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Abstract  A time-series modeling tool SARIMA (4,0,4)(1,1,1) [12] model has been implemented to project the total 

number of monthly thunderstorm-days at 34 different meteorological stations in Bangladesh. Efforts have been made to 

determine, as accurate as possible, the future number of thunderstorm-days up to five years. Detailed modeling procedure and 

forecasting accuracy are demonstrated. Due to the recent unusual rise in the number of deaths from lightning in Bangladesh, 

this research will be useful for policymakers to take the necessary precautions. 
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1. Introduction 

Lightning is one of the vital meteorological parameters 

considered around the world to monitor climate change [1]. 

Nearly 45000 lightning occurs every day [2]. Lightning is a 

large electrical discharge created from a thundercloud. It is 

the flashlight, we see, during that electrical discharge. 

Besides, thunder is the sound we get from lightning. 

Lightning and thunder create a thunderstorm. On the 

negative side of lightning, after tornadoes, flash floods,   

and hurricanes, it is considered as the leading cause of 

weather-related deaths [3]. It causes a considerable number 

of causalities (with 24,000 deaths per year) and damages   

of properties [4]. Because of the spatial organization of 

Bangladesh, with the Himalaya in the north and the Bay of 

Bengal in the south, this land is a vulnerable region of a 

natural disaster like storm, drought, flood, thunderstorms. 

Compared to high-income countries, Bangladesh, a densely 

populated country, faces a higher number of fatalities due to 

thunderstorms [5]. For instance, fatality from the lightning is 

calculated within the range from .2 to 1.7 deaths/1000000 

population over the world. And in Bangladesh, the fatality 

rate is .9/1000000 which is higher than high-income 

countries [6]. Since Bangladesh had been witnessing an 

increasing trend in the number of deaths by lightning, the 

government of Bangladesh declared it a natural disaster in 

2016 [7]. Nevertheless, only a handful number of researches 

can be found on lightning and thunderstorm in this region.  
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Tyagi et al. [8] have documented the history of pre-monsoon 

thunderstorms over the Indian region, particularly about 

nor’easters over eastern and Northeast India. But no study 

has so far been made on the frequency of thunderstorms and 

thunderstorm days in Bangladesh except [9].  

While the ARIMA model can support to analyze a trend, 

SARIMA model can do both trend and seasonality. For 

seasonal time series, Box and Jenkins presented this 

successful type of ARIMA model by including the seasonal 

part to develop the model [10]. In this paper, to analyze the 

frequency of thunderstorm days, seasonal autoregressive 

integrated moving average (SARIMA) model has been 

implemented. Furthermore, to verify the assumptions, 

randomness, independence, and normality of the residuals 

have been carried out.  

2. Methodology  

A time series is a sequence of observations of a random 

variable generated through a stochastic process measured at 

equally spaced time intervals. The key purpose of time series 

modelling is to carefully characterize the process through the 

past observations of the time series by developing an 

appropriate model which explain the inherent structure of the 

series. Thus, this model can facilitate to forecast the process. 

There are several approaches to modelling series with 

seasonal pattern. Among these are exponential smoothing 

[11]), seasonal ARIMA models [10], state- space models  

[12] and the innovations State Space Models [13]. ARIMA 

model is widely used to analyze the trend of the series    

and forecast future values. Rahman et al. [19] utilized    

the ARIMA model for modeling inflation over time in 

Bangladesh. ARIMA models for time series data have the 
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potentiality to represent stationary as well as non-stationary 

time series and to generate correct forecasts based on 

available historical data of single or multiple variable. Since 

it does not allow any systematic pattern in the previous data 

of series that are to be forecasted, this model is very distinct 

from other models used for forecasting. This model was 

developed by [10] and [14]. 

