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ABSTRACT  
This paper investigates the effects of the built environment and weather on the demands for 
transportation network companies (TNC) in Toronto. The research is based on a historical dataset 
of Uber trips from September 2016 to September 2018 in Toronto. A wide range of built 
environments, sociodemographic, and weather data are generated at the dissemination area-level 
and fused with the monthly aggregated Uber dataset. To provide insight into the underlying 
factors that affect TNC demand, a series of aggregate demand models are estimated using log-
transformed constant elasticity demand functions, with consideration of the seasonal lag effect. 
To capture the weather effect, an autoregressive moving average model is estimated for the 
downtown core of Toronto. The model results show that the influence of lagged ridership and 
seasonal lag effect have a positive correlation with TNC demand. The trip generation and 
attraction models reveal that TNC trips increase where when the commuting trip duration is 
longer than 60 minutes. It is found that the number of apartments in a dissemination area is 
positively correlated with TNC trip generation, while the number of single-detached houses has a 
negative correlation. The time-series model indicates that temperature and total daily 
precipitations are positively correlated with TNC demand. Due to the lack of comprehensive data 
sources on the Uber and Lyft ridership, the policymakers often struggle to make evidence-based 
policy recommendations to regulate such disruptive technologies. The series of models presented 
in this study will help us better understand the potential users of transportation network 
companies (TNC) and the effects of land use, built environment and weather on transportation 
network company trips. 
 
Keywords: Transportation Network Companies (TNC), Aggregate Demand, Trip generation, 
Trip Attraction, Time Series Model  
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1. INTRODUCTION  
Transportation Network Companies (TNC), such as Lyft and Uber, have garnered increasing 
attention among urban dwellers as an affordable and reliable mode of transportation. In the City 
of New York, there was a 200% increase in TNC pickups from 2015 to 2017 (Gerte et al. 2019). 
According to a recent study by the City of Toronto, ride-hailing trips comprise 5-8% of 
downtown Toronto traffic and a 196% growth in ride-hailing trips was observed in just eighteen 
months (Big Data Innovation Team 2019). Speculation exists that TNC can reduce transit 
ridership and cause more traffic congestion. Graehler, Mucci, and Erhardt (2019) report a 1.7% 
decrease in bus ridership and a 1.27% decrease in heavy rail ridership, according to a 
longitudinal dataset from twenty-two US cities. Though it is unclear whether the increasing rate 
of TNC market penetration caused this decrease in transit ridership, there could be other 
complementary factors that caused this decline in transit ridership, such as increased car and bike 
ownership or unreliable transit service.  Municipal and federal governments in different parts of 
the world are trying to regulate and limit the number of TNCs in operation. Due to the lack of 
adequate data on Uber and Lyft ridership, policymakers often struggle to make evidence-based 
policy recommendations to regulate such disruptive technologies. 

 
There have been a few notable attempts to study the factors that influence individuals to choose 
TNC for different types of trips, such as recreational and commuting (Habib 2019). A series of 
studies on Uber data in the City of New York show that weather and built environment attributes 
are significant predictors of Uber demand (Gerte et al. 2019; Gerte, Konduri & Eluru 2018). 
Another set of studies are conducted on a TNC operator RideAustin, an Austin-based TNC 
(Lavieri et al. 2018; Dias et al. 2018). Lavieri et al. (2018) find a higher number of TNC trips are 
generated near the University of Texas Austin, suggesting that trip purposes in these zones are 
conducive to ride-hailing.  A few studies try to capture the relationship between 
sociodemographic variables and TNC demand. These studies postulate that educated, young, and 
professional individuals are the main user of TNCs (Spurlock et al. 2019; Alemi et al. 2019; Hall, 
Palsson & Price 2018; Alemi et al. 2018). 

TNC serve all travel markets (commuting and non-commuting) in Toronto, but the main trip 
attractor in downtown Toronto is recreation, particularly late-night trips on Fridays and 
Saturdays. Since speculation about increasing congestion and reduction in transit ridership is 
possible, it is deemed necessary that we improve our understanding of TNC demand variation in 
large metropolitan cities like Toronto based on empirical evidence. Micro-level studies capture 
the individual-level choice dimension, whereas macro-level studies capture the region-wide 
phenomenon in a specific period of time (Chen, Varley & Chen, 2011). Thus, macro-level studies 
are more effective in the context of TNC to better understand how TNC demand is influenced by 
built environment and weather. Compared to the previous research efforts that mainly looked at 
the aggregate demand in the US cities only, our approach exploits a comprehensive multiyear 
dataset capturing the surge in TNC demand in the City of Toronto.  
 
This paper uses historical data of Uber ridership in Toronto from September 2016 to September 
2018 and estimates a set of aggregate demand models to investigate the effect of 
sociodemographic, weather and firmographic attributes on the Uber ridership demand. The 
proposed modelling framework also allows capturing the seasonal lag effect of TNC demand, 
something that lacks in the past research. The paper contributes to the existing literature by using 
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the entire population of Uber trips for a longer time period (two years versus a few weeks to 
months in other studies) for a megacity like the City of Toronto. Access to these data allows us to 
examine seasonal variation in trip rates and perform other more detailed analyses of trips, which 
is not possible with smaller datasets. 

 
The rest of this paper is outlined as follows. The next section highlights a review of the recent 
studies on transportation network companies in various parts of the world. The subsequent 
sections describe data fusion methods. Then the modelling framework and results of the 
empirical models are discussed elaborately. The conclusions section connects the key findings 
across the different sections of this paper and provides some policy recommendations. 
  
2. LITERATURE REVIEW 
Despite the incipient stage of TNC adoption, a range of studies examine the demand for these 
services. As most TNC data are proprietary, research is often based on survey data. However, in 
some cases, researchers have been able to gain access to trip-level data from TNC service 
providers. We classify the literature according to the type of data used as this tends to determine 
the methods of analysis. 
 
Studies Based on Survey Data 
In the case that only survey data is available, analysis tends to focus on the attributes of TNC 
users. The most extensive such analysis is summarized in a series of papers by Alemi et al (2019, 
2018a, 2018b). They use an attitudinal survey administered in California to determine the 
preferences of Millennials and Generation X. The probability of a person using TNC is then 
modelled as a latent utility based on their stated preference. Most surveys find that potential 
users are young, highly educated, and professionals (Spurlock et al. 2019; Alemi et al. 2019; 
Hall, Palsson & Price 2018; Alemi et al. 2018). 
 
