Arabidopsis thaliana to 
use it in reverse genetics for PAs genes mutation.

Over-expression of PA biosynthesis genes has been suc-
cessfully applied for the manipulation of PA levels in plants 
[28]. It was also reported that transgenic centipede grass 
(Eremochloa ophiuroides [Munro] Hack.) with over-expres-
sion of S-Adenosylmethionine decarboxylase (SAMDC) gene 
had the increased cold tolerance associated with the poly-
amine oxidase (PAO)-catalyzed production of  H2O2 [60]. 
In turn, this causes the NR-derived NO production and pro-
moted antioxidant enzyme activities in transgenic plants. 
Furthermore, over-expression of S-adenosyl-l-methionine 
synthetase enhanced tomato tolerance to alkaline soil stress 
through PAs metabolism [34]. Similarly, over-expression 
of S-adenosylmethionine synthetase 1 of tomato transgenic 
callus enhanced alkaline stress tolerance that was positively 
correlated with PAs and  H2O2 accumulation [33]. Isolation 
of PA catabolism mutant genes could be utilized as another 
suitable method for the accumulation of PAs. Sagor et al. 
[85] indicated that silencing the cytoplasmic PAOs of Arabi-
dopsis plants increased salinity tolerance by decreasing ROS 
generation and induced defense genes expression. Various 
results have demonstrated the precise insight of PAO genes 
in cotton and sweet orange responses to biotic stress [115]. 
Wang and Liu [114] revealed that the down-regulation of 
PAO gene of orange is involved in PA terminal catabolism 
which could be used as an alternative approach to improve 
salt stress tolerance. The AtPAO5 gene which catalyzes the 
conversion of tSpm to Spd is found as a member of the PAO 
gene family with the highest transcriptional responsivity to 
salinity stress. Also, salt tolerance in AtPAO5 mutant was 
associated with early increase of ABA biosynthesis and 
enhanced jasmonic acid (JA) content. Thus, the results of 
this experiment indicated that tSpm has a protective role 
against salt stress in Arabidopsis. It was reported that 
AtPAO5 modulates Therm-Spm homeostasis and is involved 
in interaction between auxin and cytokinins that is essential 

for differentiation of xylem [4]. Regulation of the key genes 
in biosynthesis pathways is an interesting way to improve 
stress tolerance in plants.

Altered PA/H2O2 homeostasis due to over/under-expres-
sion of the ZmPAO gene in modified Nicotiana tabacum 
plants showed that under-expression of ZmPAO increased 
thermotolerance, whereas ZmPAO over-expression 
decreased thermotolerance. Reduction in PA catabolism in 
HS response can be used as an attractive strategy for increas-
ing tolerance to HS [66]. Gémes et al. [30] reported that the 
level of PAO expression showed multifaceted effects under 
long-term salinity by affecting plant vigor via the modu-
lation of ion homeostasis, antioxidant system, phenolics 
and proline contents and ethylene biosynthesis. Therefore, 
regulation of the apoplastic PAO can be further utilized as a 
potential method to improve plants with enhanced/tolerance 
to abiotic stress.

Exogenous application of polyamines

The exogenous PAs or the elevated levels of endogenous 
PAs can quickly be converted into each other. The enzymes 
involved in biosynthesis and catabolism are also affected by 
PA treatment. Also, PA production and transport mecha-
nisms may be tissue and age specifics. On the other hand, 
the effect of treatment may also be genotype-dependent [74].

Uptake, sub cellular localization and transport 
of polyamines

The mechanisms of PA uptake have been studied in many 
plants. Uptake of Put in petal of Saintpaulia has been 
reported by Bagni and Pistocchi [15]. PAs are ubiquitous. 
PAs have been found in the cytoplasm, nucleus, plasma 
membrane, mitochondria and chloroplasts. They especially 
have a high concentration in growing tissues during cell 
division and elongation [108]. It was suggested that the cell 
wall and vacuole are the largest PAs sink in plants [63]. 
Bortolotti et al. [17] showed that chloroplast and nucleus 
are the sinks of ADC in tobacco plants. In photosynthetic 
tissues, ADC is located mainly in chloroplasts, whereas in 
non-photosynthetic tissues it is collected in nuclei. ODC is 
located in the cytoplasm and nucleus but SAMDC, and Spd 
synthase is just accumulated in the cytoplasm [108].)