This model is composed of three components. An 

autoregressive integrated moving average (ARIMA) models 

is denoted as ARIMA (p, d, q). ARIMA model can explain 

temporal dependence in various ways. Firstly, the series    

is d-differenced to make it stationary. When d = 0, the 

observations are considered stationary and modelled directly, 

and when d ≥ 1, the differences between consecutive 

observations are modelled. Secondly, the time dependence  

of the stationary process Xt is modelled by including 

autoregressive models of order p. The equation for order p is:  

𝑋𝑡 = 𝐶 +  𝜙𝑖
𝑝
𝑖=1 𝑋𝑡−𝑖 + 𝑊𝑡 ,           (1) 

where, C is a constant, 𝜙𝑖  is the autoregressive parameter, 

𝑋𝑡  is the observed value at time t and, 𝑊𝑡   represents 

random error. The third component is moving-average term 

of order q. It considers the observation of previous random 

errors. The equation for order q is: 

𝑋𝑡 =  𝜃𝑖
𝑞
𝑖=1 𝑊𝑡−𝑖 + 𝑊𝑡 ,            (2) 

where, C is a constant, 𝜃𝑖  is the model parameter, 𝑊𝑡  is the 

error term. Finally, by combining these three components, 

we obtain the ARIMA model. Thus, the general form of the 

ARIMA models can be expressed as:  

𝑋𝑡 = 𝐶 +  𝜙𝑖 𝑋𝑡−𝑖 +  𝜃𝑖 𝑊𝑡−𝑖 + 𝑊𝑡 .      (3) 

Generally, ARIMA models use the back-shift operator B 

which is defined as 𝐵𝐾 𝑋𝑡 =  𝑋𝑡−𝑘 ; 𝑡 > 𝑘, 𝑡, 𝑘 ∈ 𝑁, where 

k is the index representing how many times back-shift 

operator B is applied to time series 𝑋𝑡  characterised by time 

interval t, and N is the total number of time intervals. Using 

the following notations  

Φ z =  1 +  𝜙𝑖 𝑧
𝑖 ;  𝜙𝑝 ≠ 0 

Θ z =  1 +  𝜃𝑖 𝑧
𝑖 ;  𝜃𝑞 ≠ 0 

the Eq. (3) can be written as  

𝛷 𝐵  1 − 𝐵 𝑑𝑋𝑡 = 𝐶 +  Θ 𝐵 𝑊𝑡  

The seasonal ARIMA (p, d, q) (P, D, Q)[m] process noted 

also as SARIMA (p, d, q) (P, D, Q)[m] is given by:  

Φ 𝐵𝑚 Φ 𝐵  1 − 𝐵𝑚  1 − 𝐵 𝑑𝑋𝑡 = 𝐶 +  Θ 𝐵𝑚 Θ 𝐵 𝑊𝑡  

where m is the seasonal period, φ(z) and Θ(z) are 

polynomials of orders P and Q, respectively, each containing 

no roots inside the unit circle. If c ≠ 0, there is an implied 

polynomial of order d + D in the forecast function [15,16]. 

To determine an appropriate model for a given time series 

data, it is necessary to figure out the Autocorrelation 

Function (ACF) and Partial Autocorrelation Function (PACF) 

analysis, which reflects how the observations in a time series 

are interrelated. The plot of ACF helps to determine the order 

of Moving Average terms, and the plot of PACF helps to find 

Autoregressive terms.  
The main task in SARIMA forecasting is selecting an 

appropriate model order; that is, the values p, q, P, Q, D, d. If 

d and D are known, we can select the orders p, q, P and Q via 

one of the forecast measure error: the mean absolute error 

(MAE), the root mean squared error (RMSE) and the mean 

absolute scaled error (MASE). MAE and RMSE are defined 

by the formulas: 

𝑀𝐴𝐸 =
1

𝑛
  |𝑒𝑡|

𝑛

𝑖=1

 

𝑅𝑀𝑆𝐸 =   
1

𝑛
 𝑒𝑡

2

𝑛

𝑖=1

 

respectively, where n is the number of periods of time and 

𝑒𝑡 = 𝑋𝑡 − 𝑓𝑡  is the forecast error between the true value 𝑋𝑡   
and the forecasted value 𝑓𝑡 . The MAE is the average value 

over the sample of the absolute values of the differences 

between the forecast and the corresponding observation. 

