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a b s t r a c t

We study the interaction between different types of dispersal, intrinsic growth rates and carrying capacities

of two competing species in a heterogeneous environment: one of them is subject to a regular diffusion while

the other moves in the direction of most per capita available resources. If spatially heterogeneous carrying

capacities coincide, and intrinsic growth rates are proportional then competitive exclusion of a regularly

diffusing population is inevitable. However, the situation may change if intrinsic growth rates for the two

populations have different spatial forms. We also consider the case when carrying capacities are different.

If the carrying capacity of a regularly diffusing population is higher than for the other species, the two

populations may coexist; as the difference between the two carrying capacities grows, competitive exclusion

of the species with a lower carrying capacity occurs.

© 2015 Elsevier Inc. All rights reserved.
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. Introduction

Spatial heterogeneity of the environment and species distribution

s an important characteristic in population ecology. The space move-

ents are usually modeled with a diffusion term, and a certain effort

as undertaken to explain the role of diffusion coefficients in het-

rogeneous environments. If the environment is heterogeneous, and

he per capita growth functions include a sum of population densities

hen the population with the slowest diffusion survives in compe-

ition with similar species which differ by diffusion coefficient only

12]. However, if we have a Lotka system with only partially shared

esources, the situation changes [27]: there is an asymptotically sta-

le coexistence equilibrium once the difference between the diffusion

ates is not very significant. An interesting observation in [21] is the

volutionary advantage of space-dependent carrying capacity com-

ared to the homogeneous carrying capacity with the same average

alue over space.

For diffusing populations, not only the dispersal speed but also the

trategy has recently become an object of intensive discussion. This is
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imed to address the following issue: as the diffusion coefficient tends

o infinity, regularly diffusing populations tend to be distributed uni-

ormly which is not optimal in a heterogeneous environment in the

ollowing sense. The ideal free distribution describes how species can

istribute themselves to maximize their total fitness in such a way

hat any movement in an ideally distributed population will lead to

ecrease in fitness; in a heterogeneous medium, this corresponds to

he case when per capita available resources, not the density, is uni-

ormly distributed. To incorporate movements in the direction of the

nvironmental gradient, an advection term was added to the equation

1,5–10,34] which led to ideally distributed solutions, at least in the

ase when advection prevails over the random diffusion. The inter-

lay of advection and diffusion coefficients in each of two competing

pecies was explored in the recent paper [10]. The dispersal type

hich, independently of parameters involved in the equation, has

he ideal free distribution as a solution was developed in [3], and ac-

ording to [23], for a time-independent carrying capacity all positive

olutions tend to the ideal free distribution. Let us note that the ideal

ree distribution was recently suggested as a null model for habitat

atch selection in [30], see [25] for some examples of species which

end to disperse according to the inhomogeneous carrying capacity.

There were numerous studies on non-linear diffusion in biological

ystems, let us note [31], the recent paper [13] and references therein.

http://dx.doi.org/10.1016/j.mbs.2015.03.004
http://www.ScienceDirect.com
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However, the focus of the investigation was on mathematical and/or

numerical modeling, in order to more exactly match the laboratory

data. If, as in [13], a competition was considered, the same type of dif-

fusion was involved in every equation. To the best of our knowledge,

before [12] the influence of diffusion on evolutionary success has not

been theoretically analyzed.

The evolutionarily stable strategy is understood in the sense of

[11,14]: if an evolutionarily stable strategy is adopted by a resident

population, it becomes impossible for a population choosing a dif-

ferent strategy to invade its habitat. In [25] evolutionary stability of

carrying capacity driven dispersal over the regular diffusion was jus-

tified, if all other parameters of the resident and invasive populations

coincide. In the present paper, both intrinsic growth rates and carry-

ing capacities for these two populations may differ.

The idea of superiority of the carrying capacity-driven diffusion

strategy compared to the regular (random) diffusion was first outlined

in [24] for the logistic growth. The main contributions of the present

paper compared to [24] can be summarized as follows:

1. In [24], only populations following the logistic growth law

were considered. Here we consider the variety of growth rules

(Gompertz, generalized logistic etc.)

2. In [24], the difference between the two populations is diffusion

strategy only. While it is important to study the influence of one

chosen factor only, in practice a competition involves many differ-

ent factors. Here an interplay of two couples of parameters is in-

vestigated: the first factor is always the diffusion strategy, and the

second one includes either carrying capacities or intrinsic growth

rates. With the same diffusion strategy, higher carrying capacity

would guarantee survival, but with inferior (regular) diffusion this

situation may lead to coexistence. We study how optimal diffu-

sion strategy can alleviate the negative influence of less efficient

resources exploitation (a lower carrying capacity).

3. The papers [24,25] include only theoretical results in time-

independent environments. The combination of theoretical and

numerical analysis allows to study the situation when the car-

rying capacity is time-dependent (for example, due to seasonal

changes), to confirm theoretical conclusions and to complement

them (for instance, to explore the dependency of the limit solution

on the diffusion coefficient for a regularly diffusing population).

The proofs of results of the present paper follow the schemes of

the proofs in [23,24] and use some ideas of the monograph [4].

In our present study, we consider different intrinsic growth rates

for both populations. If they are spatially similar (for example, pro-

portional), the situation does not differ from the equal growth rates,

which means competitive exclusion of a regularly diffusing popula-

tion. However, if the ratio of intrinsic growth rates is spatially hetero-

geneous, coexistence is possible. The two equations can also involve

different diffusion coefficients; their relation and values influence the

transient behavior and convergence rates to the stable equilibrium

state.

It is a common belief that a higher carrying capacity of an invader

leads to successful invasion and even extinction of the resident. For

example, in [33] the carrying capacity was associated with cell muta-

tions, where only the colony (mutating or not) with a higher carrying

capacity survived in a competition, see also [2]. The recent paper [18]

explored the conjecture whether the main reason for an invader to

replace antagonistic indigenous populations can be ascribed to the

larger carrying capacity of the former.

In our study, we considered two cases. In the first case, the mor-

tality term is referred to the crowding effect, the two types of species

have similar physical characteristics, including food consumption,

but may have different crowding tolerance: a population starts to

decrease when the local density exceeds some K which may be dif-

ferent for the two types. If higher (or at least not less) crowding

tolerance is incorporated with the directed dispersal while the other
opulation adopts random diffusion, the regularly diffusing popu-

ation goes extinct. If random diffusion is combined with a higher

rowding tolerance, we prove that this guarantees survival. If the

revalence of this crowding tolerance over the one combined with

he directed dispersal is not very significant both populations coex-

st. Thus diversity in dispersal strategies provides coexistence in this

ange of parameters. Higher ratios of carrying capacities will bring

he population with a lower one to extinction, as numerical examples

llustrate. In the second case, the two species have different (space-

ependent) consumption rates. However, if these rates are propor-

ional, still competitive exclusion of a regularly diffusing population

s observed.

Spatial heterogeneity of the environments plays a crucial role in

ur study; for the recent investigation of spreading or vanishing of

nvasive species see, for example, the recent paper [35] and references

herein.

