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Abstract

As demands for freshwater withdrawals continue to escalate in water-stressed regions, negative consequences of
alterations to natural systems will become ever more severe. Habitat restoration projects may mitigate some of
these challenges, but new strategies will be needed to maintain or enhance ecosystem health while simulta-
neously meeting human needs. Recycled water is a reliable water source that can be used both directly and
indirectly to renew degraded urban stream ecosystems. In this review, aspects of hydrology, water quality, and
ecosystem services in relation to water reuse for urban stream renewal are evaluated to identify research needs
and design considerations for new systems. Use of recycled water for streamflow augmentation in urban areas
remains largely unexplored scientifically, despite its potential widespread applications among water and
wastewater utilities. To move this innovative concept toward implementation, experimental studies in stream
microcosms are needed to examine ecological response to coupled modification of both hydrology and water
quality. Appropriate methods for selecting potential sites for urban stream renewal should be identified, along
with ecological and economic metrics for evaluating success. Examples of projects in California, Japan, Israel,
and Spain are used to identify different management scenarios. However, design criteria from both successful
and unsuccessful case studies require additional review and synthesis to develop robust guidelines for recycled
water use in urban stream renewal. Motivations for past stream renewal projects include regulatory require-
ments for water quality improvement and endangered species protection, although these motivations alone may
not be enough to facilitate widespread adoption of reusing wastewater for ecosystem enhancement. Conse-
quently, future project designs should include more detailed ecosystem service valuations to describe broader
societal benefits and attract the attention of government agencies and private organizations that ultimately make
the choice between environmental perturbation or enhancement.
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Introduction

Increases in water use associated with urban growth and
development have led to dramatic, negative impacts on

aquatic ecosystems (Paul and Meyer, 2001; Groffman et al.,
2003; Walsh et al., 2005). The consequences observed are es-

pecially severe in arid and semiarid regions (Patten, 1998;
Brooks et al., 2006). However, the recognized need to ensure
long-term ecological integrity of riverine systems, which are
highly degraded in many urban areas, has resulted in a sig-
nificant increase in the undertaking of stream restoration
(Bernhardt et al., 2005; Bernhardt et al., 2007; Palmer et al., 2007).

With continuing improvements in wastewater treatment
technologies and escalating water demands, recycled water is
a resource that can be used to a greater extent to benefit eco-
systems ( Jackson et al., 2001; Sala and Serra, 2004). Success
stories of recycled water use in managed natural systems,
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predominately for constructed wetlands, demonstrate that
effective planning of water reuse projects at local and regional
scales can enhance aquatic habitat, improve water quality,
and provide public value (Vymazal et al., 2006; Vymazal,
2007; Rousseau et al., 2008). However, the intentional use of
recycled water for stream renewal is an often-overlooked
opportunity. Reasons for this include an absence of regulatory
guidance or prohibitory regulations in some cases, presence of
competing demands for recycled water use, and lack of ap-
propriate water quality standards and riparian habitat indi-
cators to monitor and demonstrate benefits (Latino and
Haggerty, 2007; Bischel et al., 2012; Plumlee et al., 2012).
Nevertheless, with integrated water resource management,
recycled water has the potential to serve as a viable resource
for renewal of water-stressed streams (i.e., rivers, creeks).

Ecosystem renewal in this context refers to replenishing
and regenerating natural systems to guide them toward a
future dynamic state in which the abiotic and biotic compo-
nents are within the historic range of natural variability for
that location or region. This definition is similar to that which
is often used in the literature for ecosystem enhancement,
restoration, or rehabilitation (Grenfell et al., 2007). The term
ecosystem renewal is adopted for the purpose of this review
and is intended as a general phrase that includes any resto-
ration, rehabilitation, or enhancement project that incorpo-
rates a return of water, including recycled water available
from wastewater reclamation, back to a stressed ecosystem.
Stream renewal assumes that flow augmentation occurs
alongside other objectives, as flow augmentation by itself may
not be adequate to meet the objectives of a recycled water
project designed for ecosystem enhancement. The objective
was not a restoration of a system to the exact conditions at a
specific point in the past; we are not suggesting an approach
to outperform nature or force an oppressively fixed structure
onto a system that requires dynamism. Rather, a successful
project will maintain or increase the resilience and resistance
of the biological communities (Stanley et al., 1994).

The motivations for stream enhancement and restoration
are diverse, and include moral, regulatory, political, and
economic concerns (Wu et al., 2003; Clewell and Aronson,
2006; Corsair et al., 2009). Moral arguments recognize that
stream ecosystems are part of our natural heritage and that
our duty as stewards of the environment is to protect them
(Lee and Roth, 2003). Likewise, federal and state governments
have regulations in place to protect the environment, such as
the Endangered Species Act and the Clean Water Act, which
water utilities must adhere to in their effluent-release proce-
dures (Rosan, 2000; MacDonnell, 2009). However, regulations
and moral arguments are often not enough to provide an
adequate level of protection (Moyle and Yoshiyama, 1994;
Costanza et al., 1997). Analyses of the economic benefits that
intact ecosystems provide, which are often described as eco-
system services, may increasingly provide the informa-
tion necessary to motivate institutional change (Postel and
Thompson, 2005; Goldman et al., 2007).

The objective of this review is to assess the potential for
water reuse to renew urban stream ecosystems, with a focus
on both the opportunities and concerns for management
in relation to hydrology and ecology, water quality and
treatment, and ecosystem services. Because research specifi-
cally addressing the intentional application of recycled water
for urban stream renewal is limited, we drew broadly from

evaluations of ecosystem responses to altered flow regimes,
water quality in effluent-dominated streams, and ecosystem
service provisions identified from past natural system resto-
ration projects. Experiences from a particularly relevant
stream renewal project are subsequently highlighted in a
detailed case study of Calera Creek in Pacifica, California.
After the review and case study, we identify barriers to im-
plementation, outline research needs, and envision how suc-
cess may be achieved in the future. The analysis represents a
part of a larger research effort coordinated through the U.S.
National Science Foundation’s Engineering Research Center
for Reinventing the Nation’s Urban Water Infrastructure
(ReNUWIt) (Sedlak et al., 2013).

Review

Water reuse for ecosystem enhancement in practice

Wastewater treatment plants (WWTPs) often discharge
secondary-treated effluent directly into streams and fresh-
water wetlands (Tchobanoglous et al., 2003; Carey and
Migliaccio, 2009). This practice is especially common for in-
land facilities, whereas many coastal facilities discharge di-
rectly into the ocean. In some cases, effluent discharged under
low-flow stream conditions may incidentally serve to protect
the integrity of aquatic ecosystems downstream (Brooks et al.,
2006), especially when industrial pollution inputs to the
wastewater and river systems are low. While wastewater ef-
fluent requires specified treatment for disposal requirements,
recycled water is the end product of wastewater reclamation
that meets additional and appropriate water quality require-
ments and is produced with the intent of being used for
beneficial purposes (Levine and Asano, 2004; NRC, 2012).
Because the quality of recycled water used for stream renewal
would be no lower, and likely higher, than that of traditional
wastewater effluent, wastewater effluent discharge to surface
waters represents a worst-case scenario for identifying po-
tential ecological effects of using recycled water for stream-
flow augmentation (NRC, 2012). Discharge of wastewater
with low levels of treatment into streams has resulted in
ecosystem degradation in many cases, and as a result, nega-
tive perception of the effects of wastewater on the environ-
ment is widespread (Carey and Migliaccio 2009; Grantham
et al., 2012).

Alternatively, when carefully managed for augmentation
in natural systems, recycled water, a term here used synon-
ymously with reclaimed water, can renew urban streams ei-
ther directly or indirectly in a variety of planned scenarios
(Table 1). Direct augmentation as practiced in Calera Creek
(Pacifica, CA) and the San Antonio River (San Antonio, TX)
entails identifying opportunities to supplement streamflow in
ecologically critical stream reaches as well as securing existing
or new sources of recycled water. As an alternative to existing
centralized recycled water facilities, distributed treatment
plants could be constructed to produce recycled water at the
location of an intended augmentation. The water quality re-
quired for stream renewal can also be achieved in some lo-
cations by using the intrinsic filtration capabilities of natural
systems, such as through unit-process wetland treatment,
before streamflow augmentation (Sala and Tejada, 2008; Jas-
per et al., 2012). In these systems, unit-process wetlands could
serve as the tertiary treatment needed to produce recycled
water from secondary-treated wastewater. A stream reach
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Table 1. Management Scenarios for Recycled Water to Augment Streamflow and Case Studies

Scenario Concept Example projects
Example design or management

challenges

Wastewater effluent-
dependent streams

Treated effluent is discharged
routinely to streams with
regulatory-driven ambient
water quality protection and
may provide habitat for
aquatic species.

San Luis Obispo Creek, San
Luis Obispo, CA (DiSimone,
2006; Asano et al., 2007)

Hadera River, Israel
(Hophmayer-Tokich
and Khot, 2008)

Status quo approach lacks
active streamflow manage-
ment and introduces
hydrological and water
quality challenges.

Direct streamflow
augmentation

Recycled water may be designed
to flow directly from the
engineered treatment system
into the designated stream
reach.

Salado Creek and San Antonio
River, San Antonio, TX (Dean
and Shih, 1975; Crook, 2004;
Eckhardt, 2004; USEPA,
2004)

Nobidome and Tanagawa
Streams, Tokyo, Japan
(Ohgaki and Sato, 1991;
Maeda et al., 1996)

Bell Creek, City of Sequim, WA
(Latino and Haggerty, 2007)

Calera Creek, City of Pacifica,
CA (see case study)

Insufficient guidelines exist
for project development
and implementation. Per-
mitting processes may be
complex and lengthy or
regulations may not allow
stream augmentation. Po-
tential recycled water qual-
ity issues include excess
nutrients, chlorine residual,
and elevated temperature.

