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Abstract—Machine Learning (ML) techniques have been ap-
plied over the past two decades to improve the abilities of Intru-
sion Detection Systems (IDSs). Over time, several enhancements
have been implemented to help the ML-based IDS models tackle
the ever-evolving attack behaviors. However, recent works reveal
that ML models are vulnerable to adversarial perturbations.
With the increasing volumes of data passing through systems,
defeating adversarial attacks has become a significant challenge.
Recent research suggests that Generative Adversarial Networks
(GANs) possess a good potential in creating adversarial samples
and tackling them, playing well on both offense and defense
teams. With a motive to improve the resistance of ML-based
IDS models against a powerful white-box evasion attack tech-
nique, the Carlini-Wagner, we propose a GAN-based defensive
approach and evaluate it with the CSE-CIC-IDS2018 dataset.
The paper presents preliminary evaluation results and discusses
the direction in which we want to continue the work.

Index Terms—Adversarial Machine Learning, Intrusion Detec-
tion Systems, Generative Adversarial Networks, Carlini-Wagner
attack

I. INTRODUCTION

A critical task in cybersecurity is to detect network anoma-
lies, for which an Intrusion Detection System (IDS) is an
effective solution. In terms of processing time, scalability,
and reliability, Machine Learning (ML) approaches have made
remarkable progress in almost all the domains the Artificial
Intelligence (AI) has conquered. However, unlike in domains
like image or natural language processing, progress achieved
through ML techniques in the cybersecurity field is relatively
lesser. Although creating a fully automated and intelligent
cyber defense system is still a long way to go, first-level
operators in Network and Security Operation Centers may
effectively benefit from ML-based detection and analysis
technologies [1]. As one of the defenders in the cyber-
security domain, IDSs become more capable and efficient
when powered by ML techniques. Unfortunately, the research
behavior in most experiments shows that the main focus in
an ML algorithm-design process is on the accuracy with
which a model performs, rather than on its resilience and
robustness. Almost two decades ago, the experiments revealed

the vulnerabilities of the Neural Networks (NNs) to adversarial
environments. Eventually, it has become more evident that ML
classifiers are vulnerable to well-crafted adversarial examples
[2]. Experiments suggest that such deceptive examples result in
a significant drop in performance, thereby allowing diverse at-
tack models to defeat ML-based network security applications.
Our main motive behind this work is to defend the defenders
(i.e., the IDSs) by making them more resistant to adversarial
environments wherein the adversaries have almost complete
knowledge of their target models.

An adversarial input is a data point with some non-random
perturbation introduced into it with careful computation. The
perturbation is imperceptible to humans but makes enough
difference to an NN-based model to make an incorrect pre-
diction. The field that studies these types of attacks is called
Adversarial Machine Learning (AML) and is widely investi-
gated in some areas related to image classification. However,
its exploration in cybersecurity-related areas, such as intrusion
detection, is relatively shallow [3]. The adversarial samples are
typically designed in a way to evade detection [4]. An AML
attack can take place in either training or testing phases, or
both. An AML attack during the training phase is often called a
Poisoning attack, and one which takes place during the testing
phase is called an Evasion attack.

Generative Adversarial Networks (GANs), as showcased
in recent research works [5], possess a promising nature in
handling adversarial environments. Our motive behind choos-
ing the Carlini-Wagner attack - which has been considered a
powerful adversarial attack algorithm in the research commu-
nity - is its complexity and efficiency. Furthermore, a dataset
is a fundamental element with a significant contribution to
an ML-based model’s performance. Therefore, our choice
for this effort is the CSE-CIC-IDS2018, a publicly available
contemporary IDS dataset with impressive characteristics, as
discussed later in this paper.

The significant contribution of this research is to propose
and examine the efficacy of a GAN-based defensive mecha-
nism in resisting the Carlini-Wagner attack, using the CSE-
CIC-IDS2018 as it represents modern network and attack978-1-6654-9952-1/22/$31.00 ©2022 IEEE



behaviors. We assess the vulnerability of the dataset against
the Carlini-Wagner attack. The defense is evaluated using four
efficient classification algorithms.

The remaining portion of this paper is organized as follows
- Section II provides a brief background on the elements
used/focused upon in our experimentation. Section III covers
the research available in the literature related to this work. Sec-
tion IV discusses the architecture of the experimental frame-
work and its workflow. Section V covers the implementation
and evaluation processes. Section VI analyzes the evaluation
results and briefly weighs up the work in comparison with
related work. Section VII concludes the work and presents
our future research direction.