The paper is organized as follows. Section 2 describes the model

nd verifies positivity, existence and uniqueness of a solution for any

on-negative (and not identically equal to zero) initial conditions.

ection 3 explores the equilibria, in particular, outlines the cases

hen there is no coexistence. Section 4 includes the main results

f the paper: the strategy leading to the ideal free distribution has the

dvantage of evolutionary stability if intrinsic growth rates are con-

tant and the randomly diffusing population does not have a higher

arrying capacity. If it does have, its survival is guaranteed, and nu-

erical examples in Section 5 illustrate that both coexistence and

ompetitive exclusion of the population with the carrying capacity

riven dispersal are possible. Section 5 also presents an example of

oexistence for different intrinsic growth rates, and Section 6 contains

brief summary of the results of the paper and discussion.

. Description of the model

In the present paper, we consider the system describing two popu-

ations competing for the resources which exist in the isolated domain

. This corresponds to the initial-boundary value problem with the

eumann boundary conditions

∂u(t, x)

∂t
= D1�

(
u(t, x)

K1(x)

)
+ r1(x)u(t, x)g(x, u(t, x), v(t, x), K1(x)),

∂v(t, x)

∂t
= D2∇ · (

d(x)∇v(t, x)
)

+ r2(x)v(t, x)g(x, v(t, x), u(t, x), K2(x)),

t > 0, x ∈ �,
∂

∂n

(
u

K1(x)

)
= d(x)

∂v

∂n
= 0, x ∈ ∂�

(2.1)

nd the initial conditions

(0, x) = u0(x), v(0, x) = v0(x). (2.2)

We assume that Ki(x), ri(x), i = 1, 2 are in the class C1+α(�), and

i(x) > 0, ri(x) > 0 for any x ∈ �, and ri(x) > 0 in an open nonempty

ubdomain of �. Here � is an open nonempty bounded domain of
n with ∂� ∈ C2+α, 0 < α < 1, and J1 × J2 a bounded subset of R

2.

he set J1 × J2 corresponds to the range of the solutions to (2.1) and

s determined by the corresponding upper and lower solutions.

For future reference, we denote Q = (0, ∞)× �, Q = [0, ∞)×
, ∂Q = (0, ∞)× ∂�. To state the assumptions on the functions

1(x, u, v, K) = r1ug(x, u, v, K) and f2(x, u, v, K) = r2vg(x, v, u, K), we

ill need the following definition [28].

efinition 1. A function fi = fi(x, u1, u2, K) is said to be quasimono-

one nonincreasing if for fixed x, K, ui, fi is nonincreasing in uj for

�= i.

A vector-function f = (f1, f2) is called quasimonotone nonincreas-

ng in J1 × J2 if both f1 and f2 are quasimonotone nonincreasing for

u1, u2) ∈ J1 × J2.
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We next list some assumptions on the growth func-

ions f1(x, u, v, K) = r1ug(x, u, v, K) and f2(x, u, v, K) = r2vg(x, v, u, K)
hich will be used throughout the paper:

(A1) f = (f1, f2) is quasimonotone nonincreasing in J1 × J2;

(A2) fi(·, u, v, K) is Hölder continuous in � and fi(x, ·, ·, K) ∈ C2(J1 ×
J2), i = 1, 2;

(A3) g(x, u1, u2, K) = g(x, u2, u1, K) = G(x, u1 + u2, K);
(A4) G(x, K, K) = 0;

(A5) G(x, u, K) is strictly monotonically decreasing in u;

(A6) G(x, u, K) is strictly monotonically increasing in K.

There are numerous examples of functions G(x, u, K)satisfying the

bove properties, see, for example, [26] for more details:

- Gilpin–Ayala growth [16] G(x, u(t, x), K(x)) = r(x)(1 − (u(t,x)
K(x) )θ ),

0 < θ ≤ 1, the logistic growth is a particular case for θ = 1;

- Nicholson’s blowflies type model (see [19,22] for the delayed ver-

sion of the model) G(x, u(t, x), K(x)) = r(x)(eα(1−u(t,x)/K(x)) − 1);
- food-limited growth [32] G(x, u(t, x), K(x)) = r(x) 1−u(t,x)/K(x)

1+βu(t,x)/K(x)
,

β > 0;

- Gompertz growth [17] G(x, u(t, x), K(x)) = r(x) ln( K(x)
u(t,x)).

Model (2.1) can be viewed as competition of two species with

imilar physical characteristics but possibly different growth rates

nd crowding tolerance (u starts to decrease as soon as the sum of

ensities of u and v exceeds K1, while v as it becomes greater than

2). In contrast with (2.1), we will also consider the system where

he resource consumptions (carrying capacities) of the two types of

ompeting species are different:

∂u(t, x)

∂t
= D1�

(
u(t, x)

K1(x)

)

+r1(x)u(t, x)g

(
x, u(t, x),

K1(x)v(t, x)

K2(x)
, K1(x)

)
,

∂v(t, x)

∂t
= D2∇ · (

d(x)∇v(t, x)
)

+r2(x)v(t, x)g

(
x, u(t, x),

K1(x)v(t, x)

K2(x)
, K1(x)

)
,

t > 0, x ∈ �,
∂

∂n

(
u

K1(x)

)
= d(x)

∂v

∂n
= 0, x ∈ ∂�,

(2.3)

here g satisfies (A2)–(A6). For example, in the case of the logistic

rowth the first two equations of (2.3) have the form

∂u(t, x)

∂t
= D1�

(
u(t, x)

K1(x)

)
+ r1(x)u(t, x)

(
1 − u(t, x)

K1(x)
− v(t, x)

K2(x)

)
,

∂v(t, x)

∂t
= D2∇ · (

d(x)∇v(t, x)
)

+r2(x)v(t, x)

(
1 − u(t, x)

K1(x)
− v(t, x)

K2(x)

)
, t > 0, x ∈ �.

The property (A5) of the maximal per capita growth rates for small

opulation levels is not satisfied for growth functions with the Allee

ffect, see [26] for appropriate examples.

Consider the initial-boundary value problem with the Neumann

oundary condition and the carrying capacity driven diffusion

∂u(t, x)

∂t
= D�

(
u(t, x)

K(t, x)

)
+ u(t, x)G(x, u(t, x), K(x)), (t, x) ∈ Q,

(2.4)

∂
(

u
K

)
∂n

= 0, (t, x) ∈ ∂Q, u(0, x) = u0(x), x ∈ �. (2.5)

Existence, uniqueness and stability results for scalar equations of

he form (2.4)–(2.5) were obtained in [23].

emma 1. [23, 25, Theorems 1,6] Let f (x, u, K) = uG(x, u, K) satisfy

A2), (A4), (A5), u0(x) ∈ C(�), u0(x) ≥ 0 in �, and u0(x) > 0 in some
pen bounded nonempty domain �1 ⊂ �. Then there exists a unique

olution u(t, x) of the problem (2.4)–(2.5), it is positive and satisfies

imt→∞ u(t, x) = K(x) uniformly in x ∈ �.

We will also need existence and convergence results for scalar

ystems involving a classical diffusion term

∂v(t, x)

∂t
= ∇· D(x)∇v(t, x)+ v(t, x)G(x, v(t, x), K(x)), t > 0, x ∈ �,

∂v

∂n
= 0, t > 0, x ∈ ∂�, v(0, x) = v0(x), x ∈ �. (2.6)

emma 2. [25, Theorem 4] Let f (x, v, K) = vG(x, v, K) satisfy (A2),

A4),(A5). Then there exists a unique positive equilibrium v∗(x) of the

roblem (2.6). Moreover, for any v0(x) ≥ 0, v0(x) �≡ 0 the solution v(t, x)
f (2.6) satisfies lim

t→∞
v(t, x) = v∗(x) uniformly in x ∈ �.