Unit-process wet-
land treatment
system

Recycled water passes through
a constructed wetland before
augmenting the targeted
stream reach, creating habitat,
and receiving additional
treatment.

Tossa de Mar Creek, Tossa de
Mar, Spain (Sala and Tejada,
2008)

Danshui River, Taipei, Taiwan
(Cheng et al., 2011)

River Dommel, Boxtel, The
Netherlands (Kampf and
Claassen, 2004)

Petaluma River, City of Petalu-
ma, CA (USEPA, 2004)

Requires land for wetland
cells and treatment reliabil-
ity. Efficacy of long-term
treatment by wetlands and
mechanisms are uncertain.

In-stream treatment
zone

Recycled water passes through a
designated in-stream treatment
zone upstream of the targeted
augmentation stream reach.

Natural attenuation of trace
organics in Santa Ana River,
CA (Lin et al., 2006) and
Trinity River, TX (Fono et al.,
2006)

Uncertain treatment capacity
in hyporheic zone, river-
banks, or macrophytes.
Potential degradation of
upstream reach.

Indirect augmenta-
tion or discharge

Recycled water percolates into
groundwater and indirectly
augments streamflow. The
subsurface may be used to cool
water or attenuate contami-
nants when recycled water
exceeds limits protective of
in-stream biota.

Subsurface discharge through
a 300-ft perforated pipe
adjacent to the Columbia
River in Dallesport, WA
(Dallesport, 2007)

Pilot-scale infiltration wetland
at the Pudding River, City
of Woodburn, OR
(Stewart, 2010)

Requires land for infiltration;
requires groundwater flow
and temperature modeling
to establish streamflow
connection and expected
water quality changes.

Agricultural return
flow

Recycled water used to irrigate
agricultural fields is collected
and treated before runoff into
adjacent streams. Recycled
water could also be used to
irrigate stream banks during
native vegetation germination
periods to simulate floods that
no longer occur.

Landscaping at polishing
wetlands irrigated with
recycled water at Petaluma
River, City of Petaluma, CA
(USEPA, 2004)

Agricultural return flow treated
in constructed wetland before
stream discharge in Kongju
City, Korea (Maniquiz et al.,
2012)

Return flow water quality
may be compromised from
agricultural chemical inputs
(e.g., nutrients and
pesticides).

Water savings/
indirect benefits

Water conservation or savings
from water reuse can indirectly
provide environmental benefit
by allowing maintenance of
flows.

Water conservation and recy-
cling for more natural flows
in the Russian River, Sonoma
County Water Agency
(Dickinson et al., 2011)

Requires appropriation of
in-stream flows or commit-
ments to reduce requests for
further diversions.
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with unique substrate characteristics and location in relation
to the groundwater table (i.e., upwelling or down-welling
areas), rather than a constructed wetland, could also be
identified as a natural treatment zone upstream of the target
stream reach.

Alternative streamflow management scenarios may also be
achieved indirectly using recycled water. Infiltration basins
and subsurface wetlands can offer a filtration function
(Stewart, 2010; Jasper et al., 2012; Lawrence et al., 2012), pro-
viding soil aquifer treatment for wastewater discharged to a
stream via a hydraulically connected groundwater aquifer.
Another benefit of indirect discharge may be temperature
mitigation—for example—by attenuation of wastewater
temperature via the subsurface (made possible by the large
heat capacity of aquifer materials) as modeled for the Pudding
River in Oregon (Stewart, 2010) and demonstrated in Dalle-
sport, WA adjacent to the Columbia River (Dallesport, 2007).
Over 300 WWTPs indirectly discharge treated wastewater
through rapid infiltration to nearby surface waters (Crites
et al., 2000). Recycled water can also renew stream ecosystems
through its application toward uses that would otherwise
draw water from streams. Water resource managers in the
San Francisco Bay Area of California, for example, recog-
nize that using recycled water for agriculture could reduce the
need for imported water and diversions from the sensitive San
Francisco Bay-Delta ecosystem (BARWRP, 1999). Likewise,
recycled water applications to vineyards in Sonoma County,
California, may indirectly augment streamflows through re-
duced groundwater abstractions (Lawrence et al., 2011) and
increased return flow. Lastly, reduction of degradation asso-
ciated with excessive wastewater effluent discharge in one
location via redistribution of the water for stream renewal
where needed at an alternative location has the potential
to improve the ecosystem health through strategic flow
management.

Upgrades of existing WWTPs to meet stricter regulatory
requirements for effluent discharge will in some cases blur the
line between intentionally planned and unintentional cases of
ecosystem renewal. For example, if wastewater is discharged
through constructed wetlands for additional polishing before
river discharge (Green et al., 1996), river water quality is im-
proved, even though the design may lack additional elements
that would further promote stream renewal (e.g., manage-
ment of flows to mimic natural hydrographs). Ecosystem re-
newal should entail a holistic evaluation of stream needs
related to factors, including managing flow, water quality,
geomorphology, and habitat in concert, distinguishing opti-
mally designed streamflow augmentation from traditional
wastewater discharge.

Streamflow augmentation using recycled water will likely
provide the greatest rejuvenating effect in urban streams that
are most severely degraded in hydrology, ecology, and water
quality (Ponce and Lindquist, 1990). Augmentation will not
be universally applicable, however. For example, many urban
streams actually have too much water as a result of impor-
tation from outside of the drainage basin, which can cause dry
weather flows. Excess water can turn historically non-
perennial streams into perennial streams, which can have
adverse effects on indigenous flora and fauna that are adapted
to the natural seasonal cycles of wetting and drying (Gasith
and Resh, 1999). These problems are especially prevalent in
the semiarid or Mediterranean climates, such as in California,

where water is transported over great distances to urban
centers. These experiences highlight the importance of proper
site selection based on both historical data and modeling ef-
forts to understand baseline hydrologic regimes and water
quality characteristics. Nonetheless, some streams were pe-
rennial historically and are now nonperennial as a result of
urbanization, and these streams certainly warrant further in-
vestigation as potential augmentation sites (BARWRP, 1999).
Additionally, climate change will reduce flows in some
streams, which could be mitigated through water reuse ap-
plications. Better understanding of the science, the motiva-
tions, and the institutional impediments of water reuse for
ecosystem renewal is needed to determine to what extent this
will be a viable approach in the future.

Hydrology and ecology

Flow modifications in urban environments. Freshwater
biota are highly adapted to the local components of the nat-
ural flow regime, which include the magnitude, frequency,
duration, timing, and rate of change of flows over time
(Richter et al., 1996; Poff et al., 1997; Tharme, 2003). The natural
flow regime in water-stressed regions often includes season-
ally predictable wet and dry periods (Fig. 1). The adaptations
of freshwater biota to the natural flow regime are especially
pronounced in water-stressed areas, such as deserts and
Mediterranean climate regions (Gasith and Resh, 1999). Mi-
gratory fish (Bunn and Arthington, 2002; Jager and Rose,
2003), benthic macroinverterbrates (Mendez and Resh, 2008),
and riparian vegetation (Merritt et al., 2010) all show key
inter-relationships with flow. Moreover, the characteristics of
the natural flow regime are essential to maintaining com-
munity structure and food-web dynamics in these complex
ecosystems (Power et al., 2008).

Flow has been called the ‘‘master variable’’ (Power et al.,
1995) and the ‘‘maestro that orchestrates pattern and process
in rivers’’ (p. 85, Walker et al., 1995). The 1960s mantra, ‘‘the
solution to pollution is dilution,’’ illustrates how water quality
and flow are related; however, many studies have shown that
even dilute concentrations of pollutants can have deleterious
effects on biota. Flow also affects habitat quality (e.g., tem-
perature magnitude and fluctuations, shading provided by
the riparian canopy, substrate characteristics, and diversity of
pool and riffle habitats). Furthermore, the interconnectedness
of flows and ecosystems among streams, hyporheic zones,
groundwater, wetlands, and estuaries is of great importance
[as exemplefied by Christensen et al. (1996), Slocombe (1998),
and Granek et al. (2010)]. An understanding of the effects of
human disturbance on these interconnected natural flow re-
gimes, and mediating these effects through innovative solu-
tions involving both natural systems and engineered systems,
is a major goal of integrated water resource management and
is essential for preserving biodiversity ( Jewitt, 2002; Draper
et al., 2003).

Urban streams have dramatically altered hydrology as a
result of human development. For example, groundwater
withdrawals, water diversions, and WWTP discharges can
modify all of the components of the natural flow regime (e.g.,
decreasing flood magnitudes, altering the frequency of high
flow events, and/or changing the timing of flows). Urban
streams tend to be flashier than natural streams in the sense
that the streamflow rises much more quickly and to a higher
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magnitude during storm events (Konrad and Booth, 2005;
Walsh et al., 2005). This flashiness is primarily a result of the
relatively high coverage of impervious surfaces in the urban
environment, such as paved roads, parking lots, and roofs
on buildings, which alter hydrologic flow paths (Arnold
and Gibbons, 1996; Paul and Meyer, 2001). These higher-
magnitude streamflows also increase flooded areas in
downstream wetlands and estuaries, and can increase incision
in stream channels, which can both scour the hyporheic zone
and drain the local groundwater reservoir (Henshaw and
Booth, 2000; Groffman et al., 2003).