Limited knowledge of mechanisms underlying PA trans-
port is obtained from plants, despite early evidence that 
pointing to the occurrence of this mechanisms and the detec-
tion of PAs in phloem and xylem sap in different plant spe-
cies [8]. On the bases of studies of short- and long-distance 
transport of PAs in plant tissues, it is suggested that they 
belong to the group of phytohormones rather than to second 
massengers.
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Periplasmic proteins play a main role in PAs transporta-
tion. It has been suggested that the transfer of PAes through 
membrane is carried out by PotD and PotF (the substrate 
binding protein). These periplasmic binding proteins are 
the primary receptors of the polyamine transport system, 
which regulate the polyamine content in Escherichia coli. 
[98, 111]. It has been reported that plasma membrane pro-
teins are means for transporting spd in plants such as zuc-
chini (Cucurbita pepo) and maize (Zea mays) [104, 105]. 
In resent studies, few PA transporters have been identified 
in plants, mainly in rice and Arabidopsis [68]. A recent 
research reveals that the evolution of PA transport might 
be determined by the acquisition of functional novelties 
induced by random mutations [18]. Evidences showed that 
in prokaryotes and eukaryotes, PA transport is not a passive 
mechanism, and selectivity is achieved through specific rec-
ognition and translocation that can be affected by induced 
mutations and natural genetic variation [109].

Polyamines roles in inducing plant stress resistance

The effects of exogenous PAs in plant tolerance under a/
biotic stresses and alleviating the negative effects of stress 
have been studied in many plants (Table 1). However, 
harmful effects of PAs when they are applied under non-
stressful environmental conditions have been reported by 
Recalde et al. [83] who showed the decreased root and 
shoot elongation in wheat under this situation. This study 
showed the complex interactions among PAs-derived ROS 
and NO that occur after the exogenous application of PAs 
on wheat plants. This application triggered a plethora of 
events at different cellular levels which led to growth inhi-
bition. Higher spd and spm levels but not put increased 
dose-dependent oxidative damage in wheat and maize 

plants. Furthermore, the higher PAs levels were paralleled 
with salicylic acid accumulation [99]. Mellidou et al. [65] 
also reported that SAMDC may act as a regulator of the 
trade-off between stress tolerance and plant growth and 
developmental traits. Under natural conditions SAMDC 
reduction increased plant vigor by affecting photosyn-
thesis, ROS homeostasis and ion content. But, SAMDC 
depletion led to increased sensitivity during abiotic stress. 
These results can be used as the basis for designing strate-
gies to increase tolerance to NaCl. Exogenous Spd concen-
trations affected the PA metabolism, and salt tolerance in 
Zoysiagrass and high concentration of Spd reduced the 
growth of this plant under salt stress. Spd and Spm con-
tents and ODC, SAMDC, DAO and antioxidant enzymes 
activities initially increased and then decreased with 
increasing concentrations of exogenous Spd [51, 52, 53].

In addition to the exogenous application of PAs, some 
compounds can influence the PA synthesis and increase 
stress tolerance. Gong et al. [34] reported that melatonin 
plays a positive role in plant tolerance to alkaline stress 
by regulating the biosynthesis enzymes activity of PAs. 
It was reported that melatonin enhances cold tolerance 
in cucumber seedlings by up-regulation of CsZat12 and 
modulation of PA and abscisic acid metabolisms [125]. It 
has been shown that melatonin can increase the resistance 
of plants to Fe deficit in a phenomena dependent on the 
PA-induced NO production [125]. Exogenous application 
of γ-aminobutyric acid (GABA) promoted PA synthesis 
which in turn prevented PA degradation and alleviated Ca 
 (NO3)2 stress [38]. Exogenous SA application increased 
shoot growth in two tomato cultivars (sensitive and toler-
ant to salt stress) and promoted ethylene and PAs produc-
tion [31]. Szalai et al. [99] suggested that PAs could assist 
the stress resistance of plants primed with SA.

