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Abstract. Monitoring of human activities from a distance without ac-
tively interacting with the subjects to make a decision is a fascinating
research domain given the associated challenges and prospects of build-
ing more robust artificial intelligence systems. In recent years, with the
advancement of deep learning and high-performance computing systems,
contactless human activity monitoring systems are becoming more and
more realizable every day. However, when looked at closely, the basic
building blocks for any such system is still strongly relying on the funda-
mentals of various signal processing techniques. The choices of a signal
processing method depends on the type of signal, formulation of the
problem and the choices of higher level machine learning components. In
this chapter, a comprehensive review of the most popular signal process-
ing methods used for contactless monitoring are provided highlighting
their use across different activity signals and tasks.
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1 Introduction

In recent times, contactless human monitoring has gain a lot of traction. Appli-
cation areas of such systems include monitoring breathing pattern, respiratory
rate and other vital signs [1–3], event recognition [4], human motion classification
[5] and analysing crowded scenes [6].

The vast proliferation of contactless sensors has enabled contactless activ-
ity monitoring with different activity signals. Among these, audio-based, light-
based, and radio-frequency based sensors are most widely used. Different types
of sensors has different strengths and weaknesses. For example, radio frequency
and proximity sensors provide cheap contactless monitoring but suffers from low
accuracy and high environmental inferences. Light based sensors such as camera,
depth sensors, and LIDARs has accuracy and resolution but also expensive and
requires high computational power for processing. Table 1 lists different aspects
of most popular signal sources for contactless monitoring.

Signal processing is one of the most important and fundamental block of
contactless monitoring. From sensing the physical world to making a decision
e.g. recognizing, modeling, understanding etc. - signal processing techniques are
used in every step in between.
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Table 1. Different aspects of most popular signal sources for contactless monitoring.

Sensor Advantages/Disadvantages Notable Use-Cases

Audio-based
– Speech
– Acoustic
– Ultrasound

Advantages
– Moderate to High accuracy
– Moderate to low cost
– Ultrasound is precise for determining distances,

highly sensitive to motion and has Long oper-
ating range

Disadvantages
– Easily influenced by other audio signal/noise
– Prone to false detection
– Range limited
– Privacy issues
– Ultrasound is unidirectional, sensitive to tem-

perature and angle of target and performance
drops at very close proximity

– Intelligent personal assistants (IPAs) [7]
– Audio-based context/scene recognition [8, 9]
– Human activity recognition [10]
– Heart and respiration rate monitoring [2]
– Office and indoor activity analysis [11, 12]
– Rehabilitation support [13]

Radio
Frequency-based
– RF
– WiFi

Advantages
– Low cost
– Simple computation

Disadvantages
– Environmental Inference

– Measuring vital signs [3]
– Indoor/outdoor localization and tracking

Light-based
– Infrared Sensors
– Thermal Imaging

Sensors
– 2D Cameras
– Depth Sensors

and Hybrid
Sensors

Advantages
– High Accuracy

Disadvantages
– High cost
– Privacy issues
– Influenced by illumination, pose, occlusion and

noise

– Activity recognition from thermal videos [14]
– Facial expression analysis
– Action recognition for robotics and HCI
– Crowded scene analysis, anomaly detection
– Pose prediction
– Pedestrian detection for autonomous driving
– Technology for assisted living such as fall de-

tection
– 3D body shape, face and hand modeling for

augmented and virtual reality applications
– Precise tracking of face and eye for autonomous

driving scenarios
– Liveliness detection for anti-spoofing of authen-

tication systems

Other Sensors
– Passive Infrared

Sensors (PIR)
– Proximity Sensor

Advantages
– Low cost
– Simple computation

Disadvantages
– Low Accuracy
– Limited usability

– Activity recognition and tracking [15]
– Collision avoidance technology for blind people

and wheelchairs
– Motion-based automatic control of switches for

smart home systems

Figure 1 shows typical lifetime of a signal in contactless monitoring that
starts from activity signal acquisition by sensing the world using different con-
tactless sensors such as microphone, camera, Lidar, infra-red, ultrasonic sensors
etc. Different sampling and windowing techniques are used to acquire discrete
signals from the continuous real world. The signal then goes through different
pre-processing steps such as denoising and other filtering methods to enhance
its quality. Features are then extracted from the signals to be used by different
activity analysis algorithms. This chapter briefly discusses the signal processing
steps and their applications.