Natural flow regimes in semiarid regions are often char-
acterized by a low-flow period that occurs in the dry season
(Fig. 1). During this part of the year, the effects of urbanization
on freshwater biota are magnified, because any changes in
flow have a larger effect on the total volume [see Smakhtin
(2001) for a review of low-flow hydrology]. Urban streams
can have reduced base flows relative to the natural flow
regime from water diversions, or if the groundwater reservoir
is depressed as a result of withdrawals from wells, reduced
infiltration during rainfall events, or stream-channel incision
(Paul and Meyer, 2001; Konrad and Booth, 2005). In contrast,
urban streams can have higher base flows during this water-
stressed period of the year caused by augmentations, altered
microclimates, irrigation return flow, hydropower releases,
recreational flow releases for boaters or anglers, WWTP dis-
charges, and landscaping applications, as well as from in-
creased groundwater recharge from septic tank discharge
and/or leaks in underground potable or nonpotable water
lines [examples have been reported by Lerner (2002) and
Garcia-Fresca and Sharp (2005)].

Many urban streams are highly degraded, signifying great
potential for creative engineering solutions to renew these
ecosystems through new approaches to the design and
operation of urban water infrastructure. For these ecosystem
benefits to be realized, it must be determined how the flows in
these urban streams are altered from the natural flow regime

and what components of that regime are most important
ecologically (Stoddard et al., 2006; Poff et al., 2010). Manage-
ment of the magnitude, timing, and variability of flows
should take higher priority than just providing a minimum
flow, which has been the standard management practice in
many regions of the United States (Postel and Richter, 2003).
Fortunately, this minimal-flow approach is being recon-
sidered as a result of new environmental flow policies in
many U.S. states (MacDonnell, 2009).

In many cases, it will not be possible or desirable in cases
where it increases flooding risks, to return a streamflow re-
gime to a historic condition, but significant benefits could still
be realized by providing a new flow regime that captures
some ecologically important aspects of the natural hydro-
graph (Naiman et al., 2002). This was accomplished at Putah
Creek in California, where targeted changes to the flow re-
gime below a dam re-established native fishes and reduced
abundances of alien fishes (Kiernan et al., 2012). Such hydro-
logic modifications may also prove beneficial to establishing
native riparian flora. For example, along the Rio Grande River
in the southwestern United States, non-native riparian plants
such as salt cedar (Tamarix spp.) outcompete native plants
such as cottonwoods (Populus spp.) and willows (Salix spp.),
because the annual floods have been largely eliminated by
upstream dams and water withdrawals (Stromberg et al.,
2007). Although recycled water volumes are insufficient to
restore the natural floods along this river to their full magni-
tude, the banks of the active channel and the floodplain could
be irrigated seasonally with recycled water to simulate aspects
of the natural flood cycle while preventing damaging floods
on private property. This process could allow native plants to
regain a competitive stronghold against invasive species.

Managed streamflow augmentation using recycled water
offers important opportunities to renew streams in urban and
periurban environments where other sources of water have
been allocated for competing uses (e.g., residential, agricul-
tural, or industrial), and either flows are reduced relative to

FIG. 1. Flow regimes for Coyote Creek from USGS gage #11170000 showing the (A) natural flow regime and (B) altered
flow regime. Coyote Dam and LeRoy Anderson Dam were constructed upstream of this gage in 1936 and 1950, respectively.
The natural flow regime of Coyote Creek (A) is representative of a typical perennial stream in a Mediterranean-climate region
with predictable seasonality in wet-season and dry-season flows. In the altered flow regime (B), wet-season floods are
decreased dramatically in both magnitude and frequency, and summer low flows are severely reduced or eliminated.
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the natural flow regime, or there is an opportunity to mitigate
aquatic habitat loss elsewhere in the urbanized watershed.
For example, a historically nonperennial stream could be
made perennial if many of the perennial stream habitats in the
region have been eliminated by human development. Table 2
provides examples of hydrologic metrics for evaluating
streamflow relative to historic conditions and effects of aug-
mentation. Selected metrics should include low-flow condi-
tions when possible, because augmentation with recycled
water will likely have the most impact under these conditions.
In addition to such hydrologic indices, multiple biological,
physical, and chemical parameters should be utilized to assess
how alternative water management scenarios for recycled
water might impact ecosystem integrity (Richter et al., 1996).

Although many studies have documented declines in
freshwater biota in response to altered flow regimes [see Poff
and Zimmerman (2010) for a review], very few have examined
the ecological response to intentionally augmented flow [see
Ponce and Lindquest (1990) for the most recent review]. Based
on observations of natural systems and either unintentional or
indirect flow augmentations, managed streamflow augmen-
tations clearly have demonstrated a potential to benefit eco-
systems not only in the water column and benthos of streams,
but also in the hyporheic zones [as reported by Kasahara and
Hill (2007)]. Moreover, groundwater reservoirs, wetlands, es-
tuaries, and riparian zones to which these streams are inextri-
cably connected may also benefit (Wolff et al., 1989; Debano
and Schmidt, 1990; Henszey et al., 1991; Troendle et al., 2001;
Robinson et al., 2003; Huertas et al., 2006; Zou et al., 2010).

Evaluating benefits. The type of fauna used to evaluate
ecosystem integrity will dramatically affect the duration of
flow augmentation required to evaluate changes (Resh and
Jackson, 1993; Carlisle and Clements, 1999) where recycled
water is used for stream renewal. For example, diatoms can
show changes on the order of hours (Winter and Duthie, 2000;
Smucker and Vis, 2011), but benthic macroinvertebrates show

responses over the course of several months (Resh and Jack-
son, 1993; Resh, 1994). In contrast, fishes may require multiple
years (Karr, 1981; Aparicio et al., 2011), and riparian forests
can take decades to respond (Hierl et al., 2008; McClain et al.,
2011). Microbial diversity is also a fundamental indicator of
stream ecological health and is influenced by changes in
geomorphology and exposure to certain water quality con-
stituents [such as those reported by Davy-Bowker (2006) and
Feris et al. (2003)], but is rarely used for quantifying ecosystem
benefits or degradation. In terms of comparative advantages,
benthic macroinvertebrates respond in a timeframe that is
most amenable to scientific evaluation, and they are very
sensitive to a variety of disturbances (Resh, 2008).

The evaluation of whether a change in benthic fauna with
recycled water flow augmentation is a net benefit that can be
performed using a multitude of structural and functional
metrics, including those that describe abundance, composi-
tion, diversity, and biological traits. Multivariate statistical
metrics that predict the proportion of taxa observed relative to
those that would be expected under reference conditions, of-
ten determined using a RIVPACS-type predictive model [for
examples, see Hawkins et al. (2000) and Ostermiller and
Hawkins (2004)], may also be useful in some cases. The se-
lection of evaluation metrics should be tailored to the site
under examination in that the choice should make the best
possible use of the historical biological information available
and should be sensitive to the unique taxa that are present.

Species composition, diversity, and trait metrics are widely
applied for aquatic ecosystem assessments and may be ap-
plied to quantify benefits of flow augmentation. For example,
as a composition metric, the proportion of the individuals or
species present in the three insect orders—Ephemeroptera,
Plecoptera, and Trichoptera—relative to the total benthic
macroinvertebrate community is widely considered to be in-
dicative of water quality, and thus an increase in the value of
this metric can be considered a benefit (Carter et al., 2009;
Purcell et al., 2009). Other composition metrics, such as

Table 2. Examples of Hydrologic Metrics for Monitoring the Effects of Streamflow Augmentation

Component of the
natural flow regime Metric codea Description of metric How to calculate

Magnitude ML22 Specific mean annual
minimum flow

Calculate the mean of annual minimum flows and divide
by the drainage area.

Frequency FL1 Low flood pulse count Calculate the average number of flow events with flows
below a threshold equal to the 25th percentile value for
the entire flow record and determine the average
number of events.

Duration DL18 Number of zero flow
days.

Calculate the number of zero-flow days for the entire flow
record and determine the mean number per year.

Timing TL3 Seasonal predictability
of low flow

Divide years into 2-month periods, count the number of
events with flows £ 5-year flood threshold in each
period over the entire flow record, and calculate the
maximum number of these events in any one period
divided by the total number of such events.

Rate of Change RA3 Fall rate (m3/day) Calculate the change in flow for days in which the change
is negative for the entire flow record and determine the
mean of these values.

Metric values at a site should fall within the regional range of natural variability for the five components of the natural flow regime (Richter
et al., 1996), which can be determined using historical USGS streamflow gauge data.

aKennen et al. 2007.
Sources: Olden and Poff (2003); Kennen et al. (2007).

460 BISCHEL ET AL.



regional indices of biotic integrity (Ode et al., 2005; Rehn et al.,
2007; Lunde and Resh, 2012), are also useful. Likewise, as a
biodiversity metric, taxa richness is widely accepted as an
indicative of ecosystem health, and an increase in the value of
this metric would also be considered a benefit (Bonada et al.,
2006; Resh, 2008). Two other diversity metrics, Shannon-
Wiener diversity and Simpson’s diversity, are also widely
used, and increases in their values could be considered a
benefit (Resh, 1994; Pires et al., 2000).

Traits metrics describe the functional adaptations of or-
ganisms to their environment and as such can be useful to
track biotic responses to specific physical changes in the en-
vironment, such as in temperature, streamflow, and nutrient
availability (Bêche and Resh, 2007; Lawrence et al., 2010). As a
relatively newer biological monitoring tool, trait databases are
still in development, and the methods for their application are
being tested (Usseglio-Polatera et al., 2000; Vieira et al., 2006).
Several of these are potentially useful in evaluating benefits of
augmented stream flow (Table 3).

In the inevitable tradeoff among selective advantages
conferred by different traits, managed streamflow augmen-
tation will certainly benefit some taxa and hinder others, and
these changes can be hypothesized and examined using our
knowledge of each taxon’s set of traits (Table 3). For example,
benthic macroinvertebrates that are filter feeders should in-
crease proportionally over time under higher flows as a result
of the increased suspension of organic matter in the water
column ( James et al., 2008; Fuller et al., 2010). Likewise,
diatoms, a higher-quality food source for many macro-
invertebrates and fish, should replace the lower-food-quality
filamentous algae (Robson et al., 2008). In terms of restoration
of fauna and flora, if the streamflow augmentation mimics the
natural flow regime, the benefits should accrue mostly to the
native taxa as opposed to the non-native taxa. Evolutionarily,
the native taxa have acquired their unique set of traits through
natural selection under historical flow conditions, whereas
invasive species tend to be opportunistic and are favored in
modified and disturbed environments.

