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Abstract 
In urbanized regions, searching for a parking spot not only demands a substantial amount of valuable time but also 

burns additional fuel and emits a wide range of harmful pollutants. Vehicular emissions are one of the prime 

contributors to global warming and a leading cause of many health problems. In this study, we primarily focused to 

study the environmental impact due to vehicular activity during the parking space search process. As a case study, a 

high-fidelity microscopic traffic simulation model was developed for an urban university campus with 22 student 

parking lots to represent the parking behavior using agent-based modeling. To study the environmental impact, a high-

resolution emission model was integrated into the simulation model. The necessary data required for this study was 

collected from field surveys and the university parking and transportation department. The amounts of different 

harmful pollutants were estimated for the current practice where the students searched for parking spots randomly 

without any information on the availability of the parking spaces in different parking lots. A what-if scenario was 

developed where the students were provided real-time information on space availability of the parking lots via ‘crowd-

informing’. Our simulation results revealed that for the what-if scenario, on average, the vehicles emitted 21.49% less 

carbon dioxide, took 55.63% less time to park, and burnt 18.65% less gasoline. The promising findings of this study 

will help the authority to adopt better parking policies which could potentially improve the air quality of the university 

campuses significantly. 
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1. Introduction 
With an overall growth of universities’ enrollment, the demand for parking spaces on or close to campus has increased 

across many campuses. This problem, not unique to university campuses, occurs across many densely urbanized 

regions across the world. This causes an increasing amount of time to search for a parking spot [1] which, in turn, 

leads to many problems in the future such as extended car miles, environmental impact, and more expenses on 

gasoline, not to mention the time wasted in the search for these parking spots and the resulting traffic congestion [2]. 

Smart parking system (SPS) and informing the users regarding parking availability of the parking lots or ‘crowd-

informing’ using mobile applications are becoming popular day by day. In literature, several studies are found on the 

effectiveness of crowd-informing on parking performances like search time, parking fee, parking revenue, and walking 

distance from the parking spot to the destination as performance measures [3]–[5]. However, the number of studies 

addressing the environmental impacts of ‘crowd-informing’ or SPS is very limited. A study by Surpris et al. [6] is 

found in literature in this context where the authors studied a university parking lot to investigate the benefits of SPS 

on carbon dioxide (CO2) emission. Their discrete event simulation results showed that smart parking could save on 

average 11 seconds per vehicle which could reduce 64.3 kg of CO2 emission during a 19-week academic semester. 

There are several limitations to this study. First, the authors simulated only one parking lot which is not sufficient to 

represent the actual total parking system of a university. Second, to estimate CO2 emission, the authors assumed a 

constant emission factor, 423 grams/mile, in their simulation model. Practically, CO2 emission can vary significantly 

over a travel distance and it is a complex function of vehicle speed, acceleration, mass, aerodynamic drag, and several 

other factors. Lastly, the authors did not consider other harmful pollutants, e.g., carbon monoxide (CO), nitrogen 

oxides (NOx), and hydrocarbons (HC), in their model. 

In this study, we addressed the aforementioned limitations and investigated the environmental impacts along with 

parking performances of the SPS using the agent-based modeling (ABM) approach. We integrated a high-resolution 

emission model into our microscopic traffic simulation. Consequently, the developed model provides a unique 

capability to evaluate the energy and environmental impact of different parking strategies with high accuracy. 
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2. Methodology 
2.1 Estimation of Vehicular Emissions 

Vehicular emissions can be estimated by the average speed emission model or instantaneous emission model. The 

average speed emission model requires a minimum amount of data and is computationally inexpensive, which makes 

it suitable for macro-level emission modeling. On the other hand, the instantaneous emission model is computationally 

expensive but capable of capturing emissions at the project level with great accuracy. In this study, we utilized one of 

the instantaneous emission models, the vehicle specific power (VSP) demand model which is recommended by the 

United States Environmental Protection Agency (US EPA) for project-level emission modeling [7]. VSP can be 

described as the instantaneous power demand per unit mass considering the loads resulting from acceleration, 

aerodynamic drag, hill climbing, and rolling resistance. It can be calculated utilizing Equation 1 [8]. 