The chapter is organized as follows: Section gives an overview of different
sampling and windowing techniques. Section 3 discusses time and frequency
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Fig. 1. Any contactless human activity analysis system usually follows this pipeline
from left to right.

domain processing techniques and their applications. In section 4, some widely
used feature descriptor and their extraction techniques have been described.
Different dimensionality reduction methods and their applications have been
discussed in Section 5. Conclusions are drawn in Section 6. Activity analysis
algorithms are beyond the scope of this chapter and therefore, not discussed.

2 Activity Signals Sampling and Windowing Techniques

Signal sampling and windowing are two important steps of signal processing
that is applied during or right after signal acquisition and plays an important
role in the performance of the system. This section discusses applications of
signal sampling and windowing methods and the impact of windowing in activity
analysis.

2.1 Applications of Signal Sampling

Sampling is the process of converting a continuous time signal from the real,
analog world to a discrete time signal in the digital domain. The value of the
analog signal is measured at certain time intervals to read ’Samples’ for the dig-
ital domain. Analog signals are continuous in both amplitude and time, while
the sampled digital signals are discrete in both. If a continuous signal is sampled
at a frequency fs, the frequency components of the analog signal are repeated
at the sample rate resulting in the discrete frequency response repeated at ori-
gin, ±fs, ±2fs, and so on. According to Nyquist-Shannon sampling theory [16],
Sampling needs to be at least at Nyquist rate (2 x the maximum frequency of a
signal fmax) or more for exact reproduction. Sampling below Nyquist rate (fNy)
causes information loss and aliasing. Unwanted components are introduced in
the reconstructed signals during aliasing when signal frequencies overlap due
to low sampling rate, while some frequencies of the original signal gets lost in
the process. Results of sampling a simple sine wave at different rates are shown
in Fig. 2. In many real-life applications, noises represent the highest frequency
component of a signal and aliasing of those frequencies are undesired. Hence,
low pass filtering is performed before sampling to prevent aliasing of the noise
components.
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Fig. 2. Effect of sampling frequency. A 240Hz sine wave is sampled using sampling
frequencies of 2400Hz, 1600Hz, 800Hz, 400Hz, 200Hz and 100Hz (From top-left to
bottom-right image). The aliasing cases are shown in the bottom row where fs <
2× fmax. Clearly the sampled signals in the bottom figures has unwanted components
due to aliasing

While “temporal aliasing” occurs in signals sampled in the time domain
(such as audio signals), it can also occurs for spatially sampled signals, such as
an image - a phenomenon referred to as “spatial aliasing”. Spatial sampling can
cause jaggies on the edges as commonly seen on low resolution versions of an
image (example shown in Fig. 3). Other artifacts of aliasing includes wagon wheel
effect1 for temporal sampling, temporal strobing when sampling in space-time,
Moiré effect [17] when sampling texture coordinates and sparkling highlights.

Fig. 3. (a) Original 1365 × 1365 pixel image obtained and modified from the Open
Image Dataset V6 [18]. (b) Image down-sampled to 64 × 64 pixels by sampling every
fourth sample and applying a box filter. The jagged patterns and high dimensional
noise introduced by aliasing and the box filtering are clearly visible. (c) Down-sampled
to 64 × 64 pixels using an anti-aliasing Lanczos filter [19].

1 https://michaelbach.de/ot/mot-wagonWheel/index.html
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For spatio-temporal data like videos collected for surveillance, the temporal
sampling rate needs to be high to prevent strobing effect as well as to ensure
no critical information is lost due to lower sampling rate, which will otherwise
defeat the purpose of a surveillance system. In Fig. 4 the histograms for average
frame per second rate of video surveillance systems for two different years are
shown2. According to IPVM statistics 3 the average frame for video surveillance
systems increased from 6−8fps in 2011 to ≈ 10fps in 2016 statistics and then to
15fps in 2019. It is understandable that commercial video surveillance systems
are inclining towards higher frame rates to ensure high-quality seamless video
streams for the customers. While a increased frame rate can lead to higher band-
width requirements for such a system, depending on the compression methods
used, bandwidth does not increase linearly with frame rate4.

Fig. 4. Histogram of average FPS for video surveillance. There is a clear trend of
increasing FPS over the years.