Obvious changes, such as general increases in abundance
with augmented recycled water, may have to be examined
more closely. For example, abundance metrics can be indic-
ative of improved conditions when a stream that is depau-
perate shows an increase in the total number of organisms.
Nonetheless, if this increase in abundance is dominated by
non-native, invasive, or pollution-tolerant organisms, then
the increase should not be considered a benefit. An increase in
the abundance of a species that is listed as endangered is
certainly a benefit, and such benefits once achieved are pro-
tected under the Endangered Species Act in the United States
[see Good et al. (2007) for example]. Ideally, multiple met-
rics should be used so that the benefits (or harms) can be
quantified and evaluated using multiple lines of evidence,
and if the time and resources are available, metrics based on
other fauna such as fish, amphibians, reptiles, algae, zoo-
plankton, and riparian vegetation could be included in the
analysis to provide a more comprehensive benefit assessment
(as demonstrated in Table 4).

Water quality and treatment technologies

Effluent-dominated streams have often raised water qual-
ity and ecotoxicological concerns (Brooks et al., 2006; Nilsson

and Renofalt, 2008; Canobbio et al., 2009), especially when
wastewater comprises a majority of streamflow. Yet, treated
effluent has also long been recognized for its ecological value
in supporting riparian and aquatic habitats in effluent-
dependent ecosystems in the arid West (USEPA, 1992). For
example, improved water quality and endangered species
presence were recorded after the discharge of tertiary-treated
wastewater to San Luis Obispo Creek, an effluent-dependent
creek in California (Arnold, 2000; DiSimone, 2006). For
streamflow augmentation using recycled water, water quality
variables that significantly influence ecosystem processes
should be identified for the planned flow conditions (Poole
et al., 2004; Palmer et al., 2005; Grantham et al., 2012).

The recycled water quality will be an improvement com-
pared to baseline stream conditions for some water quality
parameters, but treatment technologies must be selected and
designed to lower concentrations of other constituents before
the recycled water is added. In Coyote Creek (San Jose,
California), where flow augmentation using recycled water
was under consideration for a demonstration project, metals
and pathogen contamination in the creek were expected to
improve from dilution with the better-quality recycled water.
However, increased temperatures from the warmer recycled
water were a concern, as were perfluorochemical concentra-
tions that were higher in the recycled water than the receiving
stream waters and associated groundwater (Plumlee et al.,
2011). Although this demonstration project was not im-
plemented, management of the recycled water release volume
and timing was planned to mitigate temperature issues.

Riverine environmental flow management often lacks ex-
plicit consideration of natural water quality variability in
space and time, prioritizing water quantity over water quality
parameters (Nilsson and Renofalt, 2008; Olden and Naiman,
2010). However, when water quality variables (e.g., tempera-
ture, dissolved oxygen, ammonia, biological oxygen demand,
and trace metals) fluctuate beyond acceptable ranges, eco-
logical status may decline even when specified flow condi-
tions are met. For example, in a stream mesocosm study,
increased secondary-treated wastewater discharge volumes
and corresponding altered concentrations of ammonium,
dissolved oxygen, chloride, soluble phosphate, and sulfate
negatively impacted the composition and diversity of the
resident aquatic invertebrate community (Grantham et al.,
2012). Given the interrelated nature of biogeochemical and
aquatic chemistry processes (Nimick et al., 2011), it can be
difficult to predict how stream ecosystems will react to chan-
ges in contaminant loading from the addition of reused water.
Water quality design parameters for streamflow augmenta-
tion programs and appropriate treatment technologies for
enhancing in-stream biological integrity are necessarily site
specific such that water quality guidelines will be difficult to
apply broadly. To better assess stream renewal using recycled
water, additional comparative mesocosm experiments are
needed to evaluate changes in biotic integrity with recycled
water that undergoes tertiary processes such as biological
nutrient removal and alternative disinfection strategies.

From an operations perspective, project managers must
avoid exceeding predetermined concentration limits, or
maintain water quality above minimum thresholds for key
parameters (such as those shown in Table 4). In some cases,
the discharge volumes may be reduced to achieve levels
within an acceptable range based on known natural
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conditions and biota requirements. Water quality require-
ments for existing augmentation projects, such as those
specified in national pollutant discharge elimination system
(NPDES) permits, provide the context for the current level of
regulatory guidance aimed at minimizing harm associated

with wastewater discharge (e.g., see Calera Creek case study
below), but are insufficient for the design of projects aimed at
stream renewal. For example, current regulations for con-
taminants are limited to addressing known priority contam-
inants with high ecotoxicological and human health risks.

Table 3. Examples of Aquatic and Semiaquatic Taxa That Could Benefit

from Managed Streamflow Augmentation Based on Their Biological Traits

Biological trait category Favored trait Reason References

Benthic macroinvertebrates
Body size Large body size Large taxa will benefit from

increased aquatic habitat
Bêche et al., 2006; Townsend

and Thompson, 2007; Feio
and Dolédec, 2012

Functional feeding
group

Filter-feeders Filter feeders will benefit from
greater suspension of organic
matter

Spooner and Vaughn, 2008;
Paillex and Dolédec, 2009;
Feio and Dolédec, 2012

Body shape Streamlined body shape Thin-bodied taxa are morphologi-
cally adapted to faster-moving
water

Bêche and Resh, 2007; Statzner
and Bêche, 2010; Feio and
Dolédec, 2012

Locomotion Greater swimming
abilities

Strong swimmers would benefit
from increased water availability

Poff et al., 2006; Tullos et al., 2009;
Rice et al., 2010

Fish
Body size Large body size Large taxa will benefit from

increased aquatic habitat
Poff and Allan, 1995; Mims et al.,

2010; Olden and Kennard, 2010
Body shape Streamlined body shape Thin-bodied taxa are morphologi-

cally adapted to faster-moving
water

Craven et al., 2010; Haas et al.,
2010; Schaefer et al., 2011

Locomotion Greater swimming
abilities

Strong swimmers would benefit
from increased water availability

Craven et al., 2010; Olden and
Kennard, 2010; Rice et al., 2010

Amphibians and reptiles
Body size Large body size Large taxa will benefit from

increased aquatic habitat
Indermauer et al., 2010; Johans-

son et al., 2010; Winne et al.,
2010

Locomotion Greater swimming
abilities

Strong swimmers would benefit
from increased water availability

Johansson et al., 2010; Kupferberg
et al., 2011

Adult longevity Short-lived adult life
spans

Less stress on juvenile recruitment
because of continuous water
availability

Gibbons et al., 2006; Bateman
et al., 2008

Algae
Light requirements Lower light

requirements
Deeper water will have less

sunlight penetration
Schiller et al., 2007; Poulı́�cková

et al., 2008; Centis et al., 2010;
Tornés and Sabater, 2010

Substrate preference Suspended in the water
column

Increased availability of habitat
in the water column

Murdock et al., 2004; Suren and
Riis, 2010

Development rate Fast development Algal taxa develop faster in moving
water as a result of constant
disturbance

Reynolds, 1994; Culp et al., 2010

Zooplankton
Body size Large body size Large taxa will benefit from

increased aquatic habitat
Barnett et al., 2007; Hart and

Bychek, 2010
Functional feeding

group
Filter-feeders Filter feeders will benefit from

greater suspension of organic
matter

Barnett et al., 2007

Riparian vegetation
Tissue flexibility Flexible tissues Taxa with flexible tissues could

better withstand stress
from high flows

Bornette et al., 2008; Merritt et al.,
2010; Bornette and Puijalon,
2011

Vascular system Arenchymous tissue Taxa with arenchymous tissue
can better transport oxygen
when submerged

Blom and Voesenek, 1996;
Merritt et al., 2010

Water demand High water demands Taxa with high water demands
will increase with increased
water availability

Merritt et al., 2010; Stromberg
et al., 2010
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Table 4. Important Water Quality Parameters and Typical Limitations for Recycled Water

Used in Streamflow Augmentation

Parameter Remarksa
Typical recommended

rangea

Calera Creek treatment
plant limitationsb

for recycled water

Example tertiary treatment
options for recycled water

use in streamflow
augmentationa,c

Chlorine
residual

Disinfectant for water treat-
ment, but exhibits toxicity
in many fish species.

Total Cl2 < 0.1 mg/L
(dechlorinated)

UV disinfection
appliedd

Dechlorination (residual
remains); UV disinfec-
tion as an alternative

TDS Measure of salinity. May be
toxic to aquatic species.
Compliance may be diffi-
cult due to high TDS in
source water.

Subject to NPDES
compliance

Regulated as an inland
freshwater stream
by the Basin Plan

Electrodialysis; distillation;
ion exchange; nanofiltra-
tion; reverse osmosis

TSS Conventional water quality
indicator.

< 20 mg/L avg. annual < 10 mg/L (10 NTU
turbidity instanta-
neous max.)

Chemical coagulation/
filtration; membrane
bioreactor; advanced
oxidation processes

DO Requirements should be
based on the most sensi-
tive species.

DO ‡ 5 mg/L DO ‡ 7.0 mg/L in
receiving waters

Discharge methods that
introduce turbulence as
well as modification of
flow and stream mor-
phology can enhance
aeration.

Organic matter Degradation of organic
matter, as measured by
BOD, can deplete DO.