The next theorem provides existence and uniqueness of solutions

or coupled systems of equations.

heorem 1. Let f1(x, u, v, K) = r1ug(x, u, v, K) and f2(x, u, v, K) =
2vg(x, v, u, K)satisfy (A1)–(A5). Then for any u0(x), v0(x) ∈ C(�), prob-

em (2.1) has a unique solution (u, v). Moreover, if the initial condition

u0(x), v0(x)) is nonnegative and nontrivial, then u(t, x) > 0, v(t, x) > 0

or any t > 0.

roof. We will apply Theorem 8 from Appendix A to the system ob-

ained after the substitution w(t, x) = u(t, x)/K1(x); system (2.1) be-

omes

∂w(t, x)

∂t
= D1

K1(x)
�w(t, x)

+r1(x)w(t, x)g̃(x, w(t, x), v(t, x), K1(x)),

∂v(t, x)

∂t
= D2∇ · (

d(x)∇v(t, x)
)

+r2(x)v(t, x)g̃(x, v(t, x), w(t, x), K2(x)),

t > 0, x ∈ �,
∂w

∂n
= d(x)

∂v

∂n
= 0, x ∈ ∂�,

(2.7)

here g̃(x, w(t, x), v(t, x), K(x)) = g(x, K(x)w(t, x), v(t, x), K(x)). Next,

hoose a constant ρw such that ρw ≥ sup(t,x)∈QT

u0(t,x)
K1(x) and

˜(t, x, ρw, 0, K1) < 0, which can be done according to (A5). Note that

ince u0 is bounded in � and K1, K2 are bounded from below,

upx∈�(u0(x)/K1(x)) < ∞. Similarly, choose ρv > supx∈� v0(x) such

hat g̃(x, 0, ρv, K2) < 0. It is easy to check that conditions (A.4) are

atisfied for ρw, ρv defined above and

u0(x)/K1(x), v0(x)) ∈ Sρ

:= {(w, v) ∈ C([0,∞)× �) : (0, 0) ≤ (w, v) ≤ (ρw, ρv)}.
herefore all the conditions of Theorem 8 from Appendix A are sat-

sfied, thus there exists a unique solution (w, v) of (2.7) in Sρ, and it

s positive. Obviously, (u, v) = (K1w, v) is the unique positive solution

f (2.1). �

The same result is valid for (2.3).

. Equilibrium solutions

We study an evolutionary advantage by investigating the stability

f so-called semi-trivial equilibria of systems (2.1) and (2.3), which

re (ũ, 0), (0, ṽ), when only one species survives and, when it exists, a

oexistence equilibrium. It is easy to see that the functions ũ and ṽ are

he solutions of the following two elliptic boundary value problems,
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D1�

(
ũ(x)

K1(x)

)
+ r1(x)ũ(x)g(x, ũ(x), 0, K1) = 0, x ∈ �, (3.1)

∂(ũ/K1)

∂n
= 0, x ∈ ∂�, (3.2)

⎧⎪⎨
⎪⎩

D2∇ · (
d(x)∇ ṽ(x)

) + r2(x)ṽ(x)g(x, ṽ(x), 0, K2) = 0, x ∈ �, (3.3)

∂ ṽ

∂n
= 0, x ∈ ∂�. (3.4)

It is also convenient for future analysis to introduce the substitu-

tion w̃ = ũ/K1. The steady-state problem (3.1)–(3.2) for w̃ becomes⎧⎪⎪⎨
⎪⎪⎩

D1

K1(x)
�w̃(x)+ r1(x)w̃(x)g̃(x, w̃(x), 0, K1) = 0, x ∈ �, (3.5)

∂w̃

∂n
= 0, x ∈ ∂�, (3.6)

where we denote g̃(x, w, v, K) = g(x, Kw, v, K).

Lemma 3. [25, Lemma 3] Let the growth function g satisfy the as-

sumptions (A2)–(A5). The function ũ(x) = K1(x) is the only positive solu-

tion of (3.1)–(3.2).

The next result is concerned with a coexistence state for system

(2.1) of competing species.

Theorem 2. Let the growth function g satisfy (A1)–(A6), r1(x) ≡ r1,

r2(x) ≡ r2 be constant, K1(x) ≥ K2(x) for x ∈ � and either K1(x) =
K2(x) = K(x) �≡ const or K1(x) > K2(x) in an open nonempty subdomain

of �, then there is no coexistence state (us, vs) for system (2.1).

Proof. Let us assume the contrary that there exists a strictly positive

equilibrium solution (us, vs) of (2.1). Then (us, vs) satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D1�

(
us(x)

K1(x)

)
+ r1us(x)g

(
x, us(x), vs(x), K1(x)

) = 0, x ∈ �,

D2∇ · (
d(x)∇vs(x)

) + r2vs(x)g
(
x, vs(x), us(x), K2(x)

) = 0, x ∈ �,

∂(us/K1)

∂n
= d(x)

∂vs

∂n
= 0, x ∈ ∂�

(3.7)

After dividing each of the first two equations in (3.7) by ri, i = 1, 2,

adding them and using property (A3) for g we obtain

D1

r1
�

(
us(x)

K1(x)

)
+ D2

r2
∇ · (

d(x)∇vs(x)
)

+us(x)G(x, us(x)+ vs(x), K1(x))+ vs(x)G(x, us(x)+ vs(x), K2(x)) = 0

After integrating over � using the boundary conditions we have∫
�

[us(x)G(x, us(x)+ vs(x), K1(x))+ vs(x)G(x, us(x)

+vs(x), K2(x))]dx = 0, (3.8)

and by property (A6) and K1 ≥ K2∫
�

G(x, us(x)+ vs(x), K2(x))dx ≤
∫
�

G(x, us(x)+ vs(x), K1(x))dx,

(3.9)

where the equality is attained for K1 ≡ K2 only. Thus∫
�
(us + vs)G(x, us + vs, K1)dx ≥ 0. (3.10)

Integrating the equality G(x, us + vs, K1)(us + vs) = G(x, us + vs, K1)
(us + vs − K1)+ G(x, us + vs, K1)K1 over � and using (3.10) we obtain

0 ≤
∫
�

G(x, us + vs, K1)(us + vs − K1)dx

+
∫
�

G(x, us + vs, K1)K1(x)dx. (3.11)
he Mean Value Theorem and G(x, K1, K1) = 0 in (A4) imply

(x, us(x)+ vs(x), K1(x)) =G(x, us(x)+ vs(x), K1(x))− G(x, K1, K1)

=Gv(x, ξ , K1(x))(us(x)+ vs(x)− K1(x)),
(3.12)

here Gv is the derivative of G in the second variable, ξ(x) is between

s(x)+ vs(x) and K1(x) for each (t, x) ∈ (0, ∞)× �. Using (3.12),

quality (3.11) can be rewritten as

�
G(x, us + vs, K1)K1(x)dx

≥ −
∫
�

Gv(x, ξ , K1)(us + vs − K1)
2 dx > 0, (3.13)

nless us(x)+ vs(x) ≡ K1(x), where for the last inequality we used the

act that Gv < 0 due to (A5). Thus we have to consider the following

wo cases.