Lavieri and Bhat (2019a) administer a survey in the Dallas-Fort Worth area. They first ask 
respondents whether they have experience with TNC and those with experience are asked a 
series of retrospective trip questions. A generalized heterogenous data model (GHDM) is used to 
jointly estimate residential location, vehicle availability, TNC experience, and TNC frequency of 
use. The model includes latent constructs for privacy sensitivity, tech-savviness, and propensity 
towards variety-seeking or green lifestyles. One pattern that emerges in many of these studies is 
their use as tools to anticipate autonomous vehicle adoption (Lavieri and Bhat, 2019b). The 
standard hypothesis is that stated preferences for making TNC and, particularly, shared TNC 
trips is indicative of a propensity to use autonomous vehicles when they enter the consumer 
market. Gao et al. (2019) make a similar argument of TNC being a precursor to autonomous 
vehicles. However, their survey includes a series of stated preference experiments, which tend to 
provide more statistical control to the researcher (Louviere et al., 2010). 
 
Wang et al. (2018) develop a set of technology acceptance models to examine the adoption of 
ride-hailing. They define six latent measures: personal innovativeness, perceived ease of use, 
perceived usefulness, perceived risk, environmental awareness, and behavioural intention. A 
survey is administered to 426 participants and factor analysis performed for the six latent 
measures. Personal innovativeness arises as a significant positive influence on actual ride-hailing 
trip frequency, while perceived risk has a negative correlation with making trips. Perceived ease 
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of use is not found significant in their model. The authors find that perceived ease of use has an 
indirect effect through perceived usefulness of ride-hailing and suggest that it is only when the 
service has a perceived benefit that its ease of use influences the probability of making a trip. 
 
A second class of survey-based studies use general travel surveys. These studies have the 
advantage of being based on reported trips from travel diaries. However, they often rely on 
smaller samples than purpose-built surveys. Dias et al. (2019) use the Puget Sound household 
travel survey collected in 2015 and 2017 to examine the rate of TNC adoption. They use a joint 
binary probit-ordered probit model of survey year and trip frequency, respectively. It is found 
that demographic characteristics have a diminishing effect on TNC use over time. Wigginton 
Conway et al. (2018) use a panel of the U.S. National household travel survey between 1995 and 
2017 to examine trends in taxi use and its relationship with TNC. They do not find the same 
trend of increasing equity as Dias et al. A similar analysis is carried out in Toronto by Ozonder 
and Miller (2019) using a panel of the local travel survey. They confirm the results of Wigginton 
Conway et al. that the average TNC user has a higher income than taxi users. Habib (2019) uses 
the same travel survey data for Toronto to examine mode choice competition. His analysis uses a 
novel form of choice set generation model to capture the factors that influence consideration of 
TNC as a modal alternative. 
 
Studies Based on Trip Data 
A second stream of literature focuses on examines TNC demand using trip-based data. This 
approach can explicitly capture the aggregate demand for TNC trips. However, the data generally 
lack demographic information due to privacy concerns. As such, studies generally focus on 
aggregation demand as a function of built form, weather conditions, and other location data. 
Gerte et al. perform analysis for the City of New York (2018). Their analysis is based on a 
dataset obtained through a Freedom of Information Law (FOIL) request by the company 
FiveThirtyEight for six months in 2014 (April to September) and six months in 2015 (January to 
June). Pickup locations are aggregated to latitude and longitude in the 2014 data and taxi zones 
in the 2015 data. The authors aggregate all data to match taxi zones and sum daily to weekly 
totals, giving a final dataset with 69 zones and 49 weeks. The TNC data are fused with the 
weather, land use, and sociodemographic variables and a panel model estimated for demand 
generation. A key finding in this study is the negative correlation between demand over time and 
percent of land devoted to residential uses in the zone. Gerte et al. postulate a diminishing 
growth in demand within existing coverage areas, even while overall demand for TNC trips 
grows across the city (and to other cities). Increasing access to data and more extended time 
series should allow us to test the continued existence of this pattern.  
 
In a follow-up study, the same authors examine the demand for shared modes (TNC, taxi, bike 
share, subway) in the City of New York with an expanded dataset (Gerte et al. 2019). They use 
TNC and taxi data provided by the Taxi and Limousine Commission and combine it with Citi 
Bike, New York City subway, weather, and permitted event data. The analysis begins with 
descriptive plots of trips per day by the four shared modes over the period from January 2015 to 
May 2017. Gerte et al. find that taxi demand fell over the study period but that the rise in TNC 
trips can not fully explain the decline. A dynamic linear model is developed for daily TNC 
demand as a function of seasonal factors and the increasing penetration of the mode (captured 
through drift and autoregressive coefficients). The model suggests that precipitation and 
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increased subway demand are both positively correlated with TNC demand.  
 
A series of studies have also been conducted in Austin, TX using data made available by the 
local TNC operator RideAustin (Lavieri et al. 2018; Dias et al. 2018). This company entered the 
Austin market following the departure of Uber and Lyft in response to disputes over local 
regulations. In the first study, demand generation and distribution models are estimated based on 
data from June 2016 to April 2017 (Lavieri et al. 2018). It is estimated that RideAustin represents 
about one-third of TNC trips made in Austin. The data are aggregated to Traffic Analysis Zones 
(TAZs), which gives 458 spatial units in the study area. A spatial bivariate count model is 
estimated for the number of trips generated on a weekday and weekend day, with spatial 
autocorrelation tested between adjacent TAZ. They find a higher rate of trips near the University 
of Texas Austin, suggesting both that trip purposes in these zones are conducive to ride-hailing 
and that the student demographic is more likely to make trips by this mode. A fractional split 
model is estimated for trip distribution to examine the question of trip attraction. Lavieri et al. 
(2018) find that trips to University of Texas Austin decrease on weekend days, but retail 
employment is positively correlated with trip attraction regardless of the day of the week, with 
the authors suggesting retail employment represents a measure of the attractiveness of a TAZ for 
out-of-home activities. Interestingly, this study does not find a strong attractiveness of CBD 
zones, which suggests that ride-hailing is not a popular mode of commuting in Austin. 
 