BOD < 20 mg/L BOD5 < 10 mg/L (5-day
BOD at 20�C)

Carbon adsorption; unit-
process wetlands; soil
aquifer treatment

Nutrients May cause eutrophication
leading to nuisance algal
growth and oxygen
depletion. Unionized
ammonia is toxic to
aquatic life.

Total nitrogen < 3 mg/L
Ammonia < 2 mg

NH3-N/L
Total phosphorous

< 1 mg/L

Ammonia-nitrogen:
< 2 mg NH3-N/L,
dry season; < 5 mg
NH3-N/L, wet season

Basin Plan requires
unionized ammonia:
< 0.025 mg NH3-N/L
in receiving waters

Selective ion exchange;
overland flow; biological
nutrient removal; chemi-
cal precipitation; unit-
process wetlands

Temperature Important for sensitive
fish species.

– 2.8�C ( – 5�F) of
ambient stream
water temperature

Regulated in CA
Thermal Plane

Riparian vegetation can
shade stream to lower the
water temperature; sub-
surface cooling in pipeline
or via infiltration (indirect
discharge) to stream.

Inorganic and
organic trace
constituents

Metals and other priority
pollutants are regulated
by Clean Water Act pro-
visions (e.g., NPDES per-
mits).f The ecotoxicity of
many unregulated trace
organic chemicals remains
uncertain.

Varies 0.017 lg/L Hg
6.0 lg/L Bis(2-ethyl-

hexyl)phthalate
3.2 lg/L Pb
4.5 lg/L CN
10 lg/L Cu

Advanced oxidation pro-
cesses; ozonation; carbon
adsorption; chemical
precipitation; nanofiltra-
tion and reverse osmosis;
unit-process wetlands

Pathogens Bacterial indicators (total
and fecal coliform) typi-
cally regulated for recrea-
tional waters. May be
present in the surface
waters due to wildlife.

23 coliform MPN/
100 mL (avg.)

240 coliform MPN/
100 mL (max.)

< 200 MPN/100 mL
5-sample geometric
mean

Chlorine; UV disinfection;
membrane filtration

aAdapted from Asano et al. (2007).
bAverage monthly value, unless specified. Effluent or receiving water limitations from the California Regional Water Quality Control

Board, San Francisco, Bay Region, Order No. R2-2006-0067, NPDES permit No. CA0038776.
cAdapted from USEPA (2004).
dChlorine residual prohibited by the U.S. Fish & Wildlife for restored Calera Creek Wetlands.
eWater Quality Control Plan for Control of Temperature in the Coastal and Interstate Water and Enclosed Bays and Estuaries of California

(SWRCB, 1975).
fExample compounds shown for Calera Creek: water quality criteria and water quality objectives for priority pollutants in the receiving

waters are based on the Water Quality Control Plan for the San Francisco Bay Basin (Basin Plan), the California Toxics Rule, and the National
Toxics Rule.

BOD, biological oxygen demand; DO, dissolved oxygen; NPDES, National Pollutant Discharge Elimination System; TDS, total dissolved
solids; TSS, total suspended solids; UV, ultraviolet.
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Further research is required to assess the unknown risks
of other potentially toxic wastewater-derived pollutants
(Daughton and Ternes, 1999) to develop guidelines for
recycled water use in stream renewal (Anderson et al., 2012).
Development of enhanced stream augmentation project de-
sign criteria that are based on coupled stream system flow–
quality interactions would be valuable.

Technology options for tertiary or advanced treatment in a
wastewater reclamation treatment process depend on the
form of reuse and the locally identified priority contaminants
(USEPA, 2004). For streamflow augmentation, some pro-
cesses such as nitrification for ammonia removal will be es-
pecially important, whereas others may be avoided, as was
chlorine disinfection in the case of Calera Creek. If the re-
cycled water quality is anticipated to be inadequate based on
initial water quality analysis, additional treatment may be
considered either at the main treatment facility (i.e., centralized
treatment) or near the stream release site (i.e., decentralized
treatment), although advanced treatment technologies are not
necessarily required for streamflow augmentation projects.
Additionally, facilities developing recycled water programs
for other purposes can incorporate ecological enhancement
into facility master planning such that treatment processes
adopted for planned uses also allow ecosystem renewal as an
additional option (e.g., leading to selection of ultraviolet [UV]
disinfection instead of chlorination).

Three common issues and their treatment options are dis-
cussed in more detail below: temperature, nutrients, and trace
metals and organic contaminants. With respect to water
chemistry, these factors are consistently associated with urban
stream degradation (Walsh et al., 2005; Brooks et al., 2006) and
are key potential hindrances to the reuse of water for
streamflow augmentation.

Temperature. The ecological significance of water tem-
perature is widely recognized (Magnuson et al., 1979; Poole
and Berman, 2001; Caissie, 2006). The daily cycle of stream
water temperature is modulated by natural processes, in-
cluding incident solar radiation, atmospheric heat exchange,
and hyporheic zone processes (Nilsson and Renofalt, 2008).
Temperature cycles influence streambed hydraulic con-
ductivity and stream–groundwater exchange, chemical mass-
transfer and transformation rates, metabolic processes,
productivity of stream biota, and suitability of habitat for
aquatic life (Nimick et al., 2011).

Due to domestic warm water additions, wastewater ef-
fluent is usually higher in temperature than that of the water
supply or receiving stream (Kinouchi et al., 2007). Most
aquatic organisms exhibit tolerance to a specific temperature
range (Coutant, 1977), and the thermal tolerance of fish is
typically used to develop criteria and set water quality
standards (Welch and Lindell, 1992). High water tempera-
tures in receiving streams decreases dissolved oxygen solu-
bility, creating adverse habitat conditions for cold-water
fisheries, and can lead to an increase in the presence of warm-
water predators (Caissie, 2006; Spellman, 2011). Similar to
environmental flows that attempt to mimic natural flow re-
gimes (Acreman and Dunbar, 2004; Arthington et al., 2006),
recycled water temperature should be managed to maintain
the riverine thermal regime (which naturally vary within a
range) based on species present in the system or that are an-
ticipated to return.

Advanced or tertiary-treated recycled water can have as
much as a 20�C temperature variation between winter and
summer (Abdel-Jawad et al., 1999), so temperature may re-
quire engineered controls to achieve final stream tempera-
tures within an established range, depending on the
ecosystem requirements and designated uses. The cost asso-
ciated with controlling temperature for restoration could be
significant, influencing decisions about whether to restore
native species or consider habitat creation for species tolerant
to a greater thermal range. Recycled water or in-stream tem-
peratures may be actively modulated by the use of heat ex-
changers (Shah et al., 2000) and flow volume control (Plumlee
et al., 2012) or passively through heat loss in constructed
wetlands (Steinmann et al., 2003), shading in forested riparian
zones (Osborne and Kovacic, 1993; Sinokrot and Stefan, 1993),
and indirect discharge into the stream via the subsurface
(Crites et al., 2000; Lancaster et al., 2005; Dallesport, 2007;
Stewart, 2010). For example, a coupled wetland–indirect dis-
charge system under consideration for temperature mitiga-
tion of treated wastewater discharged to the Willamette River
(Oregon, USA) is predicted to reduce the discharge temper-
ature by up to 5�C in the constructed wetland, followed by up
to 2�C in the subsurface, allowing the discharger to meet
regulatory temperature limits (Corvallis, 2011).

Nutrients. Pollution of surface waters by nitrogen (as NH3,
NH4

+ , NO3
- , and NO2

- ), phosphorous in its soluble and
particulate forms (Vitousek et al., 1997; Carpenter et al., 1998;
Correll, 1998), and other nutrients in wastewater has had
widespread ecological impacts. Excess nutrients in effluent-
dominated ecosystems alter ecosystem dynamics (e.g., lowered
primary-to-bacterial production ratios) and are a common
cause of eutrophication (Vitousek et al., 1997; Carey and Mi-
gliaccio, 2009; Waiser et al., 2011b). Nitrogen as ammonia
(NH3) is particularly toxic to aquatic life (Passell et al., 2007).
Temperature- and pH-dependent regulation of ammonia is
established by the National Ambient Water Quality Criteria,
which accounts for greater sensitivity of freshwater mussels
and fish early-life stages (USEPA, 2009), and state or regional
authorities may establish stricter criteria. For example, the San
Francisco Regional Water Quality Control Plan (Basin Plan)
requires nonionized ammonia (NH3) in receiving surface wa-
ters to remain < 0.025 mg NH3-N/L (RWQCB, 2010).

Conventional secondary biological treatment processes do
not remove total nitrogen (TN) or total phosphorus (TP) to a
significant degree. However, more than 40 alternative bio-
logical and chemical technologies for nitrogen and phospho-
rus removal in municipal wastewater treatment are available,
with annual average concentrations of £ 0.1 mg/L for TP
and £ 3 mg/L for TN reliably achievable. Due to technological,
regulatory, and cost considerations, biological nitrification–
denitrification processes are generally preferred over physical–
chemical nitrogen removal such as air stripping or ion
exchange (USEPA, 2008). Nitrification for ammonia removal
can improve the water quality of the effluent before in-stream
application and lower nitrogenous oxygen demand (Asano
et al., 2007). Installation of nitrification/denitrification systems
is increasingly common because of the adverse impacts of
nitrogen (Schmidt et al., 2003; Pehlivanoglu and Sedlak, 2004;
USEPA, 2008).

Vegetated buffer strips employed in riparian zones and
wetlands can lower nitrate concentrations from nitrified
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effluent as well as nonpoint sources as a secondary method to
source control (Barling and Moore, 1994; Vought et al., 1994;
Vymazal, 2007). Use of constructed wetlands for ammonia
removal has increased, for example, with reliable treatment
demonstrated for an array of wastewater sources and volumes
in diverse climates (Vymazal, 2007). Reconstructed stream
features (e.g., gravel bars and re-meandered stream channels)
have also been shown to significantly lower nitrate concen-
trations in the hyporheic zone (Kasahara and Hill, 2007), al-
though hyporheic zone flow is often negligible compared to
total stream flow. Additional research on methods to increase
flow through the hyporheic zone may prove to be fruitful.
Attenuation of nutrients may also be achieved via soil aquifer
treatment in indirect augmentation (Debroux et al., 2012).