1. If us(x)+ vs(x) ≡ K1(x) ≡ K2(x), then ws = us/K1 and vs satisfy

�ws = 0, x ∈ �, ∂ws
∂n

= 0, x ∈ ∂� and ∇ · d(x)∇vs = 0, x ∈ �,

∂vs
∂n

= 0, x ∈ ∂�, respectively, and therefore by the maximum

principle ws = const, vs = const (see e.g. [15, Theorem 3.6]). Since

wsK1 + vs = K1 and K1 is not constant, it follows that vs = 0, ws =
1, which contradicts vs > 0.

2. Let us(x)+ vs(x) �≡ K1(x) or K1(x) > K2(x) in some nonempty open

domain. Consider the eigenvalue problem

D1

K1(x)
�ψ(x)+ r1ψ(x)g̃

(
x, ws(x), vs(x), K1(x)

)
x ∈ �,

= σψ(x),
∂ψ

∂n
= 0, x ∈ ∂�.

(3.14)

According to the variational characterization of eigenvalues [4,

Theorem 2.1], its principal eigenvalue is given by

σ1 = sup
ψ �=0,ψ∈W1,2

− ∫
� D1|∇ψ |2dx + ∫

� K1r1ψ2g̃(x, ws, vs, K1)dx∫
� K1ψ2dx

Upon substituting ψ = 1 and using (3.13) together with r1(x) ≡
r1, we obtain

σ1 ≥ r1

∫
� K1g̃(x, ws, vs, K1)dx∫

� K1dx
> 0 (3.15)

However, since (ws, vs) is an equilibrium solution of (2.7), ws

satisfies

D1

K1(x)
�ws(x)+ r1wsg̃(x, ws, vs, K1) = 0, x ∈ �,

∂ws

∂n
= 0, x ∈ ∂�,

and is therefore a positive principal eigenfunction of (3.14) with

the principal eigenvalue 0. This is a contradiction with (3.15). �

emark 1. The case of proportional growth rates r1(x) = αr2(x), α >

is also considered in Theorem 2, since r2(x)can be involved as a part

f function g.

heorem 3. If the growth function g satisfies (A1)–(A6), r1(x) ≡ r1,

2(x) ≡ r2 are constant, and for some positive β > 0, K1(x) = βK2(x) �≡
onst, then there is no coexistence state (us, vs) for system (2.3).

roof. The proof is similar to the proof of Theorem 2. Assuming

here is a stationary solution (us, vs), dividing each of the first two

quations by ri, i = 1, 2, multiplying the second equation by β, adding

hem and using property (A3) for g and integrating over � we get

�(us(x)+ βvs(x))G(x, us(x)+ βvs(x), K1(x))dx = 0. Thus

�
G(x, us + βvs(x), K1)K1(x)dx

≥ −
∫
�

Gv(x, ξ , K1)(us + βvs − K1)
2 dx > 0, (3.16)
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nless us(x)+ βvs(x) ≡ K1(x). If us(x)+ βvs(x) ≡ K1(x), then �(us/

1) = 0, due to the boundary conditions us(x) = cK1(x), while vs(x) =
1(x)(1 − c)/β is constant, which is possible for c = 1 only, as K1(x) is

ariable. If us(x)+ βvs(x) �≡ K1(x), using the variational characteriza-

ion of eigenvalues and substituting either ψ = K1 in the original form

r ψ = 1 in the form obtained after the substitution u/K1 = w, we ob-

ain σ1 ≥ r1

∫
� K1 g̃(x,ws,βvs,K1)dx∫

� K1dx
> 0, which leads to the conclusion that

here is no coexistence equilibrium. �

. Stability analysis

In the case when there is no coexistence equilibrium, we proceed

o the analysis of the trivial and the semi-trivial equilibria. We first

onsider the case when the carrying capacities satisfy K1 ≥ K2, the

rowth rates may be different but both r1 and r2 are constant.

Theorem 4 deals with the stability of the second semi-trivial

quilibrium of (2.1). After the substitution w(t, x) = u(t, x)/K1(x),
ystem (2.1) becomes (2.7), where g̃(x, w(t, x), v(t, x), K(x)) =
(x, K(x)w(t, x), v(t, x), K(x)).

The following result is a generalization of [25, Lemma 4].

emma 4. Let the growth function g satisfy the assumptions (A1)–(A6),

1(x) ≡ r1, r2(x) ≡ r2 be constant, K1(x) ≥ K2(x)and either K1(x) �≡ const

r K1(x) > K2(x)on a nonempty open domain. Then there exists a unique

ositive solution ṽ(x) = v∗(x) of (3.3)–(3.4) satisfying

�
r1g(x, 0, v∗, K1)K1(x)dx > 0. (4.1)

roof. Similarly to (3.8) in the proof of Theorem 2, we obtain

�
v∗(x)G(x, v∗, K2)dx = 0. (4.2)

ext, G(x, v∗, K2) ≤ G(x, v∗, K1) by (A6), by the assumption K1(x) ≥
2(x) of the theorem and v∗ > 0, hence

�
v∗(x)G(x, v∗, K1)dx ≥ 0. (4.3)

s in the proof of Theorem 2, v∗(x)G(x, v∗, K1) = (v∗ − K1)(G(x, v∗, K1)
G(x, K1, K1)) + K1G(x, v∗, K1) = (v∗ − K1)

2Gv(x, ξ , K1) + K1G(x, v∗,
1), thus

�
K1(x)G(x, v∗(x), K1(x))dx

≥ −
∫
�

Gv(x, ξ , K1(x))(v
∗(x)− K1(x))

2 dx, (4.4)

here the right-hand side is positive unless K1(x) ≡ const, since Gv <

due to (A5). Thus we have a strict inequality in (4.3) if K1(x) > K2(x)
n a nonempty open domain, which concludes the proof. �

emark 2. Note that properties (A4) and (A5) yield that

(x, 0, v, K1) ≥ 0 for any v ≤ K1. Thus inequality (4.1) can be treated

s the condition v∗ < K1 in an integral sense.

emark 3. A similar inequality
∫
� r1g(x, 0, βv∗, K1)K1(x)dx > 0 is

alid for (2.3) in the case K1 = βK2 �≡ const, where β ∈ (0, 1], which

eads to the result similar to the following theorem.

heorem 4. If K1 ≥ K2 and either K1(x) ≡ K2(x) �≡ const or K1(x) >

2(x) in a nonempty open domain, and r1(x) ≡ r1, r2(x) ≡ r2 are con-

tant then the semi-trivial equilibrium (0, v∗(x)) of (2.1) is unstable.

roof. Consider problem (2.7) obtained after the substitution w =
/K1. The semi-trivial equilibrium of (2.7) corresponding to the semi-

rivial equilibrium (0, v∗(x)) of (2.1) is also (0, v∗(x)). Since K1(x) is

trictly positive and bounded from above in �, stability of the equi-

ibrium (0, v∗(x)) of system (2.1) is equivalent to stability of the equi-

ibrium (0, v∗(x)) of (2.7), thus we will investigate the latter system.
irst consider the linearization of (2.7) around (0, v∗(x))