In addition to trip generation, the RideAustin data are used to explore trip purpose imputation. 
Dias et al. (2018) fuse these data with parcel-level land use data and use the zoning of each 
parcel as a proxy for the origin and destination activities. For example, a trip originating in a 
residential zone and destined for a commercial zone is classified as a shopping trip. Home 
locations were inferred from the most frequently visited residential zone, using census block 
groups as the spatial unit of analysis. From these inferred data, the authors estimate a 
multivariate ordered probit model for trip frequency. This is possible because the RideAustin 
data contains anonymized user IDs, which are not available in most other TNC datasets. The 
inferred home locations are combined with American Community Survey data to impute 
sociodemographic characteristics for each user. Model results suggest that these 
sociodemographic factors are essential in determining both the frequency of purpose of trips. 
Higher-income users tend to make more trips to the airport and recreational locations, while 
lower-income users appear to be more likely to use ride-hailing for shopping and commuting 
trips. 
 
In some cases, researchers could obtain TNC data through the use of calls to TNC API (Grahn et 
al., 2020; Shokoohyar et al., 2020; Sun and Ding, 2019). Shokoohyar et al. (2020) focus on 
accessibility in Philadelphia, while Grahn et al. (2020) focus on substitution between TNC and 
public buses in Pittsburgh. Sun and Ding provide a case study outside North America using data 
collected for Didi in Shanghai. They find a strong effect of residential and commercial land use 
on-demand, as well as a strong correlation between weather and demand. Results suggest that 
TNC may be more complementary with the metro service than the bus. Their data allows them to 
distinguish between shared and single-user rides, as well as identify specific drivers. These 
features are unavailable in most of the North American datasets. In another study, Sun et al. 
(2018) try to capture the relationship between built environment attributes and road traffic 
emissions in terms of ride-hailing service DiDi. 
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Factors affecting trip-making are important to TNC operators. A study by Uber outlines a neural 
network model for forecasting trip generation following a major event (e.g., sports game or 
public celebration) (Laptev et al., 2017). Their work is motivated by decreasing wait times for 
users, by reallocating drivers in anticipation of known major demand spikes. Uber does not 
suffer from the same data sparsity, having access to anonymized rider and driver data for 
hundreds of cities. However, the specific focus of the study limits the available data. They 
estimate a long short-term memory (LSTM) neural network; a common approach applied in 
machine learning to time series analysis. Such approaches help to overcome the need to 
frequently retrain the model when applied to a highly heterogeneous time series, such as extreme 
event forecasting. They introduce an autoencoder, which processes historical data for input into a 
second stage model that includes new demand data. The proposed technique offers a 2-18% 
improvement over the existing proprietary univariate model used by Uber. 
 
In a recent paper, Chen et al. (2020) identified that various trip characteristics, sociodemographic 
attributes, and land use attributes affect individuals' mode choice decisions. The authors 
estimated two separate Binomial logit models. The first model has two alternatives: metro and 
taxi, and the second model also has two alternatives: mobibike and taxi. This study reveals that 
individuals are likely to use taxis for official business trips, which are done during off-peak 
hours. 
 

Table 1 Comparison of studies by approach and data sources 

Study Approach Data source Key variables 
Alemi et al., 2019, 2018a, 2018b Probit/logit 

regression 
Targeted survey in 
California 

 Individual 
demographics 

 Attitudinal 
factors 

Grahn et al., 2020 Linear 
regression 

TNC trips for 
seven months in 
2016-2017 in 
Pittsburgh, PA 

 

Gerte et al., 2018; Gerte and 
Konduri, n.d. 

Linear 
regression 

TNC trips for six 
months in 2014 
and six months in 
2015 in New 
York, NY 

 Weather 

 Zonal 
demographics 

 Built 
environment 

“Fusing Multiple Sources of Data 
to Understand Ride-Hailing Use,” 
n.d. 

Probit 
regression 

TNC trips for in 
Austin, TX 

 

Lavieri and Bhat, 2019a, 2019b Structural 
equation model 

Household travel 
survey in Dallas-
Fort Worth, TX 

 Individual 
demographics 
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 Attitudinal 
factors 

Gao et al., 2019 Discrete choice Stated preference 
experiment in 
United States 

 Individual 
demographics 

 Travel mode 
attributes 

Ozonder and Miller, 2019 Descriptive 
statistics 

Household travel 
survey in Toronto, 
ON 

 Time of trip 

 Origin/destination 
location of trip 

Conway et al., 2018 Logit regression Household travel 
survey 

 Individual 
demographics 

Dias et al., 2019, 2017 Probit 
regression 

Household travel 
survey in Puget 
Sound, WA 

 Individual 
demographics 

Wang et al., 2018 Technology 
acceptance 
model 

Targeted survey in 
China 

 Individual 
demographics 

Spurlock et al., 2019 Linear 
regression 

Targeted survey in 
San Francisco, CA 

 Individual 
demographics 

Habib, 2019 Discrete choice Household travel 
survey in Toronto, 
ON 

 Individual 
demographics 

Sun and Ding, 2019 Two-level 
growth model 

TNC trips for four 
months in 
Shanghai 

 Weather 

 Built 
environment 

Shokoohyar et al., 2020 Spatial lags 
regression 

TNC trips for two 
months in 
Philadelphia, PA 

 Zonal 
demographics 

Grahn et al., 2019 Linear 
regression 

Household travel 
survey in 
Pittsburgh, PA 

 Individual 
demographics 

Laptev et al., 2017 LSTM neural 
network 

TNC trips for 
large sample 
(several years and 
cities) in North 
America 

 Unknown 
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The contributions of this study in comparison to the previous literature are outlined below. It is 
noted that the objective of these points is not to criticize any previous studies but to indicate how 
our study complements the previous studies.  
 
Limitations of the previous studies  
 

 Table 1 reveals that many past studies relied on household-level travel surveys (1995–
2017) where in most of the cases, Uber and Lyft trips are not even reported (Conway et 
al., 2018; Ozonder and Miller, 2019). Authors extracted those individuals' records where 
individuals reported taxi as a mode choice.  