Trace metals and organic contaminants. Risk assess-
ments of trace metals are complicated in that some metals are
essential nutrients for organisms at low levels while toxic at
higher concentrations (Reiley, 2007). Further, metal speciation
and complexation with other organic or inorganic ligands
have long been recognized to affect compound bioavailability
(Tessier and Turner, 1995). Monitoring and control of trace
metals in streams augmented with recycled water will likely
be dictated by regulatory authorities, and are particularly
influenced by site-specific stream conditions (Brooks et al.,
2006). Recently, the Biotic Ligand Model (BLM) has been used
to incorporate receiving water body characteristics, such as
the presence of competing cations and expected metal speci-
ation, in developing site-specific water quality criteria, and
predicting metal bioavailability (Reiley, 2007). The BLM was
used, for example, in updating nonregulatory aquatic life-
ambient freshwater quality criterion recommendations for
copper (USEPA, 2007). Further research is required to expand
the BLM to other metals and to evaluate chronic exposure
toxicity (Reiley, 2007; USEPA, 2007).

While regulatory measures limit the allowable concentra-
tions of trace metals and some priority organic contaminants
in wastewater (including recycled water) that is discharged to
surface waters, other unregulated compounds (e.g., trace or-
ganic chemicals [TrOCs]) may also pose risks to aquatic life
(Kolpin et al., 2002; Barber et al., 2006; Brooks et al., 2006; Wang
et al., 2007; Waiser et al., 2011a). Dickenson et al. (2011) provi-
des several examples of urban streams that contain concerning
levels of TrOCs. Notably, estrogenic effects detected in fish
exposed to WWTP effluent were linked to natural and syn-
thetic hormones, including 17b-estradiol, 17a-ethynylestra-
diol, and estrone in effluent-dominated waters (Purdom et al.,
1994; Desbrow et al., 1998). Gonadal intersex, impaired ovarian
and testicular histopathology, and other deleterious effects on
fish downstream of a WWTP in Boulder Creek, CO, were at-
tributed to estrogenic wastewater compounds (Vajda et al.,
2008). Many TrOCs remain untested for their potential eco-
toxicological effects, although modeling techniques will be
useful to predict wildlife exposure at a river catchment scale
without time-intensive field approaches (Sumpter et al., 2006).

Attempts to narrow the suite of compounds that should be
monitored, and possibly treated, in recycled water down to a
range of representative, or indicator, compounds or treatment
performance surrogates [such as those reported by Drewes
et al. (2008)] would be valuable for the management of water
reuse for streamflow augmentation. The presence or absence of
a narrow, but diverse, suite of indicators may be used to infer

the occurrence of other unknown TrOCs. Additionally, envi-
ronmental risk assessments that characterize TrOC hazards,
exposure, and effects can be used to identify specific com-
pounds for potential monitoring and management (Knacker
et al., 2004). In adopting an approach for TrOC management in
recycled water stream augmentation, project managers must
identify water quality criteria that will drive decisions re-
garding an appropriate level of treatment for targeted waste-
water-derived organic compounds. However, early adopters
of stream renewal will likely encounter unanticipated chal-
lenges regarding water quality, and further research is needed
to identify which unregulated contaminants merit additional
monitoring and potential mitigatory action. Responding to
such uncertainties regarding the risk of unregulated TrOCs, in
this case perfluoro-octane sulfonate detected in the source-
recycled water, a California utility cancelled its research
demonstration streamflow augmentation project in Coyote
Creek (Plumlee et al., 2008, 2012). A planned recycled water
streamflow augmentation project for the Hillsborough River in
Tampa, FL, was similarly cancelled in part due to uncertainty
regarding TrOCs (Latino and Haggerty, 2007).

Detection of many TrOCs in effluent-dominated rivers is
dependent on the degree of treatment employed (Ramirez
et al., 2009). Some conventional technologies may have cobe-
nefits for removal of TrOCs, including pharmaceuticals and
personal care products (POSEIDON, 2004), though the effec-
tiveness of many municipal wastewater treatment technolo-
gies for the removal of wastewater-derived TrOCs remains
largely unknown. Tertiary or advanced treatment process
schemes may be selected for removal of TrOCs depending on
the chemical of interest. For example, endocrine-disrupting
compounds such as steroid-derivative estrogens are of con-
cern with respect to the ecotoxicological risk. Some endocrine-
disrupting compounds may be removed in part via biological
degradation (in membrane bioreactors or sequencing batch
reactors [SBR]), advanced oxidation processes, membranes,
sorption to activated carbon, or electrochemical methods
(Basile et al., 2011).

TrOCs may also undergo natural attenuation in effluent-
dominated wetlands and rivers due to a combination of
photolysis, microbial degradation, and sorption (Gross et al.,
2004; Gurr and Reinhard, 2006; Fono et al., 2006; Conkle et al.,
2008; Pal et al., 2010), although these processes are generally
slower and less effective than natural or engineered subsur-
face systems (e.g., soil aquifer treatment) (Drewes et al., 2008).
When considering TrOC removal, processes that lead to de-
struction of the target compounds are preferable to technol-
ogies that transform the constituent (e.g., chlorination), which
may produce more toxic compounds, or that transfer them,
which leads to disposal challenges (e.g., reverse osmosis).

Ecosystem services

While potential ecological benefits are a major driver for
enhancement of freshwater ecosystems, consideration of
economic benefits is highly important in a watershed man-
agement context. Economic benefits provide justification for
public agencies to allocate limited financial resources toward
environmental stewardship. Quantification of how much the
public is willing to pay for ecosystem enhancement, which
has not been typically expressed in monetary terms in the
past, can help water resource managers identify both the
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magnitude and distribution of benefits of these projects to
the public.

Ecosystems provide society with services that have value.
Although ecosystem services can be defined in different ways
[compare those reported by Boyd and Banzhaf (2007), Cost-
anza et al. (1997), Daily (1997), and Fisher et al. (2009), for ex-
ample], the widely utilized Millennium Ecosystem Assessment
definition is adopted for use in this review, referring to eco-
system services as the benefits humans obtain from ecosystems,
including the categories of provisioning, regulation, cultural,
and supporting services (Millennium Ecosystem Assessment,
2005). These services include all processes that are necessary to
sustain human life on a large scale (e.g., nutrient cycling, soil
stabilization, and climate regulation) and those that affect hu-
mans more directly (e.g., water purification by forested wa-
tersheds and flood damage mitigation by coastal wetlands)
(Brauman et al., 2007). In particular, humans derive a number of
benefits from water-related ecosystem services (Fisher et al.,
2009). Increasing stream flow in a river or improving water
quality in a lake can result in improved recreational opportu-
nities—including hiking, fishing, bird watching, and white-
water rafting—as well as improved natural aesthetics and
habitat for threatened or endangered species (Table 5).

While the benefits derived from increasing stream flow or
improving lake water quality may be easy to observe (e.g., as
an increase in the number of visitors to a lake or stream or in
the diversity and abundance of wildlife observed at a lake or
stream), it is more difficult to assign these benefits a dollar
value for a benefit–cost analysis. However, economists have
developed nonmarket valuation techniques to assign dollar
values to goods and services that cannot be traded in a typical
market (Wilson and Carpenter, 1999). The most popular
techniques used for water-related ecosystem services include
the contingent valuation method (Loomis, 1987; Loomis,
1998), the hedonic price index method (Bark-Hodgins and
Colby, 2006), and the travel cost method (Duffield et al., 1992;
Loomis and Creel, 1992; Weber and Berrens, 2006). The con-
tingent valuation method involves conducting a survey to
assess how much individuals are willing to pay for a hypo-
thetical environmental improvement. The hedonic price
method relies on using a market commodity, such as real-
estate prices, as a surrogate for environmental quality. Lastly,
the travel cost method uses the cost of travel as an approxi-
mation for the value of an environmental amenity.

Potential benefits of water reuse for ecosystems. Environ-
mental flows require allocation of water to streams with an
appropriate magnitude, frequency, duration, timing, and rate
of change. These flow regimes can include managed flood
releases to reproduce benefits of floodplains such as nutrient
cycling and off-channel habitat. Historically, in-stream flow
provisions based on minimum-flow requirements (e.g., 10% of
the mean annual flow) were often used instead of more eco-
logically based environmental-flow provisions. However, the
use of minimum-flow regimes is not typically economically
efficient. In many cases, the marginal value of environmental
flows in excess of the minimum-flow requirement (or the
opportunity cost of reduced flows) far exceeds marginal
economic benefits of competing uses of the water, such as for
agriculture (Katz, 2006). Economic valuations of environ-
mental flows have led to major policy changes, such as the
provision of increased flows to Mono Lake in California and

the re-regulation of Glen Canyon Dam in Arizona (Loomis,
1998). However, this type of analysis for the use of recycled
water for environmental flows has not been thoroughly
explored.

Recycled water is a market good, although with typically
lower market value than pristine river water, which is com-
monly used for a variety of applications, including landscape
irrigation, agriculture, groundwater recharge, other non-
potable uses, and indirect potable reuse. The use of recycled
water for streamflow augmentation may generate value for
society that far exceeds value from either competing uses (e.g.,
agricultural irrigation) or, in some cases, complete lack of use
(e.g., via discharge directly to the ocean). However, the ben-
efits of environmental flows are often distributed broadly
(e.g., to the public), whereas benefits of consumptive uses are
more concentrated (e.g., by private interests or local water
agencies). Distributed financing mechanisms may be feasible
to address this challenge. For example, the local population in
the Segura River Basin in southeastern Spain was willing to
almost double the wastewater treatment charge of their water
utility bill to maintain sufficient stream flow in the Segura
River, a component of achieving good ecological status under
the European Water Framework Directive (Alcon et al., 2012).
While the Segura River Basin study provides a good example
of the economic value of using recycled water for ecosystem
renewal, there is a need for additional studies demonstrating
the value of water reuse for ecosystems in other management
contexts and environmental conditions.