 V𝑆𝑃 = 𝑣(𝑎 +  𝑔 𝑠𝑖𝑛𝜃 + 𝜇𝑟𝑟𝑔 𝑐𝑜𝑠𝜃 + 𝐶𝑓𝑎) +
1

2𝑚
𝜌𝑎𝐶𝑑𝐴𝑓𝑣3 (1) 

where 𝑣 is the vehicle speed (𝑚/𝑠), 𝑎 is the acceleration or deceleration (𝑚/𝑠2), 𝑔 is the gravitational acceleration 

(typical value 9.81 𝑚/𝑠2),  𝜃 is the road grade (we assumed 0 𝑟𝑎𝑑𝑖𝑎𝑛), 𝜇𝑟𝑟 is the coefficient of rolling resistance 

(typical value 0.01), 𝐶𝑓 is the mass correction factor (typical value 0.05), 𝑚 is the vehicle mass (𝑘𝑔), 𝜌𝑎 is the air 

density (typical value 1.225 𝑘𝑔/𝑚3), 𝐶𝑑 is the coefficient of aerodynamic drag (typical value 0.32), and 𝐴𝑓 is the 

vehicle frontal surface area (𝑚2). Once we have second by second VSP values of a vehicle, the corresponding 

environmental emissions can be estimated from Table 1. 

Table 1: VSP bins and corresponding emissions. Source: [8]. 

VSP Bin CO2 (g/s) CO (g/s) NOx (g/s) HC (g/s) 

vsp < -2 1 1.671 0.0078 0.0009 0.0005 

-2 ≤ vsp < 0 2 1.458 0.0039 0.0006 0.0003 

0 ≤ vsp < 1 3 1.135 0.0033 0.0003 0.0004 

1 ≤ vsp < 4 4 2.233 0.0083 0.0012 0.0004 

4 ≤ vsp < 7 5 2.920 0.0110 0.0017 0.0005 

7 ≤ vsp < 10 6 3.525 0.0170 0.0024 0.0007 

10 ≤ vsp < 13 7 4.107 0.0200 0.0031 0.0008 

13 ≤ vsp < 16 8 4.635 0.0292 0.0042 0.0010 

16 ≤ vsp < 19 9 5.161 0.0355 0.0051 0.0011 

19 ≤ vsp < 23 10 5.633 0.0551 0.0059 0.0014 

23 ≤ vsp < 28 11 6.535 0.1138 0.0076 0.0021 

28 ≤ vsp < 33 12 7.585 0.2076 0.0121 0.0034 

33 ≤ vsp < 39 13 9.024 0.4418 0.0155 0.0049 

 vsp ≥ 39 14 10.088 0.8823 0.0179 0.0109 

2.2 Estimation of Fuel Consumption 

The amount of fuel consumption at any time can be calculated using Equation 2 [9]. 

 𝐹𝑅 =
𝜙

𝜓𝜌
(𝑘𝑁𝑉 +

𝑃𝑒𝑛𝑔𝑖𝑛𝑒 𝜂⁄

1000
) (2) 

where 𝜙 is the fuel to air mass ratio (typical value 14.7), 𝜓 is the fuel calorific value (45.8 𝐾𝐽/𝑔 for gasoline), 𝜌 is 

the fuel density (0.7489 𝑔/𝑚𝑙 for gasoline), 𝑘 is the engine friction factor (typical value 0.2), 𝑁 is the engine speed 

(𝑟𝑒𝑣/𝑚𝑖𝑛), 𝑉 is the engine volume (𝐿), 𝑃𝑒𝑛𝑔𝑖𝑛𝑒  is the engine output power (𝑊), and 𝜂 is the engine thermal efficiency 

(typical value 0.3). Engine speed 𝑁 can be calculated using Equation 3. 