Table 2 lists the specifications of some cameras used in the industry. As listed
in the table, it can be seen that the newer models have more spatio-temporal
sampling rate. Table 3 lists the specifications of LIDAR sensors.

2.2 Impact of Signal Windowing on Activity Analysis

Windowing plays vital role in the activity analysis performance. Given the type
of signal and application, the method and duration of windowing can vary widely.
For example, in [20], the authors demonstrated that the size of the window plays

2 Based on https://ipvm.com/reports/frame-rate-surveillance-guide
3 https://ipvm.com/reports/avg-frame-rate-2019
4 https://ipvm.com/reports/frame-rate-surveillance-guide
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Table 2. Specifications of some surveillance cameras used in the industry

Model Release Resolution FPS

Axis M3004 2012 1.0 MP 30
Sony SNC-EM600 2013 1.3 MP 30
Reolink RLC-423 2015 5 MP 25
Reolink RLC-410 2017 5 MP 25
Hanwha (Samsung) PNO-9080R 2016 12 MP 20

Table 3. Specifications of some LIDER sensors used in the industry

Model Release Range Resolution Scan rate Accuracy Weight

Velodyne HDL 64 2007 120m 0.08/0.4 2.2M 2cm 12.7 kg
Velodyne Puck Ultra 2016 200m 0.1/0.33 1.2M 3cm 0.925 kg
Quanergy M8 2016 150 0.03 1.26M 3cm 0.900 kg

a significant role in determining speech intelligibility and the optimum hamming
window duration for speech reconstruction from short-term magnitude spectrum
is 15-32 ms. When choosing a window for a 1-D signal, the following factors can
be considered:

– width of the main lobe,
– spectral leakage from the attenuation of the side lobes, and
– rate of attenuation of the side-lobes.

In Fig. 5, the five time domain window functions, namely, rectangle, bartlett,
hamming, hanning and blackman [21, 22], with their respective frequency domain
responses are shown. The values of the window functions at the n-th sample for
a window length of N where 0 ≤ n ≤ N are defined as follows:

Rectangular, w[n] = 1, (1)

Bartlett, w[n] = 1− n−N/2
N/2

, (2)

Hamming, w[n] = 0.54− 0.46cos(
2πn

N
), (3)

Hanning, w[n] = 0.5− 0.5cos(
2πn

N
), (4)

Blackman, w[n] = 0.42− 0.5cos(
2πn

N
) + 0.08cos(

4πn

N
). (5)

As can be seen in Fig. 5, the rectangle window has the narrowest main lobe
but higher side lobe strength, while the other windows have wider main lobe
but lower side lobes. Hence, a rectangular window would be a better choice
to separate two signals with similar frequency and strength but worse choice
for identifying two signals with different frequencies and strength due to the
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spectral leakage and lower rate of attenuation of the side lobes [23, 22]. The 1-D
signal windowing techniques are extended to 2-D spatial windows, also known
as kernels. The choice of a kernel depends on the type of the image processing
task. A simple example would be Gaussian kernels that are widely used for
image smoothing and de-noising [24]. An isotropic 2D Gaussian kernel of unit
magnitude has the following form:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (6)

where, x and y are the pixel indexes from the center and σ is the standard
deviation.

Fig. 5. Time (left) and Frequency (right) domain responses of five different window
functions.

Temporal windowing, a.k.a temporal segmentation is an integral part of ac-
tion recognition systems for real-time applications. Sliding windows are the most
common windowing techniques for such scenarios[25]. However, based on specific
use-cases the length of the temporal window might or might not change dynam-
ically. Also, the temporal overlap between consecutive windows are considered.
Also, the size of the windows can be dynamically expanded or shrunk based on
activity inference in some system[25]. In a macro-level view, the design choices
are as follows:

1. Fixed-length window
– Non-overlapping windows
• No dynamic shrinking and/or expansion
• Dynamic shrinking and/or expansion

– Overlapping windows
• No dynamic shrinking and/or expansion
• Dynamic shrinking and/or expansion

2. Dynamic-length window
– Non-overlapping windows
• No dynamic shrinking and/or expansion
• Dynamic shrinking and/or expansion
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– Overlapping windows
• No dynamic shrinking and/or expansion
• Dynamic shrinking and/or expansion

When training machine learning systems, windowing plays an implicit yet
vital role for most application when creating mini-batches. In a recent work,
the authors proposed a framework that uses a sliding-window data scheduler to
achieve state-of-the-art performance for instance classification task [26]. More
examples use cases of windowing associated with deep learning include object
localization [27, 28], autonomous navigation [29], window slicing and pooling
techniques in deep neural networks [30] and modeling temporal patterns [31].