Services provided by streamflow augmentation. Ecosystem
valuation case studies of different projects illustrate the po-
tential for increased streamflow to provide value under a
variety of circumstances (Table 5). A number of valuable
freshwater ecosystem end services can be created or renewed
by augmenting streamflow, including creation of habitat,
provision of recreational opportunities, increased water in-
filtration to aquifers, improved water quality, and enhanced
biodiversity. Quantification of such values suggests potential
mechanisms for financing water supply contracts or recycled
water infrastructure to access new water sources. For exam-
ple, based on hedonic-pricing indices, reduction of ground-
water withdrawals and investment in riparian habitat
restoration would significantly increase property values near
riparian corridors in the Sonoran Desert of Arizona, and thus
increase property tax revenue (Bark-Hodgins and Colby,
2006). The economic benefits of increased streamflow for rec-
reational opportunities are especially pronounced (Table 5).
Angling and whitewater-rafting activity were found to esca-
late as a result of increased dam releases (Duffield et al., 1992;
Loomis and Creel, 1992), and unimpaired flows in a pristine
environment were valued at a premium because of aesthetic
enhancement (Weber and Berrens, 2006). Aesthetics and rec-
reational value, quantified using contingent valuation, com-
prised a significant fraction of benefits ($560–$1100 per foot)
conferred by urban stream restoration in Baltimore, MD
(Kenney et al., 2012). The preservation of Mono Lake in Cali-
fornia’s Sierra Nevada Mountains was considered valuable
enough for the city of Los Angeles to seek an alternate source
of water (Loomis, 1987).

Despite their value proposition, ecosystem services pro-
vided by augmenting streamflow with recycled water are
often left unquantified. The San Antonio River, whose flow
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augmentation using recycled water began in 2000 after a se-
vere water quality decline in regional streams and litigation to
maintain flows for endangered species protection, provides a
picturesque setting for a vibrant commercial area in down-
town San Antonio known as the Riverwalk (Eckhardt, 2004).
Yet, no studies have comprehensively evaluated ecosystem
services provided by this effluent-dominated system. Simi-
larly, the Las Vegas Wash in Nevada, comprising a 12-
mile-long effluent-dominated stream and associated wetlands
flowing from Las Vegas to Lake Mead, sustains numerous
ecosystem services. Despite major historical changes in eco-
system dynamics, the system provides a riparian habitat for
migratory birds and other wildlife, wastewater treatment
capacity through natural processes, and recreational oppor-
tunities for residents (Stave, 2001; Adhikari et al., 2011).
Quantification of such positive externalities can be an im-
portant tool for incentivizing the maintenance and enhance-
ment of ecosystems threatened by human development and
for examining the economic, social, and environmental tra-
deoffs of recycled water application for stream renewal.

Case Study

Urban stream renewal in Calera Creek
(City of Pacifica, CA)

Project setting. The City of Pacifica’s Calera Creek Water
Recycling Plant is located just south of San Francisco, CA, and
serves a population of 39,000 people. The tertiary treatment

plant handles an average daily dry weather flow of 4.0 MGD
and releases all of this effluent through a constructed wetland
into Calera Creek, which then runs a length of about one-half
mile (*900 m) before reaching the Pacific Ocean (Fig. 2). The
City of Pacifica selected the current location for its treatment
plant in 1995, responding to increased capacity needs for
wastewater treatment that could not be met by the former
treatment facility (Pacifica, 1997). Replacement of the treat-
ment plant was accompanied by restoration of *9 acres (4 ha)
of wetlands (below the mean high water level) in a former
rock quarry and *20 acres (8 ha) of additional stream bank
and upland buffer areas (RWQCB, 2006; S. Holmes, personal
communication, January 4, 2012). Recycled water releases for
ecosystem benefits began in 2002 under an allowance for a
shallow-water discharge from the local regulatory authority
that eliminated the use of an offshore outfall. The project re-
sulted in a return of the lower stream channel of Calera Creek,
which was formerly channelized and diverted from its his-
torical course, to its natural path. This relatively small-scale
water reuse project exemplifies a multiuse stream improve-
ment project that provides various forms of both environ-
mental and social benefits.

Project planning and design. In initial project planning,
navigating the regulatory framework for stream enhancement
using recycled water presented a challenge, because the cre-
ation of an inland outfall was a new concept for a coastal
treatment facility (S. Holmes, personal communication,

FIG. 2. The restored Calera
Creek meets the Pacific Ocean
(bottom) after streamflow
mixes with tertiary-treated
effluent from the Calera
Creek Water Recycling Plant
(top).
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January 4, 2012). The tertiary effluent was required to meet
Title 22 standards (CDPH, 2010) for an unrestricted use at the
point of discharge into Calera Creek, such that polishing
treatment from the wetland and creek could not be used to
meet the treatment requirement. Nevertheless, improving
water quality by increasing the residence time of water
within the wetland ecosystem was an initial project objective
(Pacifica, 2007), and local geology dictated placement of the
constructed wetland (S. Holmes, personal communication,
January 4, 2012). Project planning also involved navigating
permitting requirements from four agencies that have juris-
diction over the waters and wetlands impacted by the project:
the San Francisco Bay Region California Regional Water
Quality Control Board (Regional Board), the U.S. Army Corps
of Engineers, the California Department of Fish and Game,
and the California Coastal Commission (Pacifica, 2010).

Using a hydrogeomorphic method, comparable streams
and their riverine wetlands along the California coast were
sampled to provide a reference framework for developing
design criteria for the functions of the restored Calera Creek
wetland in terms of hydrology, biogeochemistry, plant com-
munity, and habitat (Pacifica, 1997). The planners of the res-
toration sought to create a relatively natural flow regime that
would accommodate additional discharge from the water
recycling facility while establishing a compositionally and
structurally complex ecosystem (Pacifica, 2007). Un-
fortunately, historical hydrographs were unavailable for this
stream, and thus the natural flow regime can only be ap-
proximated through inference. A detailed monitoring plan
included yearly characterization of stream biological and
physical habitat, vegetation density, and water quality over a
5-year period after implementation (Pacifica, 1996).

Water quality and treatment. The treatment facility com-
prises screens at two pump stations, grit removal, SBR for pri-
mary and secondary treatment and nutrient removal, sand
filters, and UV disinfection (RWQCB, 2006). A cascade outfall
aerates the effluent as it enters the wetland. Several numeric
water quality NPDES permit limits are summarized in Table 4.
SBR was the preferred treatment technology to produce high-
quality effluent and accomplish nutrient removal with a
mechanically simple process in a minimum number of steps
(Pacifica, 1997). Forested wetlands were also selected for shad-
ing to minimize growth of filamentous algae in the stream from
high nutrient loads. Despite large energy use, production of
tertiary-treated recycled water with UV disinfection eliminates
risks associated with chlorine residual and the formation of ha-
logenated disinfection byproducts (RWQCB, 2006; S. Holmes,
personal communication, January 4, 2012). Incomplete dechlo-
rination as well as refractory inorganic and organic chloramine
byproducts formed during chlorination can pose threats to
aquatic life ( Jameel and Helz, 1999; Bedner et al., 2004). Further,
concern regarding safety in transportation and storage of chlo-
rine gas as well as sulfur dioxide, which is commonly used for
dechlorination, was expressed during project planning (Pacifi-
ca, 1990). UV disinfection can be comparable to chlorination/
dechlorination in new facilities both in terms of costs and ef-
fectiveness (Blatchley et al., 1996; Wojtenko et al., 2001).

Ecological performance. Although Calera Creek was
converted from a nonperennial to a perennial stream and is
now effluent dominated in the summer months, the highly

degraded stream conditions that existed before the restoration
presented an opportunity to recreate a lost habitat for both the
endangered San Francisco Garter Snake (Thamnophis sirtalis
tetrataenia) and the threatened California red-legged frog
(Rana arora draytonii). The red-legged frog population has in-
creased dramatically from several adult and juvenile indi-
viduals recorded in the year 2000 at baseline conditions
(Pacifica, 2000) to high population levels documented in the
year 2009 (e.g., > 40 individuals recorded in a single survey of
the ponds onsite) (Pacifica, 2010). Plants have also benefited
from the use of recycled water. Dense growth of native ri-
parian trees and shrubs, such as willows (Salix sp.) and
horsetails (Equisetum arvense), is occurring along the stream.
The rapid growth of native plants helps control invasion of
non-native plants adjacent to the stream to some extent, al-
though weed control has been a challenge (Pacifica, 2007),
particularly because of regulatory requirements that must be
met to ensure that no harm is done to the now-resident red-
legged frogs that are protected under the Endangered Species
Act. The San Francisco Garter Snake has not yet been ob-
served in this stream ecosystem (Pacifica, 2010), and no native
fish were documented in the stream. However, if a fish pop-
ulation does become established, particularly of an endan-
gered species, additional regulatory requirements could be
imposed at a much higher burden for plant operations and
maintenance. Additionally, benthic macroinvertebrate com-
munity analyses were not conducted to document and eval-
uate changes in Calera Creek after augmentation.