Moreover, the RMSE is the square root of the average 

squared values of the differences between forecast and the 

corresponding observation. These errors have the same  

units of measurement and depend on the units in which the 

data are measured. The MASE was proposed by [17] for 

comparing forecast accuracies. The MASE is given by the 

formula:  

MASE = MAE/Q 

where Q is a scaling statistic, computed on the training data. 

For a non-seasonal time series, a useful way to define scaling 

statistics is to apply the mean absolute difference between 

the consecutive observations:  

𝑄 =  
1

𝑁 − 1
 𝑛|𝑋𝑗 − 𝑋𝑗−1|

𝑗=2
 

that is, Q is the MAE for naive forecasts, computed on the 

training data. The MASE is less than one if it arises from a 

better forecast than the average naive forecast computed on 

the training data. Conversely, it is greater than one if the 

forecast is worse than the average naive forecast computed 

on the training data. For a seasonal time series, a scaling 

statistic can be defined using the seasonal naive forecasts:  

𝑄 =  
1

𝑁 − 1
 𝑛|𝑋𝑗 − 𝑋𝑗−𝑚 |

𝑗=2
 

where the seasonal naive method accounts for seasonality by 

setting each prediction to be equal to the last observed value 

of the same season. The MASE is independent of the scale of 

the data, so it can be used to compare forecasts for data sets 

with different scales. When comparing forecasting methods, 

the method with the lowest MASE is the preferred one.  

Therefore, the approach of Box-Jenkins methodology in 

order to build ARIMA models is based on the following 

steps: (1) Model Identification, (2) Parameter Estimation and 

Selection, (3) Diagnostic Checking (or Model Validation); 

and (4) Model’s use.  
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3. Data 

The study data were collected and provided by 

Bangladesh Meteorological Department, Climate Division, 

Dhaka. The data contain information about monthly number 

of thunderstorm-days for 34 different meteorological 

stations of Bangladesh from 1980 to 2018. The locations of 

the stations are represented in Figure 1. This study is design 

to forecast total number of thunderstorm-days in Bangladesh. 

Monthly total number of thunderstorm-days in Bangladesh is 

calculated by taking sum of monthly thunderstorm- days 

over 34 different stations.  

 

Figure 1.  Locations of the meteorological stations in Bangladesh 

4. Results and Discussions 

 

Figure 2.  Graphically visualizing monthly total number of 

thunderstorm-days in Bangladesh from the year 1980 to 2018 

The first step of time series analysis is to plot the series 

against time which is called the time plot. The time plot of 

total number of thunderstorm-days for the period 1980 to 

2018 is shown in Figure 2. In-spite of being there no visible 

trend of total number of thunderstorm-days in the figure, 

seasonality is visible there (Figure 2 and Figure 3). The 

maximum number of thunderstorm-days occurs in May. The 

number of thunderstorm-days increases from January to May 

which remains similar to September, then it again decreases. 

Fewer numbers of thunderstorms-days occur in November, 

December, and January.  

 

Figure 3.  Month wise box plot for total number of thunderstorm-days in 

Bangladesh 

For the additive decomposition of the series in Figure 4, it 

seems that in the series, there is no linear-trend- which is also 

confirmed by applying the sieve-bootstrap version of the 

t-test by adapting the approach of Noguchi, Gel, and Duguay 

[21]. This t-test fails to reject the null hypothesis of no-trend 

with a t-value of 1.994 and a p-value of 0.875. 

Original series in Figure 2, Figure 3 and additive 

decomposition of the series in Figure 4 showed no stationary 

of data due to the presence of seasonality. Likewise, the 

graph of the ACF’s of the original series in Figure 5 showed 

not stationary data because the autocorrelation after lag time 

1 quite significantly from zero that decreases very slowly.  