Table 1  Summary of the effects of exogenous PAs application on abiotic stress tolerance of agricultural crops

Agriculture crops Effects Applied polyamines References

Cucumber Increase salinity tolerance, induction of antioxidant enzymes and osmoticants, 
induce S-Adenosylmethionine synthase

Spd: 1 mM Li et al. [50]

Pomegranate Alleviate growth inhibition and salinity harmful effects, increase potassium and 
prolin concentrations

Put, Spd: (1 and 2 mM) Amri et al. [6]

Pistachio Reduction in severe effects of salt stress, increase activities of superoxide 
dismutase and catalase, decrease hydrogen peroxide  (H2O2) activity, lower 
Na:K ratio

Spm, Spd: (0.1 mM) Kamiab et al. [42]

Sorghum Induce salt tolerance and reduce  Na+ accumulation Spd: 0.5 mM Yin et al. [119]
Lettuce Increase antioxidant enzyme activities and drought tolerance Put: 0.1 mM Liu et al. [56]
Apple Alleviate salt stress, increase fresh weight Put: 5 mM Liu et al. [57]
Wheat Osmolyte accumulations, increase free polyamine levels Put and Spm: 100 µM Ebeed et al. [26]
Woad Increase yield and drought tolerance Put: 0.1, 1 and 2 mM ÇömlekcIoglu 

and Arikan [22]
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Polyamines roles in postharvest shelf life

PAs act as anti-senescence and anti-ripening regulators by 
reducing respiration rate and ethylene release, retarding 
color changes, inducing mechanical resistance and reduc-
ing chilling injury symptoms and enhancing the firmness 
and quality attributes of fruits [92]. Many studies were 
conducted on the effects of postharvest exogenous appli-
cation of PAs in order to enhance the storage life of fruits 
and cut flowers (Table 2). Anti-senescence and ripening 
effects of PAs have been reported in many climacteric 
fruits, but there are few studies about this effect on non-
climacteric fruits. Guo et al. [35] showed that the content 
of Spm increased sharply after the onset of fruit coloration 
in strawberry compared to Put or Spd. Transcription of a 
strawberry S-adenosyl-l-methionine decarboxylase gene 
(FaSAMDC) led to Spm dominance in ripe fruit and up- 
and down-regulation of FaSAMDC expression stimulated 
or inhibited ripening, respectively. Exogenous application 
of Spm- and Spd-induced fruit coloration, while exoge-
nous Put and SAMDC inhibitors inhibited this process. 

The results of this research revealed that Spm could regu-
late strawberry fruit ripening in an ABA-dominated, IAA- 
related and ethylene-coordinated manner that was different 
from the previous experiment on climacteric fruit [61].

It was reported that copper-containing amine oxidases 
(CuAOs) and PAOs are involved in physiological processes 
that take place during fruit ripening [110]. There was an 
association between PA catabolism with fruit ripening in 
grape and tomato [2, 110]. The up-regulation of CuAOs/
PAOs during ripening may form ROS signaling events that 
lead to the promotion of the ripening process [106]. It was 
reported that PA catabolism participates with plant hormo-
nal pathways, such as ethylene and ABA [2]. It was shown 
that increased accumulation of Spm in cPAO4 (pao4-1 
and pao4-2) loss-of-function mutants was associated with 
delayed entry into senescence under dark condition [90].

Biotechnological intermediation by utilizing chimeric 
gene constructs of PA encoding genes has opened a new 
means to develop transgenic fruits and vegetables in order 
to improve shelf life and quality under storage period. Fur-
thermore, nanotechnology-based carriers could be developed 
for the targeted assimilation of the PAs when used for the 

Table 2  Summary of the effects of exogenous PAs application on postharvest physiology and quality of horticultural crops

Horticultural crops Effects Applied polyamines References

Grape Inhibition of chlorophyll degradation and reduc-
tion of color changes

Spm, Put: (0.5 mM) Champa et al. [20]

Apricot Increase shelf life, reduce respiration rate and 
ethylene release, stabilize color and firmness of 
fruits, lower cellular juice leakage and browning

Put: (1 mM) Davarynejad et al. [24]

Mango Improve fruit retention, shelf life, yield and qual-
ity, regulate fruit softening and antioxidative 
enzyme systems

Spm: 0.5 mM, Spm (3 ppm), 
put (150 ppm)

Malik and Singh [62], Venu and 
Ramdevputra [112]

Kiwifruit Improve postharvest quality Put (1 mM) Petkou et al. [78]
Apple Decrease weight loss and increase firmness Put (1and 2 mM) Asgarpour et al. [12]
Strawberry Increase vitamin C, anthocyanin, phenolic 

contents, and antioxidant capacity, reduce color 
change

Put (2 mM) Siruieneja et al. [95]

