Megan Cross

Megan Cross
Griffith University · Menzies Health Institue Queensland

PhD

About

24
Publications
4,669
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
188
Citations
Citations since 2017
16 Research Items
167 Citations
2017201820192020202120222023010203040
2017201820192020202120222023010203040
2017201820192020202120222023010203040
2017201820192020202120222023010203040
Additional affiliations
October 2013 - October 2015
Griffith University
Position
  • Research Assistant
January 2010 - February 2013
University of the Witwatersrand
Position
  • Honours-Master's Student

Publications

Publications (24)
Article
The trehalose biosynthesis pathway has recently received attention for therapeutic intervention combating infectious diseases caused by bacteria, helminths or fungi. Trehalose-6-phosphate phosphatase (TPP) is a key enzyme of the most common trehalose biosynthesis pathway and a particularly attractive target owing to the toxicity of accumulated treh...
Article
Full-text available
International governments’ COVID-19 responses must balance human and economic health. Beyond slowing viral transmission, strict lockdowns have severe economic consequences. This work investigated response stringency, quantified by the Oxford COVID-19 Government Response Tracker’s Stringency Index, and examined how restrictive interventions affected...
Article
Full-text available
Protein-based drug discovery strategies have the distinct advantage of providing insights into the molecular mechanisms of chemical effectors. Currently, there are no known trehalose-6-phosphate phosphatase (TPP) inhibitors that possess reasonable inhibition constants and chemical scaffolds amenable to convenient modification. In the present study,...
Article
Dipeptidyl peptidase-4 (DPP-4) is considered a major drug target for type 2 diabetes mellitus (T2DM). In addition to T2DM, a regulatory role of DPP-4 was also found in cardiovascular diseases. Existing DPP-4 inhibitors have been reported to have several adverse effects. In this study, a computer-aided drug design approach and its use to detect a no...
Article
Full-text available
Background Analyses of replicates in sets of discrete data, typically acquired in multi-well plate formats, is a recurring task in many contemporary areas in the Life Sciences. The availability of accessible cross-platform data analysis tools for such fundamental tasks in varied projects and environments is an important prerequisite to ensuring a r...
Article
Full-text available
The development of a high-performance liquid chromatography (HPLC)-based method, for guanosine monophosphate kinase activity assays, is presented. The method uses the intrinsic UV absorption (at 260 nm) of substrates and products of the enzymatic reaction (GMP, ATP, ADP and GDP) to unambiguously determine percent conversion of substrate into produc...
Article
The Java software jBar consists of a graphical user interface that allows the user to customize and assemble an included script for R. The scripted R pipeline calculates means and standard errors/deviations for replicates of numerical bivariate data and generates presentations in the form of bar graphs. A two‐sided Student's t test is carried out a...
Chapter
Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology - edited by Andreas Hofmann April 2018
Article
Cambridge Core - Molecular Biology, Biochemistry, and Structural Biology - Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology - edited by Andreas Hofmann
Article
The opportunistic bacterium Pseudomonas aeruginosa has been recognized as an important pathogen of clinical relevance and is a leading cause of hospital-acquired infections. The presence of a glycolytic enzyme in Pseudomonas, which is known to be inhibited by trehalose 6-phosphate (T6P) in other organisms, suggests that these bacteria may be vulner...
Article
As opposed to organism-based drug screening approaches, protein-based strategies have the distinct advantage of providing insights into the molecular mechanisms of chemical effectors and thus afford a precise targeting. Capitalising on the increasing number of genome and transcriptome datasets, novel targets in pathogens for therapeutic interventio...
Article
Full-text available
Owing to the key role of trehalose in pathogenic organisms, there has recently been growing interest in trehalose metabolism for therapeutic purposes. Trehalose-6-phosphate phosphatase (TPP) is a pivotal enzyme in the most prominent biosynthesis pathway (OtsAB). Here, we compare the enzyme characteristics of recombinant TPPs from five important nem...
Article
The soluble mycobacterial carbonic anhydrases Rv3588c and Rv1284 belong to a different class of carbonic anhydrases than those found in humans, making them attractive drug targets by using the inherent differences in the folds of the different classes. By screening a natural product library, we identified naphthoquinone derivatives as a novel non-c...
Article
The trehalose biosynthetic pathway is of great interest for the development of novel therapeutics because trehalose is an essential disaccharide in many pathogens but is neither required nor synthesized in mammalian hosts. As such, trehalose-6-phosphate phosphatase (TPP), a key enzyme in trehalose biosynthesis, is likely an attractive target for no...
Article
Full-text available
p97 (VCP) is a homo-hexameric triple-A ATPase that exerts a plethora of cellular processes. Heterozygous missense mutations of p97 cause at least five human neurodegenerative disorders. However, the specific molecular consequences of p97 mutations are hitherto widely unknown. Our in silico structural models of human and Dictyostelium p97 showed tha...
Article
Full-text available
Despite the massive disease burden worldwide caused by parasitic nematodes and other infectious pathogens, the molecular basis of many infectious diseases caused by these pathogens has been unduly neglected for a long time. Therefore, accelerated progress towards novel therapeutics, and ultimately control of such infectious diseases, is of crucial...
Article
Computational docking as a means to prioritise small molecules in drug discovery projects remains a highly popular in silico screening approach. Contemporary docking approaches without experimental parametrisation can reliably differentiate active and inactive chemotypes in a protein binding site, but the absence of a correlation between the score...
Article
The mycobacterial enzyme Rv1284 is a member of the β-carbonic anhydrase family that has been deemed essential for survival of the pathogen. The active site cavity of this dimeric protein is characterised by an exceptionally small volume and harbours a catalytic zinc ion coordinated by two cysteine and one histidine residue side chains. Using the na...
Article
Full-text available
The chloride intracellular channel protein, CLIC1, is synthesised as a soluble monomer that can reversibly bind membranes. Soluble CLIC1 is proposed to respond to the low pH found at a membrane surface by partially unfolding and restructuring into a membrane-competent conformation. This transition is proposed to be controlled by strategically locat...
Article
Full-text available
New interventions against infectious diseases require a detailed knowledge and understanding of pathogen–host interactions and pathogeneses at the molecular level. The combination of the considerable advances in systems biology research with methods to explore the structural biology of molecules is poised to provide new insights into these areas. I...
Article
Chloride intracellular channel proteins exist in both a soluble cytosolic form and a membrane-bound form. The mechanism of conversion between the two forms is not properly understood, although one of the contributing factors is believed to be the variation in pH between the cytosol (~7.4) and the membrane (~5.5). We systematically mutated each of t...

Questions

Question (1)
Question
I've had some trouble with Ulp1 cleavage of a His-SUMO fusion protein and initially attributed the decreases in activity I was seeing to repeated freeze-thawing of the enzyme. Simple. Until I purchased a fresh batch and got no cleavage after only the first thaw.
I've heard that tha activity of some enzymes sensitive to repeated freezing/thawing can be improved by changing the rate at which they are thawed. I'm curious to know whether anyone has tried thawing their Ulp1 at different temperatures?

Network

Cited By