 

Figure 4.  Decomposition of the series 
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Figure 5.  ACF and PACF of the series 

If the mean and the variance of the series are independent 

of time, but rather are constants and their covariance at 

different lags does not depend on time, the series is said to be 

a stationary series. This series seems to non-stationary as its 

mean is not constant over the time. Moreover, statistical 

testing can be used to verify the stationarity of considered 

series. To do this, there are two different approaches: 

stationarity tests such as the Kwiatkowski-Phillips- 

Schmidt-Shin (KPSS) test that consider the null hypothesis 

as the series is stationary, and unit root tests, such as the 

Dickey-Fuller test and its augmented version, the augmented 

Dickey-Fuller test (ADF) for which the null hypothesis is 

thought as the series is not stationary. ADF test suggest the 

non-stationarity of our series with p-value 0.2391 higher 

than 0.05, which was also confirmed by the KPSS test. Thus, 

the series is not required the regular trend differencing. To 

make sure whether seasonal trend difference, D, is required, 

a seasonal unit root test (the HEGY test [20]) has been 

implemented. HEGY test suggests that there is a unit root 

with a statistic value -2.3033 and p-value 0.3866. Therefore, 

the series required the seasonal trend differencing, so in all 

SARIMA models, we assumed d = 0 and D = 1.  

 

Figure 6.  Time plot of the seasonal first difference series 

Figure 6 that represent time plot of the first seasonal 

difference of the series shows stationary on the value of the 

data center because the graphics look along the horizontal 

axis of time. ACF Graph towards zero after one lag. 

Autocorrelation values after a lag 4 does not differ 

significantly from zero or is within the limits of an 

autocorrelation values so that shows the stationary data. This 

shows a pattern for time series modeling once at deference’s.  

 

Figure 7.  ACF and PACF of the stationary series 

Additionally, the ACF plots shown in Figure 7 depict a 

sine wave and show spikes in the seasonal lags 12. This 

effect significantly supports the evidence of seasonality in 

the data sets. 

Identification of the model while the Figure 7 shows the 

values of the autocorrelation are insignificant after lag 2. 

This indicates the existence of a pattern of MA (Moving 

Average) takes two, MA (2) that is not seasonal. The 

seasonal pattern is still visible on the autocorrelation values 

data deference’s so strengthen the presence process MA (1) 

seasonal. There are two value of a very significant partial 

autocorrelation at lag 1 and 2 so assumed the existence of a 

pattern of AR (Autoregressive) takes two or AR (2) is not 

seasonal. The seasonal pattern is still visible on the partial 

autocorrelation values data deference’s so strengthen the 

presence process AR (2) seasonal. Based on this, the 

candidate model is ARIMA (2, 0, 2), (2, 1, 1), D = 1, and  

s = 12.  

In this study, data were from 468 months in the period 

between January, 1980 and December, 2018 and the data 

set was partitioned into a training set and a test set. All the 

observations from January, 1980 to December, 2011 were 

taken into consideration as the training set and were applied 

so as to fit the created statistical models for the Total 

number of thunderstorm-days. The data from January, 2012 

to December 2018 were designated as the test set and were 

used to assess the predictability accuracy of the fit. This 

approach gives the ability to compare the effectiveness of 

different methods of prediction. by minimizing the forecast 

measure errors RMSE, MAE, MASE and AIC. In this study, 

20 models with seasonal parameter (P = 2, D = 1, Q = 1) 

and 20 models with seasonal parameter (P = 1, D = 1, Q = 1) 

is considered. It is seen that models with seasonal parameter 

(P = 1, D = 1, Q = 1) has minimum value for the model 

accuracy parameters. Thus, we chose the best parameters of 

SARIMA models among the considered 20 models with 

seasonal parameter (P = 1, D = 1, Q = 1). SARIMA (4,0,4) 

(1,1,1) [12] and SARIMA (2,0,4) (1,1,1) [12] model was 

selected as the most appropriate from all 20 tested 

SARIMA models for thunder (Table 1 and 2).  
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Table 1.  Estimated values of the model accuracy parameters 