II. BACKGROUND

A. Dataset Overview

The behavioral patterns of network traffic evolve, requiring
the datasets to reflect contemporary characteristics. Unfortu-
nately, most publicly available IDS datasets do not satisfy the
current technological demands and lack modern traffic behav-
iors. Therefore, the shortage of optimal IDS datasets should be
addressed, and there is active research progressing in this area
[6]. Some essential parameters that determine the quality of an
IDS dataset are - the framework used for generating the traffic
scenarios; diversity of attack scenarios captured; anonymity;
the variety of protocols included; capturing complete network
interactions; configurations in the network; feature set; labeled
data samples; heterogeneity; and metadata [7]. We have chosen
the CSE-CIC-IDS2018 dataset for this effort, considering all
these characteristics.

The CSE-CIC-IDS2018 dataset was developed in collabora-
tion with the Communications Security Establishment (CSE)
and the Canadian Institute of Cybersecurity (CIC) to generate a
dataset in a close-to-realistic network environment. The dataset
has over 80 features and covers seven different modern attack
scenarios. It has about 83% benign and 17% malign traffic
instances. Although the dataset is not well-balanced [8], we
chose it because of the diversity in the traffic data behaviors it
has and the modern network characteristics represented in it.
The dataset has multiple classes - seven of them representing
attacks, and one is for normal traffic.

B. The Carlini-Wagner Attack

Carlini and Wagner [9] proposed a targeted evasion attack,
hereafter referred to as CW attack, to counter defensive
distillation, a popular defense mechanism. This white-box
attack became more potent than many other white-box attack
techniques in the research community, rendering most defen-
sive methodologies ineffective. Formulating an optimization
problem to produce misclassification is the foundation of an
adversarial attack algorithm. For CW attack, the problem of
creating adversarial examples is represented as follows:

minimize d(x, x+ η)

such that Y (x+ η) = T (this is constraint 1)

where x+ η ϵ [0, 1]n (this is constraint 2)

(1)

In equation 1, x is an input data point, η is the perturbation,
d is the metric of the distance between a real input and
its corresponding adversarial form, Y is the classification
function, T is the target class chosen by the adversary, and
n is the number of dimensions in the feature space. The
constraint-1 ensures the misclassification of the data point,
while constraint-2 ensures the adversarial sample generated
is within the normalized boundaries of the dataset [10] [11].

The authors define the objective function in seven different
ways and choose the optimal one, based on which is the closest
to the target-class misclassification. The distance metrics are
specified using Lp norms (i.e., L0, L2, L∞) [11].

C. Generative Adversarial Network

A GAN is a Deep Learning (DL)-based generative model
that was first described by Ian Goodfellow et al. [12]. Its goal
is to build adversarial samples, very similar to original data,
from an input dataset. A GAN is implemented by two neural
networks that challenge each other, as in a two-player game.
It attempts to mimic a data distribution and allows a model to
learn more from available data.

A random number (random noise) is given as input to the
Generator, which generates the samples that are comparable to
those in the dataset and forwards them to the Discriminator,
which examines the samples and predicts whether they are
original data or generated ones [13]. The Discriminator learns
the original data characteristics and, based on this knowledge,
makes decisions on the data passed to it by the Generator. In
simple terms, the Generator keeps improving its adversarial
samples to make it difficult for the Discriminator to identify
them. The Discriminator tries to learn more and correctly
identify the adversarial samples introduced by the Generator.
There are some limitations to GAN’s capacities. Its Vanishing
Gradient Problem is one of them, where the Generator reaches
a saturation point and can no longer produce new samples to
trick the Discriminator. Meaning, the Discriminator identifies
the samples created by Generator with high confidence values
leaving no gradient for the Generator [14]. This issue can
be averted by carefully balancing the race/training between
the Generator and Discriminator networks and making sure
the Discriminator is not over-trained. Ensuring that the Dis-
criminator is trained to an optimal level for every iteration of
Generator training is critical in avoiding such issues. Various
approaches for GAN training stabilization are discussed and
analyzed in [15]

Using GAN within its capable boundaries, we consider two
conventional loss metrics in this work - Generator loss and
Discriminator loss. In the following sections, we extend the
discussion on how we use GAN and its characteristics for our
experiment.



D. Classification Algorithms

Classification algorithms play a vital role in the performance
of an ML-based model. Therefore, the algorithms selected for
this work have been chosen based on the competence they have
projected in the research community, especially in handling
datasets that have multiple classes [8].

