Md Rashad Al Hasan Rony

Md Rashad Al Hasan Rony
  • PhD Student in Conversational AI
  • Scientific Researcher at Fraunhofer Institute for Intelligent Analysis and Information Systems

About

23
Publications
2,272
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
168
Citations
Introduction
Md Rashad Al Hasan Rony currently works at the Fraunhofer IAIS. Md Rashad Al Hasan does research in Conversational AI. Most recent publication is DialoKG: Knowledge-Structure Aware Task-Oriented Dialogue Generation
Current institution
Fraunhofer Institute for Intelligent Analysis and Information Systems
Current position
  • Scientific Researcher

Publications

Publications (23)
Preprint
Full-text available
Bengali is the seventh most spoken language on earth, yet considered a low-resource language in the field of natural language processing (NLP). Question answering over unstructured text is a challenging NLP task as it requires understanding both question and passage. Very few researchers attempted to perform question answering over Bengali (nativel...
Chapter
Retrieval-augmented generation has become an effective mechanism for conversational systems in domain-specific settings. Retrieval of a wrong document due to the lack of context from the user utterance may lead to wrong answer generation. Such an issue may reduce the user engagement and thereby the system reliability. In this paper, we propose a co...
Chapter
Knowledge graphs comprise structural and textual information to represent knowledge. To predict new structural knowledge, current approaches learn representations using both types of information through knowledge graph embeddings and language models. These approaches commit to a single pre-trained language model. We hypothesize that heterogeneous l...
Preprint
Full-text available
Knowledge Graph Embedding models have become an important area of machine learning. Those models provide a latent representation of entities and relations of a knowledge graph which can then be used in downstream machine learning tasks such as link prediction.The learning process of such models can be performed by contrasting positive and negative...
Preprint
Full-text available
Knowledge Graphs, such as Wikidata, comprise structural and textual knowledge in order to represent knowledge. For each of the two modalities dedicated approaches for graph embedding and language models learn patterns that allow for predicting novel structural knowledge. Few approaches have integrated learning and inference with both modalities and...
Conference Paper
Full-text available
Climate change has a severe impact on the overall ecosystem of the whole world, including humankind. This demo paper presents Climate Bot - a machine reading comprehension system for question answering over documents about climate change. The proposed Climate Bot provides an interface for users to ask questions in natural language and get answers f...
Preprint
Full-text available
Task-oriented dialogue generation is challenging since the underlying knowledge is often dynamic and effectively incorporating knowledge into the learning process is hard. It is particularly challenging to generate both human-like and informative responses in this setting. Recent research primarily focused on various knowledge distillation methods...
Preprint
Full-text available
Evaluating Natural Language Generation (NLG) systems is a challenging task. Firstly, the metric should ensure that the generated hypothesis reflects the reference's semantics. Secondly, it should consider the grammatical quality of the generated sentence. Thirdly, it should be robust enough to handle various surface forms of the generated sentence....
Preprint
Full-text available
Knowledge Graph Embeddings (KGEs) encode the entities and relations of a knowledge graph (KG) into a vector space with a purpose of representation learning and reasoning for an ultimate downstream task (i.e., link prediction, question answering). Since KGEs follow closed-world assumption and assume all the present facts in KGs to be positive (corre...
Article
Full-text available
Most Knowledge Graph-based Question Answering (KGQA) systems rely on training data to reach their optimal performance. However, acquiring training data for supervised systems is both time-consuming and resource-intensive. To address this, in this paper, we propose Tree-KGQA , an unsupervised KGQA system leveraging pre-trained language models and...
Article
Full-text available
SPARQL query generation from natural language questions is complex because it requires an understanding of both the question and underlying knowledge graph (KG) patterns. Most SPARQL query generation approaches are template-based, tailored to a specific knowledge graph and require pipelines with multiple steps, including entity and relation linking...
Article
Full-text available
Knowledge graph embedding models have become a popular approach for knowledge graph completion through predicting the plausibility of (potential) triples. This is performed by transforming the entities and relations of the knowledge graph into an embedding space. However, knowledge graphs often include further textual information stored in literal,...
Chapter
Generating knowledge grounded responses in both goal and non-goal oriented dialogue systems is an important research challenge. Knowledge Graphs (KG) can be viewed as an abstraction of the real world, which can potentially facilitate a dialogue system to produce knowledge grounded responses. However, integrating KGs into the dialogue generation pro...
Preprint
Full-text available
In the last years, there have been significant developments in the area of Question Answering over Knowledge Graphs (KGQA). Despite all the notable advancements, current KGQA datasets only provide the answers as the direct output result of the formal query, rather than full sentences incorporating question context. For achieving coherent answers se...
Preprint
Full-text available
Generating knowledge grounded responses in both goal and non-goal oriented dialogue systems is an important research challenge. Knowledge Graphs (KG) can be viewed as an abstraction of the real world, which can potentially facilitate a dialogue system to produce knowledge grounded responses. However, integrating KGs into the dialogue generation pro...
Chapter
Non-goal oriented, generative dialogue systems lack the ability to generate answers with grounded facts. A knowledge graph can be considered an abstraction of the real world consisting of well-grounded facts. This paper addresses the problem of generating well-grounded responses by integrating knowledge graphs into the dialogue system’s response ge...
Preprint
Full-text available
Non-goal oriented, generative dialogue systems lack the ability to generate answers with grounded facts. A knowledge graph can be considered an abstraction of the real world consisting of well-grounded facts. This paper addresses the problem of generating well grounded responses by integrating knowledge graphs into the dialogue systems response gen...
Conference Paper
One of the most prominent and metabolically the most active organ of human body is liver, whose formation is built upon subtle organic compounds and responsible for storing the energy of a living body. Damaging this organ could lead to liver failure and possibly imply to a gruesome death. An early detection of primary causes of liver failure could...

Network

Cited By