∂w(t, x)

∂t
= D1

K1(x)
�w(t, x)+ r1g̃(x, 0, v∗, K1)w(t, x), t>0, x ∈ �,

∂v(t, x)

∂t
= ∇ · (

D2d(x)∇v(t, x)
) + r2g̃(x, v∗, 0, K2)v(t, x)

+r2v∗(x)g̃v(x, v∗, 0, K2)v(t, x)

+r2v∗(x)g̃w(x, v∗, 0, K2)w(t, x), t > 0, x ∈ �,

∂w

∂n
= d(x)

∂v

∂n
= 0, x ∈ ∂�

nd study the associated eigenvalue problem

D1

K1(x)
�ψ(x)+ r1g̃(x, 0, v∗, K1)ψ(x) = σψ(x), x ∈ �,

∂ψ

∂n
= 0, x ∈ ∂�, (4.5)

· D2d(x)∇φ(x)+ r2g̃(x, v∗, 0, K2)φ(x)

+r2v∗(x)gv(x, v∗, 0, K2)φ(x)+r2v∗(x)gw(x, v∗, 0, K2)ψ(x)=σφ(x),

x ∈ �, d(x)
∂φ

∂n
= 0, x ∈ ∂�. (4.6)

f the principal eigenvalue is positive then the semi-trivial equilibrium

0, v∗) is unstable. Consider the first equation in (4.5), according to

he variational characterization of the eigenvalues [4] the principal

igenvalue is given by

1 = sup
ψ �=0,ψ∈W1,2

− ∫
� D1|∇ψ |2dx + ∫

� K1r1ψ2g̃(x, 0, v∗, K1)dx∫
� K1ψ2 dx

.

fter substituting ψ = 1, applying (4.1) in Lemma 4 and using

1(x) ≡ r1, we have σ1 ≥ r1

∫
� g̃(x,0,v∗,K1)K1dx∫

� K1dx
> 0, which concludes the

roof. �

heorem 5. The trivial equilibrium (0, 0) of system (2.1) is unstable;

oreover, it is a repelling equilibrium.

roof. Similar to the proof of Theorem 4, we linearize system (2.7)

round the origin to obtain the following eigenvalue problem:

D1

K1(x)
�ψ(x)+ r1g̃(x, 0, 0, K1)ψ(x) = σψ(x), x ∈ �,

∂ψ

∂n
= 0, x ∈ ∂�,

·
(

D2

K2(x)
∇φ(x)

)
+ r2g̃(x, 0, 0, K2)φ(x) = σφ(x), x ∈ �,

(x)
∂φ

∂n
= 0, x ∈ ∂� (4.7)

ntegrating the equation in (4.7) over �, we obtain σ1 =∫
� r2(x)g̃(x,0,0,K2)φ1 dx∫

� φ1 dx
, where φ1 is the principal eigenfunction of (4.7),

˜(x, 0, 0, K2) > 0 by (A4) and (A5), and φ1 can be chosen positive.

Therefore, σ1 > 0 and the trivial equilibrium of (2.1) is unstable.

et us show that the trivial equilibrium (0, 0) is a repeller according

o the definition (2) of Theorem 9.

Denote K(x) = min{K1(x), K2(x)} > 0, r(x) = min{r1(x), r2(x)} > 0,

hen the right-hand sides in (2.1) can only become smaller af-

er changing K1 and K2 by K, according to (A6); also, as long as

(t, x)+ v(t, x) ≤ K(x), the following inequalities are satisfied

∂u(t, x)

∂t
≥ D1�

(
u(t, x)

K1(x)

)
+ r(x)u(t, x)g(x, u(t, x), v(t, x), K(x)),

∂v(t, x)

∂t
≥ D2∇ · (

d(x)∇v(t, x)
)

+r(x)v(t, x)g(x, v(t, x), u(t, x), K(x))

(4.8)
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for any t > 0 and x ∈ �. To show that the trivial equilibrium is a

repeller we add the inequalities in (4.8) and integrate over � using

the boundary conditions

d

dt

∫
�
(u + v)dx ≥

∫
�

r(u + v)g(x, u, v, K)dx (4.9)

which is valid for any u, v such that u + v ≤ K. Let us take 0 < δ ≤
infx∈� K(x)/4 and ρ > 0 such that r(x)G(x, 2δ, K) ≥ ρ > 0 which we

can find according to (A5). Then (4.9) holds as long as u(t, x)+
v(t, x) ≤ 2δ.

By Theorem 1, the solution is positive for any t > 0 and

(u0(x), v0(x)) �≡ (0, 0), so we can choose u0(x)+ v0(x) < δ and t0 > 0

small enough such that 0 < δ1 < u1(x)+ v1(x) < δ, where u1(x) =
u(t1, x), v1(x) = v(t1, x). As long as u(t, x)+ v(t, x) ≤ 2δ, inequality

(4.9) is satisfied. Thus using Gronwall’s lemma we obtain∫
�
(u(t, x)+ v(t, x))dx ≥ eρ(t−t1)

∫
�
(u1(x)+ v1(x))dx,

and since
∫
�(u1(x)+ v1(x))dx > 0, we obtain that the integral∫

�(u(t, x)+ v(t, x))dx grows exponentially with time as long as

u(t, x)+ v(t, x) ≤ 2δ. We therefore conclude that there exists t2 > 0

such that u(t2, x)+ v(t2, x) > δ for some x ∈ � and hence the trivial

equilibrium is a repeller. �

Finally, we can state the main stability results.

Theorem 6. Let r1 and r2 be constant, K1(x) ≥ K2(x) for any x ∈ �,

either K1(x) �≡ const or K1(x) > K2(x) in some nonempty bounded

domain, and (A2)–(A6) be satisfied for the functions f1(x, u, v, K) =
r1ug(x, u, v, K) and f2(x, u, v, K) = r2vg(x, v, u, K). Then the semi-trivial

equilibrium (K1, 0) of (2.1) is globally asymptotically stable, i.e. for any

nonnegative nontrivial u0, v0 ∈ C(�)the solution (u(t, x), v(t, x))of (2.1),

(2.2) satisfies (u, v) → (K1, 0) as t → ∞ uniformly in x ∈ �.

Proof. Define the operator Tt by Tt(u0) = u, where u0 ≡ (u0, v0) and

u ≡ (u, v) is a solution of (2.1)–(2.2). According to Lemma 5 from

Appendix A, the first condition on Tt from Theorem 9 is satisfied.

Next, condition (2) is guaranteed by Theorem 5, and condition (3)

follows from Lemma 1. Finally, condition (4) can be deduced from

Theorem 1 and Lemma 5 and therefore system (2.1) is a strongly

monotone dynamical system and we can apply Theorem 9 from

Appendix A. Since the semi-trivial equilibrium (0, v∗) is unstable and

therefore is not asymptotically stable, it excludes the possibility of

(c) in Theorem 9. Finally, there is no coexistence state therefore the

equilibrium (K1, 0) is globally asymptotically stable. �

Remark 4. We would like to remark here that although the solutions

of (2.1) still converge to (K1(x), 0) with time for any D1, d(x) and

constant r1, r2, the speed of convergence depends on the diffusion

coefficient and the ratio r1/r2, see examples in Section 5 for numerical

illustration.

