Megan DeMarche

Megan DeMarche
University of Georgia | UGA · Department of Plant Biology

About

40
Publications
6,335
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
940
Citations
Introduction

Publications

Publications (40)
Article
Assessing whether phenological shifts in response to climate change confer a fitness advantage requires investigating the relationships among phenology, fitness, and environmental drivers of selection. Despite widely documented advancements in phenology with warming climate, we lack empirical estimates of how selection on phenology varies in respon...
Article
Full-text available
Abstract Danthonia californica Bolander (Poaceae)is a native perennial bunchgrass commonly used in the restoration of prairie ecosystems in the western United States. Plants of this species simultaneously produce both chasmogamous (potentially outcrossed) and cleistogamous (obligately self‐fertilized) seeds. Restoration practitioners almost exclusi...
Article
Divergent selection across the landscape can favor the evolution of local adaptation in populations experiencing contrasting conditions. Local adaptation is widely observed in a diversity of taxa, yet we have a surprisingly limited understanding of the mechanisms that give rise to it. For instance, few have experimentally confirmed the biotic and a...
Article
Premise: Phenological sensitivity, or the degree to which a species' phenology shifts in response to warming, is an important parameter for comparing and predicting species' responses to climate change. Phenological sensitivity is often measured using herbarium specimens or local studies in natural populations. These approaches differ widely in sp...
Article
Full-text available
Although many species shift their phenology with climate change, species vary significantly in the direction and magnitude of these responses (i.e., phenological sensitivity). Studies increasingly detect early phenology or high phenological sensitivity to climate in non-native species, which may favor non-native species over natives in warming clim...
Preprint
Danthonia californica is a native perennial bunchgrass commonly used in the restoration of prairie ecosystems in the western United States. Plants of this species simultaneously produce both chasmogamous (potentially outcrossed) and cleistogamous (obligately self-fertilized) seeds. Restoration practitioners almost exclusively use chasmogamous seeds...
Article
Although phenological shifts in response to climate are often assumed to benefit species’ performance and viability, phenology’s role in allowing population persistence and mediating species-level responses in the face of climate change remain unclear. Here, we develop a framework to understand when and why phenological shifts at three biological s...
Article
Full-text available
Demographic studies measure drivers of plant fecundity including seed production and survival, but few address both abiotic and biotic drivers of germination such as variation in climate among sites, population density, maternal plants, seed type and fungal pathogen abundance. We examined germination and microbial communities of seeds of Danthonia...
Article
Full-text available
With ongoing climate change, populations are expected to exhibit shifts in demographic performance that will alter where a species can persist. This presents unique challenges for managing plant populations and may require ongoing interventions, including in situ management or introduction into new locations. However, few studies have examined how...
Article
While we know climate change will impact individuals, populations, and communities, we lack a cross-scale synthesis for understanding global variation in climate change impacts and predicting their ecological effects. Studies of latitudinal variation in individuals’ thermal responses have developed primarily in isolation from studies of natural pop...
Article
Full-text available
Climate warming is predicted to shift species’ ranges as previously uninhabitable environments just beyond the leading range edges become suitable habitat and trailing range edges become increasingly unsuitable. Understanding which aspects of the environment and species traits mediate these range shifts is critical for understanding species’ possib...
Article
Full-text available
Structured demographic models are among the most common and useful tools in population biology. However, the introduction of integral projection models (IPMs) has caused a profound shift in the way many demographic models are conceptualized. Some researchers have argued that IPMs, by explicitly representing demographic processes as continuous funct...
Article
Full-text available
Ecological research increasingly considers integrative relationships among phenomena at broad spatial and temporal domains. However, such large‐scale inferences are commonly confounded by changing properties in the processes that govern phenomena (termed nonstationarity), which can violate assumptions underlying standard analytical methods. Changin...
Article
Full-text available
Spatial gradients in population growth, such as across latitudinal or elevational gradients, are often assumed to primarily be driven by variation in climate, and are frequently used to infer species’ responses to climate change. Here, we use a novel demographic, mixed‐model approach to dissect the contributions of climate variables vs. other latit...
Article
Full-text available