Model ME RMSE MAE 

(1,0,1)(1,1,1) [12] -19.502 54.755 39.486 

(2,0,1)(1,1,1) [12] -11.483 51.082 36.783 

(3,0,1)(1,1,1) [12] -14.645 51.714 37.335 

(4,0,1)(1,1,1) [12] -15.169 51.930 37.507 

(1,0,2)(1,1,1) [12] -10.535 51.122 36.792 

(2,0,2)(1,1,1) [12] -18.808 54.047 39.095 

(3,0,2)(1,1,1) [12] -10.771 50.571 36.598 

(4,0,2)(1,1,1) [12] -14.726 51.752 37.361 

(1,0,3)(1,1,1) [12] -12.844 51.255 36.939 

(2,0,3)(1,1,1) [12] -15.213 51.935 37.513 

(3,0,3)(1,1,1) [12] -15.029 51.921 37.494 

(4,0,3)(1,1,1) [12] -15.162 51.932 37.510 

(1,0,4)(1,1,1)[12] -21.581 55.293 39.823 

(2,0,4)(1,1,1) [12] -12.672 50.682 36.657 

(3,0,4)(1,1,1) [12] -10.826 51.251 36.809 

(4,0,4)(1,1,1) [12] -12.781 50.223 36.516 

(0,0,1)(1,1,1) [12] -20.985 56.093 39.986 

(0,0,2)(1,1,1) [12] -21.287 55.658 39.837 

(0,0,3)(1,1,1) [12] -21.512 55.53 39.804 

(0,0,4)(1,1,1) [12] -21.591 55.312 39.787 

Table 2.  Estimated values of the model accuracy parameters 

SARIMA Model MASE Sigma AIC 

(1,0,1)(1,1,1) [12] 0.710 3474.65 4111.93 

(2,0,1)(1,1,1) [12] 0.661 3430.55 4110.59 

(3,0,1)(1,1,1) [12] 0.671 3397.42 4109.22 

(4,0,1)(1,1,1) [12] 0.674 3396.17 4111.05 

(1,0,2)(1,1,1) [12] 0.661 3444.56 4111.76 

(2,0,2)(1,1,1) [12] 0.703 3396.02 4111.01 

(3,0,2)(1,1,1) [12] 0.658 3365.15 4110.84 

(4,0,2)(1,1,1) [12] 0.672 3397.27 4113.21 

(1,0,3)(1,1,1) [12] 0.664 3407.68 4110.23 

(2,0,3)(1,1,1) [12] 0.674 3395.5 4110.98 

(3,0,3)(1,1,1) [12] 0.674 3398.19 4113.19 

(4,0,3)(1,1,1) [12] 0.674 3396.2 4115.03 

(1,0,4)(1,1,1) [12] 0.716 3483.3 4118.61 

(2,0,4)(1,1,1) [12] 0.659 3322.58 4108.88 

(3,0,4)(1,1,1) [12] 0.662 3330.38 4110.81 

(4,0,4)(1,1,1) [12] 0.656 3288.28 4109.56 

(0,0,1)(1,1,1) [12] 0.719 3666.32 4127.47 

(0,0,2)(1,1,1) [12] 0.716 3573.55 4120.83 

(0,0,3)(1,1,1) [12] 0.716 3537.22 4119.56 

(0,0,4)(1,1,1) [12] 0.715 3487.23 4116.88 

According the model accuracy parameters value (Table  

1 and 2) and Figure 8 it can be inferred that selected 

SARIMA models are reasonable to forecast total number of 

thunderstorm-days in Bangladesh.  

 

Figure 8.  Fitted value vs original series (test data) from the selected 

SARIMA model 

Estimation and testing significance of the parameters of 

the appropriate model has been accomplished in this section. 

From the previous analysis we have found that 

SARIMA(4,0,4)(1,1,1) [12] would be the best model. 

Parameters of the SARIMA model obtained by fitting the 

model are shown in TABLE 3 with corresponding 

significance value. The forecasted value of the monthly total 

number of thunderstorm-days in Bangladesh with 95% 

confidence limits have been displayed graphically in Figure 

9. 