Next, let us discuss the case K1(x) ≤ K2(x) for any x ∈ �.

Theorem 5 is still valid, the zero equilibrium is unstable, and it is

a repeller. However, other results cannot be extended to this case. In

particular, the advantage of carrying-capacity driven diffusion is not

sufficient to provide competitive exclusion in the case when the other

species has a higher carrying capacity.

Theorem 7. If K1(x) ≤ K2(x) for all x ∈ � and both r2(x) > 0 and

K1(x) < K2(x) in a nonempty open domain, then the semi-trivial equilib-

rium (K1(x), 0) of (2.1) is unstable.

Proof. First, let us note that since K1(x) ≤ K2(x) for all x ∈
� and r2(x) > 0, K1(x) < K2(x) in a nonempty open domain,

g(x, K1(x), 0, K2(x)) ≥ 0 by (A4) and (A6), and∫
r2(x)g(x, K1, 0, K2)dx > 0. (4.10)
�

he proof follows the steps of the proof of Theorem 4. Further, con-

ider the linearization of (2.1) around (K1(x), 0) and study the second

art of the associated eigenvalue problem

· (
d(x)∇φ(x)

) + φ(x)r2(x)g(x, K1, 0, K2) = σφ(x), x ∈ �,

∂φ

∂n
= 0, x ∈ ∂�. (4.11)

f the principal eigenvalue is positive then the equilibrium (K1(x), 0)
s unstable. Again, following the variational characterization of the

igenvalues [4], we obtain that the principal eigenvalue of (4.11) is

iven by

1 = sup
φ �=0,φ∈W1,2

− ∫
� d(x)|∇φ|2dx + ∫

� φ2r2(x)g(x, K1, 0, K2)dx∫
� φ2dx

.

(4.12)

hoosing the eigenfunction φ = 1, we have σ1 ≥
∫
� r2(x)g(x,K1,0,K2)dx∫

� dx
>

by (4.10), thus (K1(x), 0) is unstable, which concludes the proof. �

In Section 5 we will see that both coexistence and competitive

xclusion of u and v in (2.1) are possible.

. Numerical examples

If the carrying capacities are the same and the growth rates are

roportional then there is no coexistence equilibrium, and the choice

f the carrying capacity driven diffusion leads to the competitive ex-

lusion of a randomly diffusing population. In all the examples, we

onsidered either the logistic

∂u(t, x)

∂t
= D1�

(
u

K1

)
+ r1u

(
1 − u + v

K1

)
, t > 0, x ∈ �,

∂v(t, x)

∂t
= ∇ ·

(
D2

K2
∇v

)
+ r2v

(
1 − u + v

K2

)
, t > 0, x ∈ �,

∂(u/K1)

∂n
= 1

K2(x)

∂v

∂n
= 0, x ∈ ∂�

(5.1)

r the Gilpin–Ayala type of growth

∂u(t, x)

∂t
= D1�

(
u

K1

)
+ r1u

(
1 −

(
u + v

K1

)θ
)

, t > 0, x ∈ �,

∂v(t, x)

∂t
= ∇ ·

(
D2

K2
∇v

)
+ r2v

(
1 −

(
u + v

K2

)θ
)

, t > 0, x ∈ �,

∂(u/K1)

∂n
= 1

K2(x)

∂v

∂n
= 0, x ∈ ∂�.

(5.2)

First, let us consider the case of equal carrying capacities. The

ollowing example shows that in the case of space-dependent growth

ates the conclusion of Theorem 6 is no longer valid, and the second

opulation may survive, coexistence is possible.

xample 1. Consider (5.1), where � = (0, π), K(x) = K1(x) = K2(x) =
+ cos(x) �= const, D = D1 = D2 = 1, r1(x) = (x + 0.1)3 and r2(x) =
/(Kv∗) which has the semitrivial equilibria (K1, 0) and (0, v∗) with
∗ = 7

4 + 1
2 cos(x). The numerical simulations show that in this situa-

ion the two species can coexist, see Fig. 1, left, we can also propor-

ionally change r1, see Fig. 1, middle and right.

The step in the proof that fails in this case is the inequality (4.1).

ore precisely, we still have the estimate
∫
� r2(x)g(x, 0, v∗, K1)K1

x)dx > 0, however, one can check that the inequality we need in the

roof of Theorem 4 is
∫
� r1(x)g(x, 0, v∗, K1)K1(x)dx > 0 which does

ot hold for r1, g and K1 as above.

Fig. 1 (left) illustrates that the semi-trivial equilibrium (0, v∗) is

nstable, while according to Fig. 1 (right) the equilibrium (K(x), 0) is

either a local nor a global attractor.
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Fig. 1. Solutions of (5.1) for K(x) = K1(x) = K2(x) = 2 + cos(x), D1 = D2 = 1, r2 = 2/(Kv∗), where v∗ = 7/4 + 0.5 cos(x), � = (0, π), and (left) r1 = (x + 0.1)3, (middle) r1 = 1.5(0.1 +
x)3 and (right) r1 = 0.8(0.1 + x)3.

Fig. 2. Solutions of (5.1) for K1 = K2 = 2 + cos(x), r1 = r2 = 1, the initial values (u0, v0) = (0.1, 0.2), D = 0.05 and D = 50. Higher diffusion coefficients lead to faster convergence

to the stable equilibrium.
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Here lower growth rates are observed in the areas of small x with

arger K, especially for the carrying capacity oriented population,

hich gives some advantage to the strategy of random dispersal.

In the next example, we outline the effect of the diffusion coeffi-

ient.

xample 2. Consider (5.1) with K1 ≡ K2 ≡ K and constant r1, r2. Ac-

ording to Theorem 6, the value of u should tend to K while v tends to

ero as t → ∞. As long as we increase the diffusion coefficient, there

s a faster convergence to the limit state, see Fig. 2. For the same initial

alues and t > 0, we have smaller values of v and greater values of u

s D increases.

Next, consider the case when the growth rates are constant but

he carrying capacities are different.

xample 3. Consider logistic growth model (5.1) with different car-

ying capacities. If the carrying capacities are different but the one for

he species choosing the carrying-capacity driven diffusion strategy

s less or equal than the other carrying capacity everywhere, there are

wo possible scenarios: the species with a higher carrying capacity

ustains and the other goes extinct and coexistence, see Fig. 3. Co-

xistence is observed when carrying capacities are relatively close,

hile in the limit case of the equal carrying capacities the regularly

iffusing population goes extinct while the other species sustains. If

1 = βK2 with β ∈ (0, 1], then there is β0 such that there is a com-

etitive exclusion (the second species survives only) for β ∈ (0, β0)
nd coexistence for β ∈ (β0, 1), where only the first species sur-

ives for β = 1, see Fig. 3. However, the average eventual popu-

ation levels of u increase and of v decrease as β > β0 grows and

pproaches one, see Fig. 4.
Consider the case of time-variable carrying capacities and ex-

lore the dependency of the coexistence equilibrium on the relation

etween the growth rates.

xample 4. Consider (5.1) with time-variable K1 = K2 = (1.2 +
os(x))(1.1 + sin(t)), D1 = D2 = 1 and stationary r2 = 1.1 + 0.5 cos(x).
ig. 5 demonstrates the established regime (the time is between 450

nd 600), where the higher relative growth rates ri lead to higher

verage population levels achieved in the competition.