 Conventional household level travel surveys (e.g., National Household Level Travel 
Surveys-NHTS 2017, Transportation Tomorrow Survey 2016) do not have a separate 
survey component containing TNC related questions (Habib 2019; Grahn et al., 2020; 
Grahn et al., 2019). The only new addition in NHTS 2017 was the frequency of TNC 
trips in the last 30 days. Authors from the previous studies extracted those individuals' 
records where individuals reported TNC as a mode choice. In addition, NHTS 2017 (data 
collection period: March 2016 to May 2017) is a much older dataset to capture today's 
TNC demand. A similar comment applies to a few other studies which used the 
California Millennials Dataset (data collected in Fall 2015) (Alemi et al., 2019, 2018a, 
2018b). 

 Another set of studies relied on the stated-preference survey for automated vehicles, 
which did not have any revealed preference part for TNC (Gao et al., 2019).  

 A few studies in New York indeed have historical data, which is very old compared to 
2021. (six months in 2014 and six months in 2015) (Gerte et al., 2018). Also, the TNC 
demand in 2014 and TNC demand in 2021 are a little different.     

How this study complements the previous studies:  
 

 It is clear from the above discussion that none of the previous studies had access to a 
disaggregate trip-level dataset that we used in this study. Also, this study uses all Uber 
trips exclusively in Toronto between the period of September 2016 to September 2018. 
This study is different than many other studies which used household-level travel survey 
where TNC trips are often under-represented. 

 Therefore, our work contributes to the TNC trip data literature. This stream of research 
has advantages over survey-based analysis because it uses revealed preference data rather 
than relying on retrospective reporting or the stated preferences of respondents. Many 
previous studies analyzed taxi trips and made policy recommendations for TNC services 
based on those analyses. We extend these previous works by estimating spatially detailed 
aggregate demand models of trip generation for each of 2017 and 2018 and aggregate 
attraction models based on actual TNC trips in a megacity (generally, less well 
represented in the literature). 
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 Another contribution of this study is using a multi-year dataset that allows us to better 
capture the seasonality and the evolution of TNC demand relative to past studies, which 
have relied on only a few months of data (Shokoohyar et al., 2020; Sun and Ding, 2019).  

 Further, we estimated the time-series models of TNC demand. These models show the 
emerging pattern of TNC adoption as a travel mode that should be considered in 
transportation demand analysis and modelling.  

 Due to the lack of comprehensive data sources on the Uber and Lyft ridership, the 
policymakers often struggle to make evidence-based policy recommendations to regulate 
such emerging modes. The series of models presented in this study will help us better 
understand the potential users of transportation network companies (TNC) and the effects 
of sociodemographic, weather, and built environment on transportation network company 
trips. 
 

3. DATA DESCRIPTION  
For this study, multiyear individual-level trip records are obtained from Uber through a 
partnership with the City of Toronto. This study uses the trips between the period of September 
2016 to September 2018. In this study, records include the trip origin and destination locations 
given as the nearest intersection. Detailed start and end times are provided for records before 
April 2017, while start times for trips occurring between April 2017 and September 2018 are 
aggregated to the nearest hour. The detailed spatial resolution of the data means it is possible to 
perform more detailed analysis than is possible with most other TNC datasets. The individual-
level data provided by Uber lack sociodemographic information, which makes it challenging to 
estimate conventional disaggregate demand models. Thus, data is analyzed at a dissemination 
area (DA) level, and all trips are aggregated based on the trip generation and trip attraction. 
According to Statistics Canada, dissemination area (DA) is the smallest geographical unit for 
which all census data are distributed (Statistics Canada. 2016). Most of the cases DA is smaller 
than Traffic Analysis Zone (TAZ).  
 
This study focuses on 2017 and 2018 Uber trips to provide comparisons between years since 
there are only four months of data available for 2016. The full dataset (2016-2018) is used in 
section 5.5 for the autoregressive moving average (ARMA) model. We used only a portion of the 
data for the monthly models because we needed consistent coverage for all years of these 
models. We only had data for January-September for the 2018 data. That’s why in terms of trip 
generation and attraction model, Uber demand for September 2018 is used as the dependent 
variable. This is the final month (September 2018) for which data are available for 2018. To 
compare the two models, we used the Uber demand for September 2017 as a dependent variable 
for the trip generation and attraction model in 2017. In sections 5.1-5.4, models are estimated for 
total trip generation and attraction in September of each year, with data from earlier in the year 
included as lagged variables. 
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Figure 1 reveals the trip generation propensities of Uber trips in the year 2017 and 2018.  The 
number of TNC trips in January 2017 was roughly 2 million, rising to 3 million by the end of 
that year (a 50% increase). Demand grew much faster in 2018, with the same percentage increase 
in demand occurring by the end of the first nine months. The aggregated datasets are fused with 
land use, built environment and sociodemographic data by aggregating trips to DA. 
Sociodemographic attributes are then incorporated at the DA-level based on 2016 census data 
provided by Statistics Canada (Statistics Canada. 2016). Land use attributes are generated from a 
combination of census data (i.e., total population and DA land area), and firmographic data 
derived from enhanced points of interests (EPOI) files provided by DMTI Spatial Inc. (2019). 
The EPOI data lists all establishments in the study region, including their coordinates and 
industry designation by North American Industry Classification System (NAICS) code. These 
coordinates are used to characterize the types of establishments located in each DA. These 
statistics are generated to use as explanatory variables in the trip attraction models. A summary 
of the data fusion method is illustrated in Figure 2, including the model variables derived from 
each dataset.  
 
 

 
Figure 1 Trip Generation in 2018 and 2017  
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Table 1 shows the summary statistics of the key variables that are used in the empirical 
modelling. The City of Toronto is highly urbanized, as evident by more households living in 
apartments in tall buildings (greater than five storeys) than single-family detached dwellings in 
the average DA. However, despite the high density and accessibility of Toronto, many workers 
have commutes that exceed an hour. There is a high diversity in variable values across DA. TNC 
demand is highly variable between DA, with the standard deviation being a multiple of the 
average across Toronto. Comparing generation and attraction, average TNC attractions in 2018 
are noticeably lower than their respective generation totals. Past research suggests that TNCs are 
often used in a single direction of travel tour (Big Data Innovation Team 2019). The difference 
between generation and attraction represents a stronger concentration of trip generation in 
specific DA than attraction. For the time-series model, we also include variables derived from 
other sources that vary daily. These data include Toronto Transit Commission (TTC) trips (all 
modes), the mean temperature each day in the study period, and bikeshare trips with origins in 
downtown Toronto (Historical weather data, 2019). Monthly Uber trip data is aggregated in 
dissemination area-level. The mean value in Table 1 represents the average number of trips 
generated from all the DAs in a given month.   
 