Peach Delay ethylene emission and maintain flesh firm-
ness

Put (1 mM) Serrano et al. [91]

Pomegranet Alleviate chilling injury, enhance shelf life and 
preserve fruit quality

Put (2 mM) Barman et al. [16]

Zucchini Maintain fruit quality Put (1 mM) Palma et al. [73]
Broccoli Prevent chlorophyll degradation, maintain antioxi-

dant compounds and delay senescence
Put (0.25 mM) Zheng et al. [123]

Green bell pepper Increase vitamin C content and antioxidant capac-
ity, reduce color changes

Spd (20 µM)and Put (20 µM) Patel et al. [76]

Cucumber Inhibit chlorophyll degradation and reduce color 
changes

Put (0.4 mM) Jia et al. [40]

Gladiolus increase fresh weight, uptake of vase solution, 
flower opening and vase life

put (100 PPM), spd (100 PPM) Raju Dantuluri et al. [82]

Chrysanthemum Enhance quality and vase life, increase superox-
ide dismutase, decrease ACC-oxidase enzyme 
activity

Spd: 3 mM Kamiab and Zamanibahramabadi [43]
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shelf life extension in perishable horticultural crops. Studies 
have been carried out to investigate the over-expression of 
genes encoding PAs for maintaining quality and shelf life in 
tomato transgenic plants [61, 96].

Polyamines role on symbiosis relationships 
between plants and beneficial 
microorganisms

Association of plant roots with microorganisms plays a 
fundamental role in plant nutrition, health and productivity 
[117]. Studies have shown that the relationships between 
PAs and biofilm (multicellular communities of bacteria that 
their formation is necessary for the plant root colonization) 
formation by plant growth-promoting rhizobacteria (PGPR) 
have an essential role in plant protection [117]. Another 
research showed that PA biosynthesis inhibitors enhanced 
anti-biofilm activity of amphotericin B (AmB) against Can-
dida albicans biofilms [49].

PA has also been known as a component involved in 
mycorrhizal development [48]. On the other hand, mod-
ern breeding programs might have caused decreased plant 
responsiveness to arbuscular mycorrhizal fungi (AMF) [77]. 
Symbiosis relationship between plants and beneficial micro-
organisms such as plant growth-promoting rhizobacteria 
(PGPR) and mycorrhiza depends on PA metabolism [41]. 
Also, it has been revealed that exogenous PAs have impor-
tant roles to induce mycorrhizal colonization and develop-
ment in in vitro and greenhouse cultivation systems [84]. 
Niemi et al. [71] revealed that PA content and localization 
of Pinus sylvestris ADC and Suillus variegatus ODC mRNA 
transcripts during the formation of mycorrhizal interaction 
increased in infected tissues after microbial inoculation. 
Dual applications of arbuscular mycorrhizal fungi and Put 
have increased nutrients uptake and growth of trifoliate cit-
rus (Poncirus trifoliate) Seedlings [80].

It has been reported that effective microorganism applica-
tion could mitigate salt toxicity and help plant growth and 
productivity owing to the PA pool modification in common 
bean [101].

PAs role as fungicides

Inhibition of the ornithine decarboxylase (ODC) activity 
by α-difluoromethylornithine (DFMO) inhibitor has been 
known as the main strategy often used to manipulate and 
control PAs metabolism. DFMO targets ODC activity in 
pathogens, whereas the plant utilizes another pathway of 
PAs biosynthesis. Thus, this method can solve the problem 
of resistance to fungicide [23];).

Estiarte et al. [27] utilized D, L-α-difluoromethylornithine 
(DFMO) on Alternaria alternate and showed the reduced 
fungal growth and mycotoxin production in in vitro condi-
tion. PA biosynthesis pathways are blocked in fungal cells, 
but they are able to uptake the PAs from the host plant in 
field condition. PA analogs for inhibiting the cellular PA 
transport have been introduced by Burns et al. [19] who 
designed a group of lipophilic PA analogs. Estiarte et al. 
[27] tested two PA analogs, AMXT-2455 and AMXT-3016 
and observed that they partially control A. alternata viability 
in vitro and in vivo using tomato plants. This method can 
be used to reduce aflatoxin in susceptible crops. Guazatine 
is a potent inhibitor of PA oxidase (PAO) activity and is 
used as a fungicide in agriculture. But, application of this 
compound has toxicity effects on plants. Thus, Atanasov 
et al. [14] identified a genome-wide association mapping 
for the tolerance to guazatine in Arabidopsis thaliana and 
introduced a natural method for Arabidopsis populations that 
can reduce the toxicity of guazatine fungicide.