1) Decision Trees: The primary ability of the Decision Tree
(DT) algorithm lies in effectively classifying data into branch-
like structures with nodes, leaf nodes, and a root node, which
together form a logical tree. This technique is efficient in
handling extensive data; therefore, it is a good choice for a
dataset like CSE-CIC-IDS2018 [16].

2) Random Forest: Random Forest (RF) classifier is a well-
known powerful ensemble learning mechanism that comprises
a large number of DTs, which are trained on different portions
of a given dataset. Additionally, the features considered for
making decisions in each tree also differ depending on varying
data patterns. Finally, the predictions of all individual trees are
considered and averaged to arrive at the final decision on an
input [17].

3) Support Vector Machines: Support Vector Machine
(SVM) is a classical algorithm that effectively handles big
data applications. It is yet another appropriate technique to
handle a dataset like CSE-CIC-IDS2018. Although this al-
gorithm involves complex and heavy computations, we have
chosen it considering its efficiency in addressing non-linear
classification problems [18]. For this work, linear SVMs are
implemented.

III. LITERATURE REVIEW

ML models based on neural networks are vulnerable to
adversarial instances, as initially revealed by the experiments
conducted by Szegedy et al. [4]. The necessity to investigate
various approaches of launching adversarial attacks and devel-
oping countermeasures has grown ever since the revelation.
Different strategies for generating adversarial samples have
been widely studied. Additionally, there are studies on how
models perform in adversarial environments with a key focus
on the characteristics of contemporary datasets [19].

Ferdowsi et al. [20] propose a distributed GAN to detect
abnormal activity in IoT devices. Msika et al. [13] propose
an approach called SIGMA where they use GAN and meta-
heuristics to improve the resilience of ML-based IDSs. Ini-
tially, they train a GAN to generate attack samples using the
IDS as a discriminator. This process iterates until the detection
system’s score does not change for three consecutive rounds.
At this point, they generate alternative samples that the GAN
might have missed by running a search-based method. After
that, the IDS will be trained on the instances generated from
the two algorithms and the original dataset. This approach
prevents over-fitting by exposing the classifier to real data and
generated attacks, improving IDS performance.

Shahriar et al. [21] proposed a GAN-based IDS (G-IDS)
that can generate more training data to tackle the problem of
imbalanced or missing instances. G-IDS framework is divided

into four segments - a database module consisting of real-
world data and samples generated by the GAN; an IDS module
trained twice - with and without the pending data - to evaluate
hybrid data; a controller module which decides whether to
accept or improve data; and a data-synthesizer module having
GAN as the core component, to generate new samples. The
evaluation presented in the paper suggests that the G-IDS
framework results in better accuracy than those obtained from
the independent IDS studied.

Hara et al. [22] present an approach to design IDS models
with intrinsic robustness against adversarial attacks. They
employ semi-supervised learning, along with an Adversarial
Autoencoder (AAE). An AAE essentially uses the properties
of an autoencoder combined with the adversarial loss concept
of a GAN. A GAN assists in regularizing key features while an
autoencoder decreases the dimensions of input data by extract-
ing key features. Then, latent spaces, z1 (information about
”normal” or ”attack”), and z2 (all other data characteristics)
are formed. One of the discriminators applies a categorical
distribution to the latent class variable vector, z1. The other
one applies a Gaussian distribution to z2. The semi-supervised
AAE is trained in three phases using the SGD approach
(reconstruction, regularization, semi-supervised classification).

IV. ARCHITECTURE AND WORKFLOW OF THE PROPOSED
APPROACH

The experiment comprises a series of independent eval-
uations. At first, the performance of the baseline model is
evaluated in non-adversarial settings, i.e., with the original
dataset, using each of the chosen classification algorithms.
Next, the model is evaluated by implementing the CW attack.
Later come the incorporation of the defense layer into the
model and its performance evaluation.

Figures 1 and 2 outline the training and testing phases,
respectively. The reminder of this section discusses classi-
fication behaviors and technical specifications involved in
the experiment, and briefly describes the components that
constitute the architecture.

A. Classification Goal

The following are the classification goals of the experimen-
tal setup:

• the discriminator is to classify adversarial and non-
adversarial data, therefore, this is binary classification.

• the final IDS is to classify whether the data instances
it receives are benign or malign, which is a binary
classification, too.