 𝑁 = 336.13 (
𝛼𝑎𝑥𝑙𝑒𝛼𝑡𝑟𝑣𝑚𝑝ℎ

𝑑𝑡𝑦𝑟

) (3) 

where 𝛼𝑎𝑥𝑙𝑒 is the axle gear ratio, 𝛼𝑡𝑟 is the transmission gear ratio, 𝑣𝑚𝑝ℎ is the vehicle speed (𝑚𝑖𝑙𝑒/ℎ𝑜𝑢𝑟), and 𝑑𝑡𝑦𝑟 

is the tire diameter (𝑖𝑛𝑐ℎ). Engine output power 𝑃𝑒𝑛𝑔𝑖𝑛𝑒 can be computed using Equation 4. 

 𝑃𝑒𝑛𝑔𝑖𝑛𝑒 = 𝑃𝑡𝑟𝑎𝑐𝑡 𝜂𝑝𝑡⁄  (4) 

where 𝑃𝑡𝑟𝑎𝑐𝑡 is the tractive power required at wheels (𝑊), and 𝜂𝑝𝑡 is the power train efficiency (typical value 0.85). 

Tractive power 𝑃𝑡𝑟𝑎𝑐𝑡  can be calculated utilizing Equation 5. 
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 𝑃𝑡𝑟𝑎𝑐𝑡 = 𝑉𝑆𝑃 × 𝑚 (5) 

where 𝑉𝑆𝑃 is the vehicle-specific power described in Equation 1, and 𝑚 is the vehicle mass (𝑘𝑔). 

3. Simulation Modeling 
3.1 Agent-based Modeling 

Agent-based modeling (ABM) is a bottom-up robust modeling technique where agents are the constituent units of the 

system. The macro-level behavior of the system is driven by the agent-agent and agent-environment interactions at a 

micro-level. ABM is capable of capturing the system behavior at a high level of granularity and this property has made 

it an excellent choice for modeling complex adaptive systems like microscopic traffic simulation. In this study, we 

modeled a university parking system using the ABM approach in AnyLogic (University edition 8.5.1), a powerful 

multimethod simulation modeling software that has been used in complex transportation problems successfully [10], 

[11]. Figure 1 exhibits the traffic simulation framework where vehicle volume data, vehicle arrival schedule, vehicle 

attributes, traffic signal, and road network geometry are the primary inputs of the simulation model. Necessary 

statistics, e.g., time, vehicle index, vehicle type, speed, acceleration, engine speed, and road grade data are collected 

every second for all the vehicles searching for parking spaces. The collected data are then plugged into the emission 

model to estimate the amount of CO2, CO, NOx, and HC emissions. 

 

Figure 1: Traffic simulation framework followed in this study 

3.2 Case Descriptions and Data collection 

In this paper, the University of Texas at Arlington (UTA) campus has been selected as our case study. UTA is located 

in Arlington, Texas, one of the fastest-growing communities and the 48th most populous city in the United States [12]. 

The campus is categorized as an urban-type with an area of approximately 420 acres and a student body comprising 

of  43,939 graduate and undergraduate students. Driving is the predominant mode of transportation to reach the campus 

and the university has got 21 student general parking lots with an approximate capacity of 9,500 spaces [13]. Figure 

2 illustrates the road network and location of the student parking lots in the AnyLogic simulation environment. The 

data required for this study are collected from the UTA Parking and Transportation Services, UTA Office of Records 

and Registrations, field survey, and the City of Arlington. These data include the capacity of the parking lots, students’ 

arrival rate, parking demand, class schedules of the students, enrollment of the students, GIS map of the university 

area, traffic signal timings at road intersections, and street traffic volumes. The primary source of parking demand 

comes from the students who drive their vehicles to the campus for attending classes. Therefore, students’ arrival, 

destination buildings, and parking demand data of the parking lots have been derived from the class schedule and 

enrollment data. 
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3.3 Agents 