Predicting species' range shifts under future climate is a central goal of conservation ecology. Studying populations within and beyond multiple species' current ranges can help identify whether demographic responses to climate change exhibit directionality, indicative of range shifts, and whether responses are uniform across a suite of species. We...
Article
Full-text available
This article is a Commentary on Patsiou et al. (2020), 228: 525–540.
Article
Full-text available
The most common approach to predicting how species ranges and ecological functions will shift with climate change is to construct correlative species distribution models (SDMs). These models use a species’ climatic distribution to determine currently suitable areas for the species and project its potential distribution under future climate scenario...
Article
Full-text available
One of the strongest biological impacts of climate change has been the movement of species poleward and upward in elevation. Yet, what is not clear is the extent to which the spatial distribution of locally adapted lineages and ecologically important traits may also shift with continued climate change. Here, we take advantage of a transplant experi...
Article
Structured population models are among the most widely used tools in ecology and evolution. Integral projection models (IPMs) use continuous representations of how survival, reproduction and growth change as functions of state variables such as size, requiring fewer parameters to be estimated than projection matrix models (PPMs). Yet, almost all pu...
Article
Full-text available
Population‐wide outcomes such as abundance, reproductive output, or mean survival can be stabilized by non‐synchronous variation in the performance of individuals or subpopulations. Such “portfolio effects” have been increasingly documented at the scale of subpopulations and are thought to play an important role in generating stability of populatio...
Article
Full-text available
The persistence of small populations remains a puzzle for ecology and conservation. Especially interesting is how naturally small, isolated populations are able to persist in the face of multiple environmental forces that create fluctuating conditions and should, theory predicts, lead to high probabilities of extirpation. We used a combination of l...
Article
Full-text available
Changes in flowering phenology resulting from climate change could impact individual plant fitness and population viability. Flowering phenology can mediate plant reproductive success in several ways, including pollinator interactions, flowering synchrony with conspecifics, and timing of suitable abiotic conditions. We explored factors that control...
Article
Full-text available
Populations of many species are genetically adapted to local historical climate conditions. Yet most forecasts of species’ distributions under climate change have ignored local adaptation (LA), which may paint a false picture of how species will respond across their geographical ranges. We review recent studies that have incorporated intraspecific...
Article
Full-text available
Many predictions of how climate change will impact biodiversity have focused on range shifts using species-wide climate tolerances, an approach that ignores the demographic mechanisms that enable species to attain broad geographic distributions. But these mechanisms matter, as responses to climate change could fundamentally differ depending on the...
Article
The mechanisms that stabilize small populations in the face of environmental variation are crucial to their long-term persistence. Building from diversity-stability concepts in community ecology, within-population diversity is gaining attention as an important component of population stability. Genetic and microhabitat variation within populations...
Article
Fitness trade‐offs between environments are central to the evolution of biodiversity. Although transplant studies often document fitness trade‐offs consistent with local adaptation (LA), many have also found an advantage of foreign genotypes (foreign advantage (FA)). Understanding the mechanisms driving the magnitude and distribution of fitness var...
Article
Full-text available
• Ultraviolet (UV) floral patterns are common in angiosperms and mediate pollinator attraction, efficiency, and constancy. UV patterns may vary within species, yet are cryptic to human observers. Thus, few studies have explicitly described the distribution or ecological significance of intraspecific variation in UV floral patterning. Here, we descr...
Article
Full-text available
Abstract Persistence and adaptation in novel environments are limited by small population size, strong selection, and maladaptive gene flow. Mating system plasticity is common in angiosperms and may provide both demographic and genetic benefits that promote niche evolution, including reproductive assurance and isolation from maladaptive gene flow....
Article
Trade-offs are central to many topics in biology, from the evolution of life histories to ecological mechanisms of species coexistence. Trade-offs observed among species may reflect pervasive constraints on phenotypes that are achievable given biophysical and resource limitations. If so, then among-species trade-offs should be consistent with trade...
Article
Full-text available
Niche partitioning among close relatives may reflect trade-offs underlying species divergence and coexistence (e.g., between stress tolerance and competitive ability). We quantified the effects of habitat and congeneric species interactions on fitness for two closely related herbaceous plant species, Mimulus guttatus and Mimulus laciniatus, in thre...

Network

Cited By