In addition to the periodicity with the same period as K has, there

re also slower amplitude oscillations with a period depending on the

atio r1 : r2.

The following example illustrates the dependency of the average

rowth rates on the ratio or r1 : r2 in the case of stationary carrying

apacities and Gilpin–Ayala growth rate.

xample 5. Consider Eq. (5.2) representing Gilpin–Ayala growth sys-

em with D1 = D2 = 1, θ = 0.5, K1 = 1.45 + 0.95 cos(x) < K2 = 1.5 +
os(x), and proportional intrinsic growth rates. For all chosen ratios

1 : r2 the two species coexist, and the average population levels de-

end on the ratio. Here the advantage of a higher carrying capacity

f the second population is alleviated by a more advanced diffusion

ype chosen by the first population.

In Fig. 6 we observe coexistence, and average population levels

f u increase, while of v decrease with the growth of r1 : r2. Thus

eduction of reproduction rates of the invading population can really

educe invasion of species with a higher carrying capacity, compare

o [18].

Let us note that even for the same (or proportional) growth rates

nd the same carrying capacity, time dependency of the carrying
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Fig. 3. Solutions of (5.1) for K2 = 1.1 + cos(x), D = 1, r1 = r2 = 1, u0 = v0 = 1.0 with (left) K1 = 0.75K2, (middle) K1 = 0.85K2 and (right) K1 = K2.

Fig. 4. Solutions of (5.1) for K2 = 1.5 + cos(x), D1 = D2 = 1, r1 = r2 = 1.0, u0 = v0 = 0.6 with K1 = βK2 and for β ≥ 0.91 at time t = 600. The average eventual population levels of

u increase and of v decrease as β ≥ 0.91 grows up to one.

Fig. 5. Solutions of (5.1) for D1 = D2 = 1, K1 = K2 = (1.2 + cos(x))(1.1 + sin(t)), r2 = 1.1 + 0.5 cos(x), u0 = v0 = 0.5 with (left) r1 = 1.5r2, (middle) r1 = r2 and (right) r1 = 0.5r2 for

time t = 600.
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Fig. 6. Solutions of (5.2) for D1 = D2 = 1, θ = 0.5, K1 = 1.45 + 0.95 cos(x) < K2 = 1.5 +
cos(x), u0 = v0 = 0.6 with growth rates (r1, r2) = {(3, 1), (2, 2), (1, 3)}.
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capacity can lead to coexistence. The following example illustrates it,

as well as explores how the average population rates depend on the

growth rate.
xample 6. Consider (5.2) where the carrying capacity K = K1 =
2 = e−Dt cos(x)+ 2.5 is variable in both space and time, θ = 0.1 and

ifferent constant intrinsic growth rates r1 and r2. The average carry-

ng capacity tends to 2.5 as t → ∞. Fig. 7 illustrates average solutions

or t ∈ [0, 600]. There is coexistence, and the average population level

ncreases with the increase of the intrinsic growth rate relative to the

ne of the other species.

Next, let us illustrate the fact that for time-variable carrying capac-

ties the relation between the average population levels at coexistence

ay depend on the diffusion rate as well, even in the case when these

iffusion rates are equal.

xample 7. Consider (5.2) for θ = 0.75 and time-variable r1 =
2 = 2(1.5 + cos(t))/(1.5 + sin(t)) and K1 = K2 = (1.2 + cos(x))(2 +
.5 sin(t)) with different diffusion rates.
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Fig. 7. Solutions of (5.2) for D = D1 = D2 = 1.0, θ = 0.1, K1 = K2 = e−Dt cos(x)+ 2.5, u0 = v0 = 0.7 with (left) r1 = 3 > r2 = 1, (middle) r1 = r2 = 1 and (right) r1 = 1 < r2 = 3.
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There is coexistence for the chosen diffusion rates of 0.1, 0.19 and

.5, and, as can be seen in Fig. 8, for slow dispersion, the average rate

f v is greater than the average rate of u (left). As the dispersion rate

increases, for a certain value of D ≈ 0.19 both populations coincide

Fig. 8, middle), and uave > vave for larger D (Fig. 8, right).

Let us note that the relative population densities depend on the

iffusion coefficient D2, see Fig. 9 for D1 = 5 and D2 = 0.1, 0.3, 0.5.

ig. 9 confirms the conclusion of [12] that for regularly diffusing pop-

lations, a higher diffusion rate leads to a disadvantage: for D2 = 0.1,

verage population levels of a regularly diffusing population are

igher than for species with a carrying capacity driven diffusion

Fig. 9, left), become equal for D2 = 0.3 (Fig. 9, middle) and are

maller for D2 = 0.5 (Fig. 9, right).

Numerical runs show that for this example, whenever D2 is fixed,

he relation of eventual population levels does not depend on D1.

Finally, we show that for steep enough variations of carrying ca-

acities, the population with directed diffusion strategy can form a

efuge-type area with higher average density than the regularly dif-

using population with a higher carrying capacity everywhere.

xample 8. Consider (5.1) representing logistic growth system with

1 = 0.1, r1 = r2 = 1, stationary

1(x) = 500e−12.5(x−π/2)2 − 5e−50(x−π/2)2 + 1, (5.3)

ither K2 = 1.1K1 or K2 = 1.6K1 and various diffusion rates D2 of v.

ere the carrying capacity for regularly diffusing species v is 1.6 times
igher than for those with a directed diffusion strategy (Figs. 12 and

3, right). Still, this strategy allows to form a refuge (at the middle

f [0, π ]) where the population survives and thrives, especially for

igher diffusion rates for randomly diffusing species, see Fig. 10 for

he relation between the two and density profiles for various D2 for

large running time (it is a limit profile, see Fig. 11). If D2 = 0.1, the

rofile of a regularly diffusing population is similar to the profile of

he carrying capacity, and the average is high, the population with

irected diffusion strategy is suppressed (its potential refuge is still

verpopulated). As D2 grows, the profile of v flattens, tending to be

onstant, with a decreasing average, and u gradually builds a refuge
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The asymptotical convergence of population averages for K2 =
1.1K1 is illustrated in Fig. 11.

Similarly, Figs. 12 and 13 show the limit behavior and the asymp-

totics in the case of K2(x) = 1.6K1(x).
We observe that for high enough diffusion rate of the regularly

diffusing population, the population choosing directed diffusion can

survive, form a refuge and flourish there, even for a lower carrying

capacity anywhere.