The use of the terms “built environment” and “land use” in reference to features of a city that affect 
transportation demand is not consistent in the literature. In this paper, we rely on a combination of 
the definition of built environment by Sallis et al. (2012) and land use by Ewing and Cervero 
(2001). Land use is used to describe variables that result directly from zoning and land use 
regulations. These variables represent the local composition of residential and non-residential land 
use. Building environment variables are defined more broadly as infrastructure and urban form 
factors affecting the travel patterns of individuals. These factors manifest as travel times and mode 
choice variables that are directly influenced by the built environment - e.g., walking mode share is 
influenced by network connectivity, accessibility due to land use mix, and the quality and safety 
of pedestrian infrastructure (Sallis et al., 2012). 



 
 

 
Figure 2 Data Fusion Method  
 



 
 

TABLE 1 Descriptive Statistics of Key Variables (N = 3634 DA)  
* Count of households in DA 
** Count of establishments in DA 
 

Trip Generation Variable type 
(Land Use/Built 
Environment/ 

other) 

Mean Standard 
Deviation 

Census and EPOI data 2016 

The average age of the population (count) Demographic 41.29  5.50 
Married or living common-law couple* Demographic 322.27  270.90 
Two-person household* Demographic 89.96  105.36 
Private households by tenure: Owner* Demographic 161.77  157.42 
Apartment in a building with ≥5 storeys* Land Use 128.83  329.90 
Single-detached house* Land Use 75.97  75.97  
Mobility status: (non)-movers* Demographic 620.35  515.38 
Average commuting duration 15-29 minutes* Built 

Environment 
96.56  107.43 

Average commuting duration 45 to 59 
minutes* 

Built 
Environment 

49.13  51.88 

Average commuting duration > 60 minutes* Built 
Environment 

54.92  61.91 

Leave for work between 12 p.m. and 4:59 
a.m.* 

Demographic 51.44  57.08 

Leave for work between 5 a.m. and 5:59 a.m.* Demographic 15.14 18.35 
  Uber Data 2017 Uber Data 2018 
Total Generation in September  634,007 1,168,327 
  Mean Standard  

Deviation 
Mean Standard  

Deviation 
Lagged demand spring (number of trips) --- 656.72 2079.94 1968.13 6016.95 
Lagged demand early summer (number of 
trips) 

--- 675.71 2126.23 1009.68 3060.30 

Lagged demand late summer (number of trips) --- 655.26 2157.27 1233.65 3801.54 
Trip Attraction  Mean Standard 

Deviation 
  Census and EPOI Data 2016 
Private households by tenure: Renter* Demographic 138.51  229.35 
Apartment in a building with <5 storeys* Land Use 44.77 65.66 
Apartment in a building with ≥5 storeys* Land Use 75.99 329.90 
Single-detached house* Land Use 75.99 75.17 
Semi-detached house* Land Use 19.61 33.10 
Average commuting duration 15-29 minutes* Built 

Environment 
96.55 107.43 

Average commuting duration 45 to 59 
minutes* 

Built 
Environment 

49.11 51.88 

Average commuting duration > 60 minutes* Built 
Environment 

54.89 61.91 

Leave for work between 12 p.m. and 4:59 
a.m.* 

Demographic 51.41 57.08 

Commuting mode: Walk* Built 
Environment 

28.97 92.62 

Retail Stores** Land Use 5.90 33.32 
Government services** Land Use 1.33 0.45 
  Uber Data 2017 Uber Data 2018 
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  Mean Standard  
Deviation 

Mean Standard  
Deviation 

Lagged demand winter (number of trips) --- 574.73 2119.80 756.18 2704.63 
Lagged demand spring (number of trips) --- 641.21 2311.47 744.94 3006.76 
Lagged demand summer (number of trips) --- 667.98 2436.23 971.56 3372.89 
  Other Data Sources 
  Mean Standard  

Deviation 
Toronto Transit Commission (TTC) average 
weekday ridership 

Travel Variables 1685706.90 68037.39 

Mean temperature (°C)  Weather Variable 8.69 9.94 
Bikeshare trips (number of trips) Travel Variables  2034.95 2175.15 

 
Figure 3 to Figure 6 show the TNC demand variation in 2017 and 2018. TNC trips are 
concentrated in the central business district (lower center), Toronto Pearson International Airport 
(upper left), and Downsview Aiport/York University (upper center). The same spatial pattern is 
observed for both generation and attraction. Comparing plots for 2017 and 2018, the spatial 
distribution of trips is quite similar, but totals increase across the city. The lowest trip density is 
found in Scarborough at the eastern extreme of the city.  
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Figure 3 Trip Generation in 2018                             Figure 4 Trip Generation in 2017 

 
Figure 5 Trip Attraction in 2018                              Figure 6 Trip Attraction in 2017 
 
4. MODEL FORMULATIONS  

 
4.1 Constant Elasticity of Demand Model 
 
The multiplicative constant elasticity of demand model takes the following form (Greene 2005, 
Nerlove 1963): 
 𝐷 = 𝑋 𝑋 … 𝑋 ex p(𝛼 + α 𝑍 + 𝛼 𝑍 + ⋯ 𝛼 𝑍 + ε)                                           (1) 
 
 𝐷  =∏ 𝑋 ∏ (𝛽 + 𝛽 𝑍 )                                                                                              (2) 
 
where   
𝐷 = Total demand  
𝛼  = Constant 
𝑋  = Continuous variable 
𝛽  = Estimated parameter for continuous variable ∀𝑖 ∈ 𝑛 
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𝑍 = Dummy or categorical variable (log-transformation is not required) ∀𝑗 ∈  𝑚 
𝛼 =Estimated parameter for dummy or categorical variable 
ε = random error  
 
Taking log-transformations of the continuous variables in equation (2), the demand function takes 
the the following form: 

   
ln(𝐷) = 𝛼 + ∑ 𝛽 ln(𝑋 ) + ∑ 𝛼 𝑍 + ε                                                                        (3) 
 
This functional form was chosen for the following reasons: 

1.   A log-transformed constant elasticity formulation will ensure that the predicted 
demand value is non-negative. This property is critical in this study, since we are 
modelling Uber trip demand.   
2.   The parameter values are equivalent to the elasticity for continuous variables (as 
shown in equation (4)). 
3.  This study assumed a multiplicative error-term, since a few studies found that the 
multiplicative error model performs better than the additive error model (Iyaniwura et 
al., 2019). 