Now that we have established the importance of signal sampling and win-
dowing techniques on acquiring the sensor data in a convenient way for digital
processing, we move forward to discuss how time and frequency domain signal
processing approaches are being utilized to extract or meaningful information
from those data in the next section.

3 Time and Frequency Domain Processing for
Contactless Monitoring

Time and frequency domain techniques are applied to activity signals to ana-
lyze and enhance the signal. Different frequency domain transform techniques
are frequently used in activity analysis. Time and frequency domain filtering is
another important and widely used technique used for signal enhancement. This
section first discusses the applications of frequency domain transforms. The lat-
ter part of the section provides a brief introduction to filtering and some notable
use cases.

3.1 Applications of Frequency Domain Transforms

Frequency domain transforms are commonly applied to activity signals to an-
alyze and leverage the periodicity information for decision making purposes. A
very practical use-case is Remote photoplethysmography (rPPG) for monitoring
heart-rate from surveillance videos [32, 33]. For example, in [34] the authors ex-
tracted the pixels of interest from the face images in consecutive video frames,
took the average pixel values for each of the RGB channels, filtered-out low-
frequency components and investigated the frequency-domain representation to
find the frequency with maximum power which is a close approximation of the
heart-rate. The most popular frequency domain representation for such applica-
tions is the power spectral density (PSD) which is a measure of signal power at
different frequencies. For speech analysis, such concentration of acoustic energy
around a particular frequency, known as formants, have been used for a wide
range of applications including automatic speech recognition [35], voice activity
detection [36] and speech enhancement [37].

When dealing with 1D temporal signals such as speech or ultrasound, one
of the most popular analysis tools is the short-time Fourier Transfrom (STFT)
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which is frame-level frequency domain representation [38–40]. A visual extension
of STFT is a Spectrogram (also known as sonographs/voicegrams/voiceprints),
which is commonly plotted as a frequency vs time series 2D image where the
pixel intensities represent the magnitude of the frequency component [41]. Spec-
trograms are calculated for short-time, overlapped, sliding windows of T time
samples x = (x1, x2, ..., xT ) where the temporal duration of the window is chosen
to be small(typically 25 to 35 ms) to ensure that the speech within that frame
will be stationary. The value of the Spectrogram at the k’th frequency bin is
defined as

Speck(x) = |
T∑

t=1

eiktxt|2 = (

T∑
t=1

cos(kt)xt)
2 + (

T∑
t=1

sin(kt)xt)
2. (7)

Spectrograms are convenient for visualizing the effects of speech enhancement
as an be seen in Fig.6 obtained with permission from [42]. In [42], the authors
addressed the problem of acoustic echo cancellation from speech under noisy
condition. Apart from the spectrogram to visualize the results, the authors also
applied spectral subtraction [43] for noise reduction which involves transforming
the noisy signal into frequency domain using Fast Fourier Transform (FFT)
[44] on the short-term windows of the discretized speech signal and subtracting
frequency-domain estimate of noise spectrum (usually obtained and updated
from speech pauses) before reverting the signal to time domain samples using
inverse FFT (IFFT).

Fig. 6. Spectrogram for (a) original, (b) echo and noise corrupted, and (c) enhance
signal - reproduced with permission from [42].

Typically, spectrograms uses linear frequency scaling. Mel-frequency scales
are developed inspired by the properties of human auditory system to follow
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a quasi-logarithmic spacing. Mel-frequency filters are non-uniformly spaced in
frequency domain with more filters in the low frequency region compared to
higher frequency regions. Cepstral coefficients obtained for Mel-spectrum are
popularly known as MFCC (Mel-frequency Cepstral Coefficients) features, which
can be considered as “biologically inspired” speech features [45–47].

Following are notable use-cases of different variations of frequency-domain
transforms in the contact-less human activity analysis domain:

– Wavelet transform[48]: Data compression such as JPEG2000 image com-
pression standard [49]; video-based human activity recognition [50, 51]; Doppler
range control radar sensor-based fall detection [52]; WiFi signal-based human
activity recognition [53]; audio compression [54].