In the simulation model, two types of vehicles, sedan and SUV, are modeled as two classes of agents with a distribution 

of 79%, and 21%, respectively. The distribution is obtained from the field survey. Additionally, another class of 

vehicle agent is considered in the model, which is just a part of the traffic volume on the road network, not intended 

to park in the university student parking lots. By adding this third vehicle agent class, the on-campus and off-campus 

traffic flows, which interplay with each other constantly, can be represented in a more realistic manner. The parameters 

defined for the agents include- vehicle mass, engine volume, engine thermal efficiency, transmission gear ratio, axle 

gear ratio, power train efficiency, tire diameter, frontal surface area, destination building, parking lot preference order, 

search start time, search stop time, and parking duration. 

3.4 Model Assumptions 

Several assumptions are made for the simulation, which include – (a) All working days have the same demand pattern 

for parking. (b) An additional 10% arrival rate is added with the hourly arrival rate because some students come to 

campus with their vehicles for different reasons other than attending classes. (c) Only student parking is considered in 

this study; faculty, staff, and visitors are excluded. (d) Car-pooling is not considered. (e) No unauthorized vehicles 

park in the student parking lots. 

 

Figure 2: UTA road network and location of student parking lots in the AnyLogic® simulation environment. Base 

map source: [13] 

3.5 Experimental Design 

3.5.1 Baseline Scenario 

This is the present case of the UTA parking system where the users do not have any sort of information regarding the 

parking lots' availability. After entering the university area, based on the destination building, a user drives towards 

his/her preferred parking lot directly. If no spot is available in the parking lot, the driver cruises to the next preferred 

parking lot, and this loop goes on until s/he could manage an empty parking spot. After parking there for a duration 

of 𝑇, the user exits from the parking lot and finally exits from the system. We assume that the parameter 𝑇 follows a 

triangular distribution with a minimum value as 1 hour, maximum value as 10 hours, and mode value as 4 hours. 

3.5.2 ‘Crowd-informing’ Scenario 

In this case, the users have access to parking lots' space availability information through ‘crowd-informing’ which can 

be described as the dissemination of collected and processed data to the target ‘crowd’ and it can be done through a 

mobile app or a website. To better understand the impact of ‘crowd-informing’ on parking efficiency, we presume 

that a mobile app that enables information dissemination is available. A central database is updated every time a 

vehicle is parked or exit from a parking lot. Users can get real-time information about the parking lots and choose one 

for the destination from his/her preference list. 
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4. Results and discussions 
One of the advantages of ABM is that the activity of every agent can be traced distinctly. From our simulation, we 

collected statistics from every vehicle agent related to parking performance metrics including parking search time, 

distance driven, the number of lots searched, and fuel burnt during the search process for an empty parking spot. We 

also collected the related environmental emissions (i.e., CO2, CO, NOx, and  HC) from vehicular parking search 

activity. The simulation was run for the morning hours (7:00 am to 11:59 am) when the parking lots experience the 

peak demand for parking. 

Figure 3 shows the sample distributions of the related performance metrics for baseline and ‘crowd-informing’ 

scenarios for a random simulation iteration. As per the plots, baseline distributions are skewed and have longer right 

tails; this means that the worst situations are more like to happen in the case of baseline scenario compared to the 

‘crowd-informing’ scenario. The extreme values of parking search time, visited parking lots, traveled distance, burnt 

gasoline, and emitted CO2 are 1,614 seconds (or 27 minutes), 4 lots, 4.7 miles, 1,067 ml, and 3,164 grams CO2, 

respectively. On the other hand, as shown in the ‘crowd-informing’ scenario plots, access to real-time parking 

information not only improves the mean values of the performance metrics but also reduces the extreme cases 

(relatively shorter right tails of the distributions). For example, the extreme values of parking search time, visited 

parking lots, traveled distance, burnt gasoline, and emitted CO2 are 446 seconds (or 7.4 minutes), 2 lots, 2.5 miles, 

741 ml, and 1,976 grams CO2, respectively. 