Ecosystem services. An inland outfall coupled with a
restored creek system avoided costly maintenance (ca. > $100
k/yr) and uncertain performance experienced with an ocean
outfall at the former facility. In fact, approval with the local
City Council was largely an economic decision based on the
tradeoffs between a new inland outfall and treatment facility
with nutrient removal and UV disinfection versus a replace-
ment offshore pipeline with expanded secondary treatment
capacity at the former facility (S. Holmes, personal commu-
nication, January 4, 2012). Selection of the appropriate level of
treatment for stream enhancement may increase treatment
facility costs relative to ocean disposal. However, in this case,
avoided maintenance costs with an outfall were recognized as
important savings. Invasive plant species (e.g., pampas grass)
control remains an ongoing cost for wetland maintenance. In
addition to serving as an outfall alternative, the newly created
wetlands provide a habitat for locally endangered and
threatened species. An actively used, paved walking/biking
path now runs alongside the creek and provides a significant
additional recreational value to the local community. Specific
beneficial uses of the inland stream, including preservation of
rare and endangered species, creation of freshwater and
wildlife habitat, and contact and noncontact water recreation
(RWQCB, 2006), were not explicitly considered in economic
terms for the project.

Discussion

Barriers to water reuse for ecosystems, research
needs, and envisioning success

The comprehensive review of literature and case studies
conducted suggests that recycled water use for ecosystem
renewal through streamflow augmentation remains a largely
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unexplored research topic, which could have widespread
applications in engineering, restoration, and aquatic ecology
practice. Barriers identified for the development of water re-
use for ecosystems programs give rise to several core short-
term and long-term research needs (Table 6), which span
across diverse disciplines, including aquatic ecology, hy-
drology, environmental engineering, environmental man-
agement and planning, social science, law, and water resource
economics.

The motivations for individual stream renewal projects,
whether moral, regulatory, or financial, will directly inform
the site-specific design criteria. Both the natural flow regime
and water quality should be used to guide decisions on
whether streamflow augmentation is appropriate for a par-
ticular site. In many cases, augmentation may not be appro-
priate or may be appropriate only during particular seasons.
Flexible designs that allow recycled water releases to be tai-
lored to natural variability will likely result in the greatest
ecosystem benefits. Distributed or satellite treatment plants
that process water in lower volumes may allow tailoring both
the water quantity and quality to the site (Latino and Hagg-
erty, 2007), and installation of such plants closer to the
headwaters where many streams are most water-stressed (in
contrast to traditional downstream wastewater discharge)
could provide greater benefits (Gengenbach et al., 2010).

The added energy and construction costs must be consid-
ered in planning such systems, but much progress is be-
ing made toward producing energy-positive treatment
plants at relatively low cost (Verstraete et al., 2009). Upstream
unit-process wetlands, or soil aquifer treatment during
indirect (subsurface) augmentation of streamflow, can also
provide decentralized tertiary treatment capacity with
lower energy investments [see Hoppe-Jones et al. (2010)
for example].

Although water reuse projects may be driven by regulatory
requirements for wastewater discharge [such as those re-
ported by Bischel et al. (2012)], regulatory constraints and lack
of incentives for wastewater treatment facilities to play a role
in stream restoration activities may also limit implementation
of streamflow augmentation using recycled water. For ex-
ample, it is easier to reach agreement on effluent quality for
discharge, and to measure chemicals in a pipe for an NPDES
permit, than to achieve consensus on how to plan, monitor,
and evaluate ecosystem status and restoration success. As
experienced at Calera Creek, the permitting process currently
used in California did not particularly lend itself to ecological
restoration with recycled water. Current discharge regula-
tions focus on preventing the harm associated with water
quality impacts rather than creating a positive ecological
impact, and there is currently no regulatory framework

Table 6. Barriers to Water Reuse for Ecosystem Renewal and Research Needs

Barrier Short-term research or logistical need Long-term research or logistical need

Few successful water-reuse stream
augmentation cases implemented
worldwide; little regulatory guidance

Select potential metrics for both
identifying project opportunities
and evaluating project success.
Identify new opportunities at re-
gional scales based on historical
stream hydrology, water quality
and ecosystem needs, and re-
cycled water availability.

Develop engineering practice guidelines
for urban stream renewal using recycled
water. Address habitat management
issues that may result from return of
endangered species. Assess stream re-
newal using recycled water as a miti-
gation alternative for changing
population and climactic conditions.

Available structural and functional
biological metrics not widely applied
to relevant scenarios

Develop and select biological indi-
ces that are responsive to manip-
ulations in water flow and quality
over varied time scales.

Apply metrics to evaluate success of
streamflow augmentation under a range
of environmental conditions.

Uncertainty regarding the impacts of
wastewater-derived TrOCs

Develop and utilize environmental
risk assessments to characterize
TrOC hazards, exposure, and ef-
fects to identify indicator com-
pounds for potential monitoring
and management.

Develop water quality guidelines specifi-
cally for implementing and permitting
recycled water-based stream enhance-
ment projects.

Lack of streamflow augmentation-
controlled environmental flow
experiments

Conduct proof-of concept demon-
stration studies to establish quan-
titative relationships between
benthic invertebrate indices and
modified flow regimes.

Conduct large-scale coupled flow-water
quality experiments to provide insight
into the treatment needs for stream
renewal projects and anticipated bio-
logical responses.

Motivations to implement new projects
lack economic component; ecosystem
services valuation not applied widely
at the scales of individual projects

Evaluate and apply appropriate
ecosystem valuation methods to
case studies of recycled water for
stream renewal.

Compare the public value of stream re-
newal as a recycled water portfolio
option with competing uses and incor-
porate analyses into recycled water
master planning.

Institutional impediments and uncer-
tainties regarding financial sustain-
ability

Explore cost recovery mechanisms
and water rights ownership and
transfer for streamflow augmen-
tation.

Establish key institutional partnerships
and update regulatory processes to
couple water-recycling production with
ecosystem renewal goals.

TrOCs, trace organic chemicals.
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or guideline for implementing and permitting recycled
water-based stream enhancement projects.

In addition to improving aquatic life habitat, stream res-
toration in urban environments may be implemented to meet
storm water total maximum daily load requirements under
the Clean Water Act and NPDES permits (Kenney et al., 2012),
insofar as restored streams are better able to assimilate con-
taminants loads such as nutrients. Such an approach could be
performed in conjunction with flow augmentation using re-
cycled water. This type of watershed-scale approach for storm
water pollutant reduction, which encourages enhancement of
waterways throughout the watershed over end-of-pipe
strategies, requires integrated regional management, greater
institutional capacity, consistent regulatory oversight, and
effective funding and market incentives (Roy et al., 2008).

Low-quality wastewater historically released into streams
either untreated or after only primary or secondary treatment
has had dramatic negative effects on many aquatic ecosys-
tems and has also been the cause of numerous public health
concerns (Cooper, 1991; Carey and Migliaccio, 2009; Gran-
tham et al., 2012). As a result, a negative public perception has
developed toward wastewater in many cases that are often
linked to concerns regarding the quality of the drinking water
supply (Robinson et al., 2005; Dolnicar and Schäfer, 2009;
Dolnicar et al., 2011). Although every case will be unique,
typically recycled water use for stream renewal should be at
least tertiary treated (e.g., filtration and nutrient removal) to
gain public support as well as to reduce risks associated with
exposure to pathogens, nitrogen, phosphorous, suspended
solids, organics, and metals. Water temperature should also
be managed to maintain levels at which the native fauna are
adapted, which will require some knowledge of historical
conditions, or to support known species of concern in the
system. Ecosystem valuation studies could provide incentive
for water utilities to initiate water reuse for ecosystem pro-
jects, because they would allow water and wastewater man-
agers to assess the value of the public benefits.

Recycled water that is used to renew streams will eventu-
ally re-enter the drinking water supply as it passes through
the water cycle, though the distance it travels through the
water cycle as well as the amount of natural filtration and
dilution that will occur are highly variable depending on the
particular system (Weiss and Reemtsa, 2008; Vizintin et al.,
2009; Musolff et al., 2010). Some freshwater systems will in-
evitably have higher natural filtration abilities than others,
and some streams will have higher potential to influence (or
contaminate) regional potable water sources than others, in-
cluding both groundwater aquifers and surface reservoirs
(Reinoso et al., 2008). Recycled water additions may actually
improve the quality of some potable water sources. An un-
derstanding of these complexities and risks is a high priority
for water professionals and requires significant investment in
region-specific hydrogeological studies. The precautionary
principle should continue to be applied with water infra-
structure projects when risks are very high or uncertain.

Water needs in the future will certainly evolve in ways that
are somewhat though not entirely foreseeable as a result of
changing population demographics, cultural attitudes and
behaviors, urban water infrastructure, and climate change
(Oki and Kanae 2006; Mackie et al., 2009). As populations
grow or contract and people become more conscious of their
environmental impacts, water conservation programs should

be used in conjunction with water reuse programs to renew
and regenerate ecosystems (Curry and Carson, 2008; Tom
et al., 2011). However, neither of these programs used alone
can rise to the challenge of addressing the increasing level of
water scarcity in urban areas. Such programs will require
incremental changes in human behavior and views, which
will take time and effort to achieve. Success will likely require
that water utilities, academic institutions, government agen-
cies, environmental nonprofit organizations, and other ad-
vocacy groups engage with one another to create institutional
partnerships to garner public support and to fund, design,
and implement water reuse for ecosystem benefit.

Advanced technologies, including higher levels of treat-
ment, energy capture from wastewater, desalination, and
sensors that continuously monitor effluent volume and
quality could be utilized as components of ecosystem renewal
projects and should be designed for applications in water
reuse for ecosystem enhancement. Water reuse could also be
used to mitigate the anticipated effects of climate change by
augmenting altered flow regimes and thereby reducing sea-
water intrusion. Although ecosystem renewal will require
management of hydrology and water quality, potential
benefits to the environment and society as a whole could be
significant.
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