– Discrete Cosine Transform[55]: 3D motion analysis [56]; audio compres-
sion [54];

– Laplace Transform[57–59]: Non-articulatory sound recognition [60];
– Z-transform[57, 58]: Speech recognition[61]; Speech modeling and analysis

[62]; Pole-zero representation for linear physical system for analysis and filter
design [63].

3.2 Time and Frequency Domain Filtering

A filter is a function or operator that modifies a signal by performing math-
ematical operations to enhance or reduce certain aspects of the signal. If n-
dimensional signal is represented as an n-dimensional function, then mathemat-
ically, a linearly-filtered 2D-signal can be represented as

g(x, y) =

W∑
m,n

f(x+m, y + n)h(m,n). (8)

Here, h is known as the filter kernel and h(m,n) is known as a kernel weight or
filter coefficients.

Fig. 7. Left - original image, middle - 5x5 box filter kernel, right - filtered image.

A simple filter kernel is the moving average or box filter that computes the
average over a neighborhood or window. Fig. 7 shows an example application of
such box filter which is also a form of low-pass/blurring filter. Applications of
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signal filtering include enhancement such as denoising and resizing, information
extraction such as texture and edge extraction, pattern detection such as tem-
plate matching etc. Fig. 8 shows such examples where filtering is used to extract
vertical and horizontal edges.

Fig. 8. Left - original image. Middle:top - kernel that emphasizes vertical edges, bottom
- kernel that emphasizes horizontal edges. Right - output feature map corresponding
to the kernel on the left.

An extension to the basic filters are adaptive filters whose coefficients change
based on an objective or cost function (eqn. 8). These filters are used to modify
input signals such a way so that its output is a good estimate of a desired
signal. Examples include Least Mean Square (LMS) adaptive filters, Recursive
Least Square (RLS) adaptive filters, adaptive Wiener filters, adaptive anisotropic
filters etc. Adaptive filtering has applications active noise control [64–66], echo
cancellation [67], biomedical signal enhancement [68], tracking [69], equalization
of communications channels etc.

Some notable use cases of filtering such as contrast stretching and histogram
equalization, denoising, and convolutional filters are briefly discussed next.

Contrast Stretching and Histogram Equalization In a poorly contrasted
image, a large number of pixels occupy only a small portion of the available range
of intensities. The problem can efficiently be handled by histogram modification
and thereby reassigning each pixel with a new intensity value so that the dynamic
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range of gray levels is increased Contrast Stretching and Histogram Equalization
are such two contrast enhancement technique.

The idea behind contrast stretching is to increase the dynamic range of the
gray levels in the image being processed [24]. Contrast stretching is a simple
image enhancement technique that attempts to improve the contrast in an image
by ’stretching’ the range of intensity values it contains to span a desired range
of values, e.g. the the full range of pixel values that the image type concerned
allows.

Histogram Equalization is a method that increases the contrast of an im-
age by increasing the dynamic range of intensity given to pixels with the most
probable intensity values. The histogram equalization is a basic procedure that
allow to obtain a processed image with a specified intensity distribution. Some-
times, the distribution of the intensities of a scene is known to be not uniform.
The goal of histogram equalization is to map the luminance of each pixel to a
new value such that the output image has approximately uniform distribution
of gray levels. In order to find the appropriate mapping, the cumulative distri-
bution function (CDF) of the pixel values of the original image is matched with
a uniform CDF [70].

Fig. 9. Top: left - original image, middle - image enhanced by contrast stretching,
right - enhanced by histogram equalisation. Bottom: histogram of pixel values for the
corresponding top row image.
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Denoising Denoising is the process of removing noise from a signal. Noise
reduction techniques exist for both 1D signals such as speech and 2D signals such
as images. Denoising is generally a pre-processing step used before extracting
features from a signal. If we have a signal x that is corrupted with noise η as

f̄(x, y) = f(x, y) + η(x, y)

then a denoising filter h is a filter designed to estimate f such that

f(x, y) =

W∑
m,n

f̄(x+m, y + n)h(m,n) (9)