B. Hardware and Software Specifications Used for the Exper-
iments

The computer that was used for the experiment had the
following specifications: Intel Xeon Processor E5-2697 @
2.6 GHz, 128 GB RAM, and Microsoft Windows 64-bit.
The software specifications include Python 3.6.5, Scikit-learn
0.24.2, Tensorflow 1.13.2, and Keras 2.1.5. The CW attack
was implemented using the Cleverhans 3.0.1 library [23].



Fig. 1. Training phase of the proposed GAN-based framework.

Fig. 2. Testing phase of the proposed GAN-based framework.

C. Configuration of the Components Involved

1) Generator Configuration: The Generator is made up of
a five-layer NN with a random noise input layer of size 78 and
three internal layers with 128, 128, and 256 nodes respectively,
and uses the ReLU activation function for learning the real
data distribution. It has an output layer that generates a data
sample of size 78, which is comparable to the original data.
A generator loss function is computed based on the prediction
results provided by the Discriminator and is fed back to the
Generator for it to improve in a way to minimize the loss
value.

2) Discriminator Configuration: The Discriminator net-
work has an input layer that accepts inputs from the Generator
and training dataset during learning phase, and four hidden
layers with 128, 128, 64, and 64 nodes respectively, with ReLU
activation function and one output layer with sigmoid function
to result in an output value between 0 and 1. The output
value represents how confident the Discriminator is about the
sample being fake or real. Based on this score, the records
with a value of less than 0.5 are classified as fake, and are
separated from the test data, while the ones classified as real
are forwarded to the IDS to get classified further as benign or
malign. If the Discriminator correctly classifies a fake sample,
the loss function assists the Generator in adjusting its weights
to craft more deceptive samples for the Discriminator. If the
Discriminator fails to detect a fake sample, the loss function
assists the Discriminator in adjusting its weights to improve
the detection of fake samples.

3) The Core IDS: This classifier is trained on the training
data, and is the IDS model that receives the data that is
forwarded by the Discriminator, and decides whether each

input is benign or malign.

V. IMPLEMENTATION AND EVALUATION

A. Preprocessing

The preprocessing stage involves removal of records with
NaN and Infinity values, and deletion of the Timestamp col-
umn from the dataset. The next step in this stage is to use One-
Hot encoding to convert nominal values to numerical data. The
CSE-CIC-IDS2018 dataset has a total of 79 features, and after
One-Hot encoding, the number of total features becomes 94.
Then, Min-Max normalization is applied to all features to scale
the data between 0 and 1. This step is essential because the
dataset has numeric features whose values might have been
derived from various distributions, have varied scales, and are
occasionally affected by outliers, which can cause incorrect
results by some classifiers. After normalization, 70% of the
dataset is separated for training and the remaining 30% for
testing. The training set is used to train the ML model. In
testing phase, prediction results are obtained by providing the
test-set instances as inputs to the model.

To let the model learn from data that has multiple classes,
a multi-class classification approach, OneVsRest classifica-
tion, is followed. OneVsRest is an approach by which the
classification algorithms natively designed to perform binary
classification can learn from and act on data that has multiple
classes. It is achieved by splitting the dataset with multiple
classes into multiple datasets with binary classes, and fitting
a binary classifier on each of those datasets.

B. Evaluation of Baseline Model in Adversarial Settings

Adversarial samples are generated by implementing the CW
attack on the test set, in particular, changeable features in the



test data. In simple terms, the way an adversarial algorithm
works in an IDS backdrop is by introducing calculated pertur-
bation into a genuine (original) malicious data instance in a
way that it gets classified by the target as a benign data/traffic
instance while remaining malign. There are no well-defined
criteria to determine whether all the generated adversarial
traffic instances form meaningful network traffic, however, as
rightly explained in [24], some characteristics, as listed below
can help understand if perturbations are introduced reasonably:

• the perturbations are added only to changeable features.
• the type of perturbation (binary data, decimal data, etc.)

matches the data type of the feature to which it is added.
• semantic relations among the features are preserved.
• the nature of attack an original data instance carries is

preserved.
• the perturbation does not disrupt the network-flow infor-

mation.
The generated adversarial data, along with the original test

data is presented to the model for evaluation in adversarial
setting. Table 1 presented in Section VI summarizes the results
obtained, showing that all the classifiers exhibit a drop in the
performance under the influence of the attack.

C. Evaluation of the Defense

The architecture for our defense mechanism uses GAN to
identify and separate the adversarial samples, and pass the non-
adversarial data to the core IDS classifier, which determines
if the data is benign or malign.