PAs role in flowering, fruit set 
and embryogenesis

PAs are essential for plant reproduction including flowering 
[10], fruit set and development [1]. Increased ovule longev-
ity and fruit set were associated with increased foliar and 
flower N and B levels in Putrescine treated plants. Arias 
et al. [11] reported that PAs may act as a nitrogen source 
rather than a regulator of fruit set. Increased nutrients in 
leaves and decreased fruit abscission could increase fruit set 
after exogenous application of PAs.

5’-Methylthioadenosine (MTA) cycle is the main S recy-
cling pathway in plants. This compound is produced as a 
by-product during ethylene, PA and nicotianamine synthe-
sis [89]. Zierer et al. [126] analyzed Arabidopsis thaliana 
mutants with defects in the Met cycle enzymes and showed 
that the reproductive inability was due to the reduction in PA 
levels in mutant inflorescences. Phloem-specific S recycling 
during periods of S deficiency is necessary for the biosyn-
thesis of PAs needed for flowering and seed development.

The reduced fruit drop due to the exogenous application 
of PAs has been reported [64]. Khezri et al. [44] showed the 
decreased abscission of inflorescence buds and increased 
fruit set in pistachio trees with application of Spm. Spm 
dominantly plays a key role in the growth and development 
of pistachio nuts.

Kim et al. [45] indicated that AtPAO5gene is a T-Spm 
oxidase and recombinant AtPAO5 catalyzes the conversion 
of T-Spm and Spm to Spd. This gene delayed the transi-
tion from vegetative to reproductive growth, and also it was 
observed in AtPAO5 loss-of-function mutants (pao5). Liu 
et al. [57] reported that the PA level decreased during fruit 
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set to ripening in peach fruit. Thus, the above results indi-
cated that there is an antagonistic effect between PAs and 
senescence. Vondráková et al. [113] reported that exogenous 
Put increased endogenous PA levels and caused the somatic 
embryos development of Picea abies. Also it has been indi-
cated that stress responses and specific changes in PA metab-
olism could influence on Scots pine somatic embryogenesis. 
Thus, the manipulation of stress response pathways may be a 
novel strategy for somatic embryo production in recalcitrant 
Scots pine lines [87].

Conclusions for future biology

Considerable evidences indicate that PAs are involved in 
a wide array of plant processes. PA levels are controlled 
by intricate regulatory feedback mechanisms. PA levels are 
modified during cell growth and differentiation through 
the interaction between the enzyme ornithine decarboxy-
lase (ODC) and two regulatory proteins: antizyme (Az) and 
antizyme inhibitor (AzIN).

There are complex and differential relationships among 
the three main PAs in regard to the regulation of plant 
hormone biosynthesis and signaling. These PAs could be 
positively or negatively linked to the expression of genes 
regulating plant hormone biosynthesis. The most abundant 
PAs, namely Put, Spm and Spd, are able to influence sev-
eral physiological processes, including photosynthesis, the 
antioxidant system and ion channels under stress conditions. 
PAs cooperate with NO signaling to respond to various a/
biotic stresses through interactions with cell metabolic path-
way, S-nitrosylation of stress responsive proteins and ABA 
and (ROS) signaling. Genetic engineering of genes involved 
in the PAs biosynthesis or degradation has been used for the 
development of stress-resistant plants. Thus, reverse genetics 
enables the identification of novel genes in the PA pathway.

Anti-senescence and anti-ripening effect of polyamines 
has been reported in many climacteric fruits. CuAOs and 
PAOs involves in physiological processes taking place dur-
ing fruit ripening. Nanotechnology-based carriers can be 
developed for the targeted assimilation of the PAs to extend 
the shelf life of agricultural products. Studies showed that 
there is a positive correlation between PAs and beneficial 
microorganisms. Furthermore, PAs can be utilized as fungi-
cide which is novel approach to reduce the fungicide resist-
ance. PAs are essential for flowering and fruit set; therefore, 
by exogenous application of them or genetic manipulation 
of genes involve in PAs biosynthesis pathways we can sig-
nificantly improve the performance and yield of agricultural 
crops.
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