6. Summary and discussion

In the present paper we have considered the case when the two

competing spatially distributed species choose different dispersal

strategy, and studied separately the influence of different growth

rates and carrying capacities corresponding to crowding tolerance. If

the carrying capacities are equal and the growth rates are spatially

homogeneous (proportional) for both populations, the situation is

the same as in the case of equal growth rates: there is a competi-

tive exclusion of a randomly diffusing species. If the growth rates are

spatially different, the two populations can coexist, as a numerical

example demonstrates. In the case of different crowding tolerances,

the following three scenarios can occur. If the crowding tolerance

of a species diffusing according to the carrying capacity is not less

than the other one, a randomly diffusing population goes extinct. If
he crowding tolerance of a randomly diffusing population is higher,

his provides its survival; when the difference between the crowd-

ng tolerances is not large, the two populations coexist. This means

hat the judicious choice of diffusion can alleviate the disadvantage of

igher sensitivity to crowding effects when the two sensitivities are

till close to each other. If the crowding tolerance of a randomly dif-

using population is much higher than the second one, this brings

he population with a lower crowding tolerance to extinction. In

ll the numerical simulations we have not observed any dependence

f the asymptotic behavior on the initial conditions. Whenever the

rowth rates are proportional, their relation also does not influence

he scenario in general, however, in the coexistence case, higher

rowth rates led to higher population levels. Similarly, the diffusion

oefficient contributed not to the asymptotic behavior but to the con-

ergence rate. Also, depending on the relation between the growth

ates and the carrying capacities, competitive exclusion or coexis-

ence can occur; so far we observed only one coexistence equilibrium

ut have not justified that this is the only possibility.

If the two populations have differential consumption of resources

nd the space-dependent consumption rates are proportional, we

ave proved that the regularly diffusing population would become

xtinct. However, the initial numerical simulations demonstrate that

his situation sustains for a wider range of the ratios K1(x) : K2(x) than

ust being a constant, but so far we have not succeeded in proving

his result analytically; this part should be further investigated, for

xample, the general Lotka-type system as in [27] where in addition

ifferent diffusion types are chosen.

The diffusion coefficients and the relation between proportional

rowth rates do not influence the asymptotics but the transient be-

avior significantly depends on these parameters, as numerical ex-

mples illustrated. The results of the present paper can be applied to

he case of a symmetric competition when both species distribute ac-

ording to some positive function [25], demonstrating the advantage

f choosing the carrying capacity as this distribution target.
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ppendix A.

In this section we present auxiliary results which were used earlier

n proofs. The next theorem from [28] deals with the time-dependent

olution of the system of the form

∂ui

∂t
− Liui = fi(x, u1, u2), t > 0, x ∈ �,

∂ui

∂n
= 0, x ∈ ∂�, ui(0, x) = ui,0(x), x ∈ �, i = 1, 2,

(A.1)

here for i = 1, 2 the operators Li defined as

iu :=
n∑

i,j=1

aij(t, x)
∂2u

∂xi∂xj

+
n∑

i=1

bi(t, x)
∂u

∂xi

(A.2)

re uniformly elliptic, namely, there exist positive numbers λ and �

uch that for every vector ξ = (ξ1, ..., ξn) ∈ Rn

|ξ |2 ≤
n∑

i,j=1

aij(t, x)ξiξj ≤ �|ξ |2, (t, x) ∈ [0, T] × �. (A.3)

http://dx.doi.org/10.13039/501100000038
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e assume that the coefficients of L are Hölder continuous in

0, T)× �, ∀T > 0 and the vector-function (f1, f2) is continuously dif-

erentiable and monotone nonincreasing in R+ × R+.

For any ρ = (ρ1, ρ2) ∈ R
2+ define

ρ ≡ {(u1, u2) ∈ C([0, ∞)× �); (0, 0) ≤ (u1, u2) ≤ (ρ1, ρ2)}
heorem 8. [28, Theorem 8.7.2] Let (f1, f2) be a quasimonotone non-

ncreasing Lipschitz function in Sρ and let (f1, f2) satisfy

1(t, x, ρ1, 0) ≤ 0 ≤ f1(t, x, 0, ρ2), f2(t, x, 0, ρ2) ≤ 0 ≤ f2(t, x, ρ1, 0)

(A.4)

or any x ∈ �, t > 0. Then for any (u1,0, u2,0) ∈ Sρ there exists a unique

olution of (A.1) u ≡ (u1, u2) in Sρ, and ui(t, x) > 0 for x ∈ �, t > 0

hen ui,0 �= 0, i = 1, 2.

The next lemma [4] implies the monotonicity property for solu-

ions of (A.1).

emma 5. Let (ui(t, x), vi(t, x)), i = 1, 2, be two solutions of system

A.1), where u1(0, x) ≥ u2(0, x) and v1(0, x) ≤ v2(0, x) for any x ∈ �.

hen u1(t, x) ≥ u2(t, x) and v1(t, x) ≤ v2(t, x) for any x ∈ � and any t >

. Moreover, if (u1(0, x), v1(0, x)) �= (u2(0, x), v2(0, x)), then u1(t, x) >

2(t, x) and v1(t, x) < v2(t, x) for any x ∈ � and any t > 0.

For the proof see [4] Theorem 1.20 and remarks thereafter. The

nal statement of the lemma follows from the strong maximum prin-

iple for parabolic equations [29] applied to the differences u1 − u2

nd v2 − v1.

The next result [20] classifies all possible equilibria for a monotone

ynamical system. We will present a particular case of Theorem B

20]. Denote X+ = C+(�)× C+(�), where C+(�) is the class of all

onnegative functions from C(�); I = 〈0, ũ1〉 × 〈0, ũ2〉 , where (ũ1, 0)
nd (0, ũ2) are the semi-trivial equilibria of (A.1). Here 〈·, ·〉 is as in

he proof of Theorem 1.

heorem 9. Let operator Tt be defined as Tt(u0) = u, where u0 ≡
u1,0, u2,0) and u ≡ (u1, u2) = (Tt(u1,0), Tt(u2,0)) is a solution of (A.1).

et the following conditions hold:

(1) T is strictly order preserving, which means that u1(x) ≥ v1(x)
andu2(x) ≤ v2(x) imply Tt(u1(x)) ≥ Tt(v1(x)) and Tt(u2(x)) ≤
Tt(v2(x)).

(2) Tt(0) = 0 for all t ≥ 0 and 0 is a repelling equilibrium. That is there

exists a neighborhood U of 0 in X+ such that for each (u1, u2) ∈
U, (u1, u2) �= 0, there is t0 > 0 such that Tt0

(u1, u2) /∈ U.

(3) Tt((u1, 0)) = (Tt(u1), 0) and Tt(u1) ≥ 0 if u1 ≥ 0. There exists

ũ1 > 0 such that Tt((ũ1, 0)) = (ũ1, 0) for any t ≥ 0. The sym-

metric conditions hold for Tt((0, u2)).
(4) If ui,0 ≥ 0, ui,0 �= 0, i = 1, 2 then Tt(ui,0) > 0, i = 1, 2. If u1(x) ≥

v1(x), u2(x) ≤ v2(x) and u1(x) �= v1(x), u2(x) �= v2(x) then

Tt(u1(x)) > Tt(v1(x)) and Tt(u2(x)) < Tt(v2(x)).

Then exactly one of the following holds:

(a) There exists a positive coexistence equilibrium (u1,s, u2,s) of (A.1).

(b) (u1, u2) → (ũ1, 0) as t → ∞ for every(u1,0, u2,0) ∈ I.

(c) (u1, u2) → (0, ũ2) as t → ∞ for every(u1,0, u2,0) ∈ I.

Moreover, if (b) or (c) holds then for every (u1,0, u2,0) ∈ X+\I and

i,0 �= 0, i = 1, 2 either (u1, u2) → (ũ1, 0) or (u1, u2) → (0, ũ2) as t →
.
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