During the preprocessing phase, the data is separated into
training and testing sets. In training phase, random noise
is provided to the Generator to produce fake samples. The
Discriminator is trained with the training set and hones its
ability to detect adversarial samples by learning the fake
data produced by the Generator. The core classifier is also
trained with the training set. The GAN, as a whole, becomes
more competent as the number of learning/training iterations
increase, to not only generate complex fake data but also
to identify it correctly. In testing phase, the Discriminator
is tested with test data. The test data comprises of the data
from test set, and the adversarial samples that are generated
by running the CW attack on the test set as explained in
Section V.B. The instances that the Discriminator predicts as
real are carried forward to the core IDS classifier, separating
the instances that are classified as fake.

VI. EVALUATION RESULTS AND PERFORMANCE
COMPARISON

Table 1 presents the results provided by the classifier when
trained using each of the chosen classification algorithms.
They show that there is a clear drop in the performance of
baseline classifier when it is tested with adversarial samples.
The results from SVM classifier show relatively lesser im-
provement in the performance than those from the other two
classifiers. The results from Table 1 suggest that GAN-based
defense enhances the performance as the model can better
identify the adversarial data with all of the three classifiers.

TABLE I
EVALUATION RESULTS OF ALL THE CLASSIFIERS

Performance Baseline Adversarial Using GAN
DT Accuracy 0.72 0.49 0.60
DT F1 Score 0.86 0.71 0.67

DT Recall 0.94 0.80 0.65
DT AUC 1 0.99 0.90

RF Accuracy 0.91 0.81 0.82
RF F1 Score 0.94 0.83 0.84

RF Recall 0.91 0.81 0.83
RF AUC 1 0.99 0.90

SVM Accuracy 0.61 0.25 0.36
SVM F1 Score 0.66 0.51 0.43

SVM Recall 0.97 0.88 0.74
SVM AUC 1 0.99 0.90

Fig. 3. Comparison of Accuracy scores.

Additionally, we have noted that, on average, 75% of the
adversarial data is correctly identified as fake by the Discrim-
inator during the evaluation of the proposed defense. Our aim
is to improve the detection abilities further, moving forward.
Figure 3 summarizes the improvements in the accuracy scores.

A. Comparison with Related Work

Rui Shu et al. [25] propose a technique called Omni, an
ensemble of unexpected models to tackle adversarial environ-
ments. Their ideology behind employing unexpected models
is to keep the distance between their core prediction mecha-
nism and the adversary’s target model’s mechanism as large
as possible. The authors present the experimentation results
conducted using five different adversarial white-box evasion
attacks on five different cybersecurity datasets. The CW is
one of the attacks, and the CSE-CIC-IDS2018 dataset is one
among the datasets they have evaluated their approach with.
Therefore, we briefly compare our results with the results
presented in [25] to analyze our approach further. From the
results presented by Rui et al., the baseline accuracy, i.e.,
under normal settings is 94.48%, and the final accuracy after
implementing their defense on the model is 75.23%. The
highest baseline accuracy in our approach is 91% and is from
the RF classifier, and the corresponding final accuracy (with
the proposed defense in place) is 82%. However, since Omni



is designed to be agnostic about the type of adversarial evasion
attack used, it creates an avenue in our approach to expand
its functionalities so as to use it for all kinds of adversarial
evasion attacks.

VII. CONCLUSION

In this paper, we propose a defense mechanism to improve
the resistance of ML-based IDSs against the CW attack by
using a GAN-based architecture. The dataset used for the work
is CSE-CIC-IDS2018, as it reflects a good number of modern
network characteristics. The experimentation results show that
there is an improvement in the performance of the IDS model
with the proposed mechanism. We present the performance
results of two scenarios - baseline model alone, and baseline
model with GAN. The results indicate that this approach
of defense improves the accuracy scores in the adversarial
environment created by a powerful white-box attack such as
the CW.

We want to take this work forward in multiple directions.
One of them is towards improving the detection rate of the
proposed GAN-based network in identifying the adversarial
data while also investigating how an imbalanced dataset like
CSE-CIC-IDS2018 can impact the performance in adversarial
environments. We want to extend the architecture by intro-
ducing feature squeezing methods and thoroughly evaluate
the performance. Furthermore, we plan on expanding the
defensive mechanism to tackle black-box attack techniques as
they pose a bigger challenge in real-world applications.
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