Table 3.  Estimated parameters of the SARIMA model 

Parameter Estimate Std. Error Z value P-value 

ar1 1.267 0.151 8.401 0.000 

ar2 0.192 0.166 1.152 0.249 

ar3 -1.145 0.150 -7.631 0.000 

ar4 0.681 0.148 4.596 0.000 

ma1 -1.081 0.145 -7.460 0.000 

ma2 -0.296 0.171 -1.736 0.083 

ma3 1.108 0.145 7.631 0.000 

ma4 -0.677 0.161 -4.214 0.000 

sar1 0.000 0.061 -0.002 0.998 

sma1 -0.890 0.038 -23.518 0.000 
 

 

Figure 9.  Graphical display of the forecasted values of the monthly total 

number of thunderstorm-days in Bangladesh 

It is necessary to do diagnostic checking for the model 

adequacy although the selected model might appear to be 

the best model. This is done by studying the residuals. 
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Randomness and independence of residuals are two 

important assumptions in modeling. Without these two 

properties good results from the model cannot be expected. 

Graph of residuals shows whether residuals are random or 

not. If there is no pattern in the residuals, we might assume 

that the residuals are randomly distributed. The ACF of 

residuals shows whether residuals are independent or not. If 

there is no point outside the line, we can conclude that 

residuals are independent. Large p-values of Ljung Box test 

indicate that residuals are white noise.  

From the first plot in Figure 10, it is found that residuals 

are scattered both sides of zero line without making any 

pattern. Therefore, it is believed that residuals are randomly 

distributed. From the second graph in Figure 6, we notice 

that none of the points are outside the significance line 

which proves the independence of residuals.  

In Ljung Box test, Chi-square value is 11.77 with 20 

degrees of freedom and test p-value is 0.935 that indicate 

that residuals do not follow any specific pattern at 5%  

level of significance. Therefore, the null hypothesis of 

independence cannot be rejected and we conclude that 

residuals are independent in nature.  

Normality of residuals of a model is also another 

important assumption. If normality assumption of residuals 

of a model is violated, the model will entail misleading 

inferences. Histogram of the residuals in Figure 10 suggest 

us that the residuals are might be generated through a 

normal process. The normality assumption of the residuals is 

also checked through the Jarque Bera test [22]. For the 

presence of outliers in the residuals, the Jarque Bera test 

rejects the null hypothesis of normality of the residuals with 

a p-value < 0.001. After eliminating the outliers from the 

residuals, the Jarque Bera test shows the residuals are 

normally distributed with a p-value of 0.1196. 

 

Figure 10.  Residual diagnostic plot 

5. Conclusions 

Thunder occurs during a lightning storm as a result of 

acoustical effect of high temperature and pressure. Thus, the 

sound caused by lighting during lighting storm is called 

thunder. If the highest pressure in a storm happens a little 

distance away from the origin of the lightning strike, it 

causes a rumbling noise. The shock wave in thunder is 

sufficient to cause property damage [18] and injury, such as 

internal contusion, to individuals nearby. 
Thunder can rupture the eardrums of people nearby, 

leading to permanently impaired hearing [18]. Even if not, 

it can lead to temporary deafness. 1990-1999: 30 deaths and 

22 injuries per year; 2000-2009: 106 deaths and 72 injuries 

per year, and 2010-2017: 260 deaths and 211 injuries per 

year occurred in Bangladesh [6]. Considering the massive 

death toll due to lightning, in 2016, the Government of 

Bangladesh has declared it as a natural disaster [7]. So, it is 

evident that the thunder is a public health, social and 

economic issue.  

A historical data of 39 years of thunderstorm-days has 

been visualized using time series modeling tools. Based on 

the criteria of minimizing MAE, RMSE, MAE, MASE, and 

AIC, SARIMA (4,0,4) (1,1,1) [12] model has been selected 

as the best model to forecast the total number of 

thunderstorm-days occurred in Bangladesh.  

Forecasting results using SARIMA model might be very 

useful to have an insight about the monthly occurrence of 

thunderstorm-days in Bangladesh and thus it might help the 

policymakers to take necessary effective measures to reduce 

the deaths, disabilities, damage as well as related burden in 

Bangladesh.  
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