 

Figure 3: Sample distribution of different performance metrics for different parking strategies 

Table 2 depicts the values of mean, standard deviation (SD), and confidence interval (CI) of the performance metrics 

for both baseline and ‘crowd-informing’ scenarios, and also compares the metrics in between these two. According to 

the table, if drivers are provided with real-time parking information, on average the search time will decrease by 

55.63%, traveled distance will decrease by 18.94%, the number of searched lots will decrease by 43.58%, fuel 

consumption will decrease by 18.65%. Moreover, 21.49% less CO2, 27.73% less CO, 23.73% less NOx, and 23.26% 

less HC will be emitted due to the parking search process. The 99% confidence intervals of the performance metrics 

for baseline and ‘crowd-informing’ scenarios do not overlap with each other. Therefore, we can say that the mean 

values of performance metrics for the ‘crowd-informing’ scenario are statistically different from the baseline scenario. 

Hence, the performance improvements obtained from the ‘crowd-informing’ scenario are statistically significant at 

the 0.01 level. 

There are some limitations of this study. This study did not address the potential safety issue of using the mobile 

application during driving. Moreover, instead of going to the most preferred parking lot, drivers would utilize their 

previous experience and drive to the parking lots with a better chance of having empty spots. This aspect of human 

behavior has not been investigated in our simulation model. Future studies can address these aforementioned 

limitations. 
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Table 2: Summary results of the simulation experiments for 50 iterations 

Performance metrics Scenarios Mean SD 99% CI Improvement 

Search time 
(seconds) 

Baseline 209.608 10.934 (205.464 - 213.752) 
55.63% 

Crowd-informing 92.999 0.936  (92.733 - 93.265) 

Distance travelled 
(miles) 

Baseline 1.320 0.016 (1.314 - 1.326) 
18.94% 

Crowd-informing 1.071 0.007 (1.069 - 1.073) 

Number of lots 
searched 

Baseline 1.788 0.030  (1.777 - 1.8) 
43.58% 

Crowd-informing 1.005 0.003  (1.004 - 1.006) 

Fuel burnt (ml) 
Baseline 264.967 10.822 (260.866 - 269.069) 

18.65% 
Crowd-informing 215.559 7.460  (213.439 - 217.679) 

CO2 emission (grams) 
Baseline 780.053 28.386  (769.295 - 790.811) 

21.49% 
Crowd-informing 612.448 18.671  (607.142 - 617.754) 

CO emission (grams) 
Baseline 5.425 0.134 (5.375 - 5.476) 

27.26% 
Crowd-informing 3.953 0.078 (3.931 - 3.976) 

NOx emission 
(grams) 

Baseline 0.591 0.012 (0.587 - 0.596) 
23.73% 

Crowd-informing 0.452 0.007 (0.45 - 0.454) 

HC emission (grams) 
Baseline 0.426 0.021  (0.418 - 0.434) 

23.26% 
Crowd-informing 0.330 0.014 (0.326 - 0.334) 

5. Conclusion 
In this study, we used ABM to simulate the complex nature of the parking system of an urban university campus. A 

high-resolution emission model was integrated into our microscopic traffic simulation to evaluate environmental 

impacts due to different parking behavior. The developed simulation model can afford a high level of fidelity and 

sensitivity making it capable of evaluating different intervention strategies to improve the parking process taking into 

consideration environmental impacts in addition to other parking metrics. In the case study, we measured how the 

performance metrics changed if real-time parking information became available to the users through ‘crowd-

informing’. The simulation results show that both environmental emissions and parking performance metrics improve 

significantly when users choose parking lots based on real-time parking spot availability information. We expect that 

the findings of this study will help the policymakers to develop and adopt more effective and environmentally 

sustainable parking strategies which could potentially improve the air quality of the university campuses. 
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