 
For the continuous variables in Equation (3), taking the partial derivative, the elasticity of the 
corresponding variable can be computed as:  
 

𝐸 =
( )

= = 𝛽         (4) 

 
4.2 Distributed Lag Model  
After carefully analyzing the historical data, it is assumed that the seasonal factors of past 
ridership may impact the future ridership of Uber. Therefore, distributed lag models are 
estimated for both trip generation and attraction. A distributed lag model accounts for the effect 
of repeated use of TNCs. Besides, a distributed lag model captures the seasonal effect on TNC 
demand.  If 𝐷  is a lagged dependent variable and γ is the corresponding parameter, using a 
constant elasticity demand function, the demand at time t can be computed using the following 
equation: 
  

ln(𝐷 ) = 𝛼 + γ ln(𝐷 ) + ∑ 𝛽 ln(𝑋 ) + ∑ 𝛽 𝑍 + ε                (5) 
 

According to Owen and Philips (1987), the relationships between demand at time t (𝐷 ) and the 
lagged demand (𝐷 ) can be written:  
 

ln(𝐷 ) − ln(𝐷 ) = 𝜂[ln(𝐷 ) − ln(𝐷 )]     (6) 
 
In equation (6) 𝜂 is the speed of adjustment, which should be in between zero to one (Brainard & 
Tobin 1968). The equality is true if 𝜂 is one, meaning the adjustment is immediate. If  𝜂 is close 
to zero, then no adjustment is observed (Brainard & Tobin 1968; Owen and Philips 1987).  
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4.3 Time-series Model  
For the time-series model, we adopted the autoregressive moving average (ARMA) (j,d,k) 
model, which harnesses the power of autoregressive (lagged dependent variable) terms (j) and 
moving average terms (k). ‘d’ means the number of times the data are differenced. The general 
form of the ARMA model can be written as follows:  
 

𝐷 = 𝛼 + 𝛽 X + 𝛷 𝐷 + 𝜃 ε + ε (7) 

 
 In equation (7)  
𝐷 = total demand  
𝐷  = lagged demand 
𝛼  = constant 
𝑋  = Explanatory variable 
𝛽 = Estimated parameter associated with explanatory variable  
𝑗 = The order of lagged demand  
𝑘 = The order of moving average  
𝛷=Parameter for lagged demand  
ε =Parameter for moving average component  
 
Random-walk and non-stationary issues of time-series data are well studied in the past literature 
(Chen, Varley & Chen, 2011). Random walk means that the future value of the dependent 
variable is a random step away from the current value. After a standard statistical test for the 
random walk, it is found that the time series data used for this study is not a random walk 
(Doornik & Hendry 2006). Besides, the Dickey-Fuller test is conducted to determine whether the 
dataset is non-stationary (Greene 2005). It is found that the time-series data used in this study is 
stationary. Therefore, no data transformation is required in this case, such as differencing and 
detrending. Differencing and detrending are commonly applied methods to ensure stationarity of 
a time-series dataset. Detrending is needed if the time-series dataset exhibits any specific trend. 
After estimating a regression model, we need to estimate the residuals. Eventually, we model the 
residuals if it shows a stationary pattern. When a variable is not stationary, another common 
method is using differenced variables (also known as “differencing”). A differenced variable can 
be generated by taking the difference between the original demand and the lagged demand.    
 
5. EMPIRICAL MODEL 

5.1 Monthly DA-level Trip Generation Model 2017 and 2018 
Monthly total Uber trips are aggregated at the DA-level for the year 2018. A total of 3,634 DAs 
are used for empirical modelling. Trip generation in September is used as the dependent variable 
because this is the final month for which data are available for 2018. A wide range of 
sociodemographic, land use and built environment data are used as explanatory variables. The 
previous months of data available for 2017 and 2018 are used to form seasonal lag variables to 
account for seasonal variation in Uber demand and unobserved spatial variation between DA. 
Table 2 shows the parameter estimation results of the trip generation model for September 2018 
using equation 5. It is found that the R-squared value is 0.985, which means 98.5% of the 
variation in trip generation can be explained by the explanatory variables included in this model. 
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Thus, the model’s goodness-of-fit is relatively high.  
 
All parameters are statistically significant at a 95% confidence interval. The model results show 
that the late-summer lagged demand (August) is positively correlated with the trip generation in 
September. The early-summer (May) lagged demand is also positively correlated with the trip 
generation in September. However, the coefficient of the lag-demand in late-summer (0.7) is 
higher than in the early summer. This finding is intuitive since naturally a user’s mode choice 
habit from the past month is more likely to affect the user’s current month’s mode choice than is 
their mode choice habit from three to four months earlier. In terms of the elasticity, lagged 
demand of late-summer indicates that a 1% increase in the demand in the previous month can 
increase 0.7% more TNC ridership in the current month.   
 
The average age of the population is positively correlated with TNC demand, indicating that, 
with an increasing number of older individuals in a DA, an increasing number of the TNC trips 
will be generated in that DA. Types of dwelling unit are added as explanatory variables in the 
trip generation model. It is found that if a specific DA has a higher number of single-detached 
houses, a reduced number of TNC trips will be generated from that DA. As expected, the 
coefficient for the ‘apartment in a building with more than five storeys’ is positive, indicating 
that, the higher number of apartments in the origin DA, the more TNC trips will be generated. It 
is found that the number of two-person households is negatively correlated with the number of 
generated trips. Many married or common-in-law couples fall within the category of the two-
person household. This group of people may have a car in the household, or they may use public 
transit for typical commuting, which reduces their reliance on TNCs.  
 
Trip departure time and commuting duration are two critical factors for TNC demand generation. 
The model results reveal that DA with high numbers of individuals who leave work between 
midnight and 4:59 am tend to generate more Uber trips. In Toronto, the subway closes at 1:30 
am, which forces workers to choose TNC late at night. The results demonstrate a negative 
correlation between average commuting duration of 15-29 minutes in DA-level and TNC trip 
generation. In contrast, the results demonstrate a positive correlation between average 
commuting duration greater than 60 minutes in DA-level and TNC trip generation. This finding 
suggests that Uber is more prevalent in those DAs where average commuting duration is more 
than 60 minutes. In other words, individuals are less likely to use Uber for short-haul trips. 
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TABLE 2 Trip Generation Model Results  
Trip Generation Model Results for 2018 Demand 

Number of Observations  3634 
R-squared 0.985 
Variable Parameter t-stat 
Constant 0.137 5.540 
Seasonality Lagged demand late summer 0.700 58.370 

Lagged demand early summer 0.295 24.640 
The average age of the population 0.017 2.620 
Single-detached house -0.004 -2.450 
Apartment in a building with ≥5 storeys 0.004 2.780 
Two-person household -0.017 -2.490 
Leave for work between 12 p.m. and 4:59 a.m. 0.010 2.920 
Average commuting duration 15-29 minutes -0.022 -4.270 
Average commuting duration > 60 minutes 0.013 4.120 

Trip Generation Model Results for 2017 Demand 
Number of Observations  3642 
R-squared 0.979 
Variable Parameter t-stat 
Constant 0.034 0.970 
 
Seasonality 

Lagged demand late summer 0.600 49.180 
Lagged demand early summer 0.317 22.220 
Lagged demand spring 0.081 7.960 

The average age of the population 0.027 1.82 
Single-detached house -0.004 -2.04 
Mobility status: non-movers -0.010 -1.380 
Average commuting duration > 60 minutes 0.016 3.770 
Leave for work between 5 a.m. and 5:59 a.m. -0.004 -1.660 

 
In terms of the trip generation model for 2017, a total of 3,642 DAs are retained for the empirical 
modelling after aggregating the monthly Uber trips to a DA-level. To match with the 2018 trip 
generation model, trip generation in September is used as the dependent variable. Table 2 depicts 
the parameter estimation results of the trip generation model for September 2017. The model’s 
goodness-of-fit is relatively high with an R-squared value of 0.979. This also indicates that 
97.9% of the variation in trip generation can be explained by the explanatory variables included 
in this model.  
 
The model result shows that all lag-demand parameters are positively correlated with the trip 
generation in September. The coefficient of the lagged demand of late summer (August) is higher 
than the coefficient of the lagged demand of early summer (May). In terms of the elasticity, 
lagged demand of late summer indicates that a 1% increase in the demand in the previous month 
can increase 0.6% more TNC ridership in the current month.  Despite the statistical significance, 
lagged demand in spring (April) has less influence on the TNC trip generation than the summer 
season.  
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The average age of the population is a significant predictor of Uber trip generation. The positive 
correlation of the age variable indicates that if a specific area has a higher number of older 
individuals, there is more likely to be an increase in Uber trip generation. Single-detached house 
is negatively correlated with TNC trip generation. Most of the single-detached houses in Toronto 
are situated in suburban areas where many households own at least one car. Therefore, Uber 
demand is significantly lower in these suburbs. The model results demonstrate a positive 
correlation between commuting trips, where trip duration is more than 60 minutes. This finding 
echoes the earlier trip generation model for 2018. This finding essentially suggests that 
individuals tend to use Uber for long duration trips than short duration trips. The model also 
reveals that individuals who leave for work between 5 am and 5:59 am negatively affect the TNC 
trip generation. This finding is intuitive since most of the commuters leave home for work in the 
early morning and they are more likely to use a regular mode (e.g., automobile, transit, bike) 
than Uber. 
 
5.2 Monthly DA-level Trip Attraction Model 2017 and 2018 
Uber trips are aggregated for the destination DA for the year of 2018. A total of 3,649 DAs trip 
records are used as the dependent variable. Similar to the trip generation model, a wide range of 
sociodemographic, land use, and built environment data are fused with the aggregate TNC 
demand. Besides, seasonal lagged demand is incorporated into the model. Table 3 shows the 
parameter estimation results of the trip attraction model for September 2018 using equation 5. 
The R-squared value is 0.972, which indicates a reasonably good fit. This also indicates that 
97.2% of the variation in trip attraction can be explained by the explanatory variables included in 
this model. All parameters used in this model are statistically significant at a 95% confidence 
interval. 
 
The model result shows that the influence of lagged ridership and seasonal TNC ridership are 
statistically significant. The model result shows that the summer (May) lagged demand is 
positively correlated with the trip attraction in September. In terms of elasticity, this finding 
indicates that a 1% increase in summer demand can increase Uber trip attraction by 0.66%.  The 
winter (January) lagged demand is also positively correlated with the trip attraction in 
September. However, the effect of summer demand is slightly higher than the effect of winter 
demand on Uber trip attraction. The negative sign for single-detached house indicates that if 
certain areas have government services, it is less likely to generate Uber trips destined to those 
areas. Single-detached house is a significant predictor for Uber trip attraction. The model results 
indicate that Uber trip attraction decreases with an increasing number of a single-detached house. 
The model also indicates that apartment buildings with less than five storeys are positively 
correlated with Uber trip attraction. These results are expected because most individuals who live 
in downtown tend to live in apartments. Therefore, the Uber trip attraction is higher in such areas 
than the suburbs where most individuals live in detached houses or semi-detached houses. If the 
household tenure category is renting, this attracts more Uber trips. These findings are intuitive 
since individuals who rent a house/apartment are less likely to own an automobile than 
individuals who permanently live in a house/apartment that they own. 
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TABLE 3 Trip Attraction Model Results 
 

Trip Attraction Model Results for 2018 Demand 
Number of Observations  3649 
R-squared 0.972 
Variable Parameter t-stat 
Constant 0.485 17.600 
Seasonality Lagged demand summer 0.676 45.840 

Lagged demand winter 0.287 20.090 
Government Services -0.020 -1.680 
Single-detached house -0.003 -1.880 
Apartment in a building with <5 storeys 0.003 1.780 
Private households by tenure: renter 0.021 6.540 
Average commuting duration 15-29 minutes -0.031 -5.220 
Average commuting duration > 60 minutes 0.030 7.850 

Trip Attraction Model Results for 2017 Demand 
Number of Observations  3648 
R-squared 0.949 
Variable Parameter t-stat 
 Constant 0.012 0.340 
 
Seasonality 

Lagged demand summer 0.533 43.870 
Lagged demand spring 0.277 11.180 
Lagged demand winter 0.162 6.910 

Semi-detached house -0.0003 -2.070 
Leave for work between 12 p.m. and 4:59 a.m. 0.007 1.290 
Average commuting duration 15-29 minutes 0.028 3.160 

Retail Stores 0.017 3.480 
Commuting mode: Walk -0.004 -0.990 

 
For the year of 2017, all Uber trips are aggregated based on the destination DA. A total of 3,648 
DA are used for empirical modelling. Table 3 shows the estimated parameters of the trip 
attraction model for September 2017. The R-squared value is 0.949, which shows that 94.9% of 
the variation in trip attraction can be explained by the explanatory variables included in this 
model. In terms of seasonality, summer, spring, and winter lagged demand are included as 
explanatory variables. Overall, the model displays a positive correlation with all lagged demand 
variables.  
 
The summer (May) lagged demand is more influential than the spring (March) and winter 
(January). The negative sign of the parameter for walk mode indicates that the number of 
commuters who walk to the destination increases, Uber trip attraction will be decreased. The trip 
attraction model for the year 2017 indicates that TNC demand increases if there are more retail 
stores in a dissemination area. The model results indicate that the dissemination areas where 
workers leave for work between midnight and 4:59 am tend to attract more TNC trips. This 
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finding is expected since there are no subway services in the City of Toronto after 1:30 am. Even 
though bus services are operated along the subway corridor in late-night, many individuals 
choose Uber as a convenient alternative in such cases. Similar to the other models discussed 
above, it is found that an increase of semi-detached houses in a DA decreases the TNC demand. 
 
5.3 Autoregressive Moving Average Model for Downtown Toronto  
 
Table 4 shows the parameter estimation results of the ARMA model. Even though conventional 
trip generation model can account for the seasonal effect, its forecasting performance is often 
poor. In this study, the 24-months Uber ridership data (September 2016 to September 2018) is 
aggregated for the downtown core, which is also known as planning district-1. A wide range of 
time-varying attributes such as mean temperature, total daily precipitations, bike-sharing 
demand, and transit trips are included in the model. 
  
The model results indicate that TNC demand increases with increasing temperature. It is also 
found that the total daily precipitation is a significant predictor of Uber ridership. The total daily 
precipitation has a positive sign indicating that with increasing rain, individuals are more like to 
use Uber.  Aggregate bike-sharing trip count has a negative correlation with Uber trip attraction. 
A substantial portion of downtown Toronto roads have separated bike lanes, and during rush 
hour, bike share can be a faster and more affordable mode for commuters. Therefore, the 
negative correlation is expected between the bike share demand and the Uber demand. The 
model results also indicate that average weekday transit trips are negatively correlated with Uber 
trip attraction. In a high-frequency transit corridor, individuals rely more on transit. Therefore, 
this finding is intuitive. 
 
TABLE 4 ARMA (1,0,1) Model Results   
 
Number of Observations 754 
Sum of squares 335.14 
Variable Parameter t-stat 
Constant 4.103 13.44 
Mean temperature (°C) 0.030 16.9 
Total daily precipitations (mm) 0.013 3.83 
Bike share trips -0.169 -18.35 
Average weekday transit trips -0.087 -5.64 
TNC ridership at t-1 (AR-1) 0.272 8.8 
Moving average component 0.607 10.86 
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6. CONCLUSIONS  
This paper put forward several empirical findings around the theme of the temporal and spatial 
demand generation of transportation network companies. This study made use of a multiyear 
dataset, which consists of Uber trips from September 2016 to September 2018. Using 
multiplicative constant elasticity demand functions, a series of aggregate demand models are 
estimated to investigate the determinants of the TNC demand in the City of Toronto, a study that 
has not been done before in this region. Besides, to capture the effect of weather, bike-sharing, 
and transit trips on Uber demand generation, a time-series model-ARMA is also estimated. This 
analysis has added important empirical implications to the under-discussed issue of aggregate 
demand modelling of TNC trips, and this finding can be transferrable to other megacities in 
North America. 

 
It is found that the goodness-of-fit of all trip generation and attraction models are over 0.95, 
which represents a very good fit. All models show that lag-demand is a significant predictor of 
Uber demand. The model result shows that summer lagged demand (May) is positively 
correlated with trip generation in September. The average age of the population is positively 
correlated with TNC demand, indicating that, with an increasing number of older individuals in a 
DA, an increasing number of TNC trips will be generated in that DA. It is found that the number 
of single-detached houses is negatively correlated with Uber demand, whereas the number of 
‘apartment in a building with more than five storeys’ is positively correlated. The household 
tenure category is a significant predictor of Uber trip attraction. Households that rent their 
dwelling are more likely to make Uber trips. These findings are intuitive since individuals who 
rent a house/apartment are less likely to own an automobile than individuals who permanently 
live in a house/apartment which they own.  
 
The time-series model reveals that total daily precipitation has a positive sign indicating that with 
increasing rain, individuals are more likely to use Uber.  The model results indicate that TNC 
demand increases with increasing temperature. As expected, aggregate bike-sharing trip count 
has a negative correlation with Uber trip attraction. The model results demonstrate that average 
weekday transit trips are negatively correlated with Uber trip attraction. In a high-frequency 
transit corridor, individuals rely less on Uber.   

 
One critical assumption made in this study is that statistics obtained from the Census profile are 
relatively stable over the study period of 2016 to 2018. It may be useful to examine how these 
statistics have changed over the study period and include this variation in the models. The 
finding of significant parameters for overnight commuting trips and long commutes (> 60 
minutes) suggests that Uber is filling gaps in transit. We perceive two possible policy directions 
for the City of Toronto based on these findings and trends in other cities. The city could accept 
this complementary relationship and incorporate patterns of Uber use into their planning of bus 
routing and scheduling. Alternatively, the city could consider the adoption of other on-demand 
transportation options, perhaps with a larger passenger capacity to address environmental 
concerns associated with operating many small vehicles. 
 
One possible extension of this study will be panel data regression analysis. Since we have daily 
Uber demand for each dissemination area (DA), a panel data regression analysis could provide 
more insight. Also, a more comprehensive travel survey should be conducted among Uber and 
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Lyft users and drivers to understand their sociodemographic profile. Due to privacy reasons, the 
dataset presented in this study did not include any personal (i.e., age, gender, income) and 
household level (i.e., number of vehicles, total household income) attributes.   
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