For example, median filter is a denoising filter that perform very well on
images containing binary noise such as salt and pepper noise. The median filter
considers each pixel in the image in turn and looks at its nearby neighbors to
make sure that it is representative of its surroundings by replacing it with the
median of those values. It is a non-linear filter and its output is the following-

f(x, y) = median
(
f̄(x+m, y + n), (m,n) ∈W

)
(10)

In general, the median filter allows a great deal of high spatial frequency detail
to pass while remaining very effective at removing noise on images where less
than half of the pixels in a smoothing neighborhood have been effected. One
of the major problems with the median filter is that it is relatively expensive
and slow to compute since finding the median requires sorting all the values in
the neighborhood into numerical order. A common enhancement technique is to
utilize the relative sorting information from the previous neighborhood window
to the next.

Fig. 10. Left to right: Median filter of sizes 3 × 3, 5 × 5 and 7 × 7, respectively, are
applied on a noisy image (left-most) for denoising.

Convolutional Filters Another application where this kind of filtering is cen-
tral is the convolutional neural network or CNN [71]. Convolutional neural net-
works use multiple filters in parallel where each kernel extracts specific feature
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of the input. The convolutional layers are not only applied to the input, but
they are also applied to the output of other layers. The output of these layers
are called feature maps as they contain valuable information extracted from the
input that helps the network perform its task. Unlike traditional computer vi-
sion, where the kernels are generally hand-crafted, CNN learns the weight of the
kernels during the training of the network. For example, in [72] a wonderful demo
for visualizing the output of each convolution layer for a convolutional neural
network trained to perform handwritten digit classification is presented. The
input (a handwritten digit ‘4’), intermediate convolutional and fully connected
layer output features as well as final predicted class for a convolutional neural
network trained on the MNIST dataset [73] is shwon in Fig. 11. The network
used is the famous LeNet-5 proposed in [74].

Fig. 11. Input, intermediate features and classification output (bottom to top) of a
CNN produced using the web tool provided by [72]

It can be observed that the output of the lower level convolution layers (sec-
ond and third rows from bottom) are visually interpretable such as edges and
corners of the input image, whereas the visual information are abstracted out
in the higher level features producted by the fully connected layers (third and
second rows from the top) in an effort to compress and convert the data in the
output classification domain.

The time and frequency domain filtering techniques discussed in this sec-
tion are heavily utilized for signal pre-processing as well as meaningful feature
extraction. In the next two sections, we discuss the low and high level feature fea-
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ture extraction methods that are direct application of different signal processing
methods.

4 Feature Extraction

A feature vector or descriptor encodes a signal such a way that allows it to be
compared with another signal. A local descriptor describes or encodes a path
within the signal. Multiple local descriptors are used to encode or compare sig-
nals. Local descriptors are used in application like activity recognition. A global
descriptor describes the whole image. Global descriptors are generally used for
applications like activity detection, and classification etc.

4.1 Local Descriptors

Local descriptors describe a feature on the basis of unique patterns present in the
neighborhood of the feature location. Some feature descriptor algorithm has its
own feature detector. However, individual detectors can also paired with different
descriptors. For convenience, this section is organized in two subsections. Section
4.1 discusses the time/spatial domain features and Section 4.1 discusses the
frequency domain features.

Time/Spatial Domain Features. Time or spatial domain features are the
features that extracted from the time or spatial domain representation of the
signal. Some of the widely used low-level features and their applications is briefly
discussed next. They are generally easy to define and extract and has weaker
requirements for invariant extraction [75]. Latter part of the section discusses
some of the widely used high level local feature decriptors.

Zero Crossing Rate (ZCR) is a time domain feature that measures the nois-
iness of the a signal. It is the rate of sign-changes of the signal. For the i − th
frame of lengh N with samples xi(n) where n = 0, 1, . . . , (N − 1), the ZCR is
defined as

Zi =
1

2N

N−1∑
n=1

|sgn[x(n)]− sgn[x(n− 1)]|, (11)

where, sgn[x] is the sign function defined as

sgn[x] =

{
−1 if x ≤ 0

1 if x > 0.
(12)

Kim et al. in [76] proposed a new model for speech recognition in noisy environ-
ments that uses ZCR. It is also used in speech-music discrimination [77], music
genre classification [78], and several other applications.

The signal envelope of an oscillating signal is the smooth curve outlining its
extremes. Speech signal envelope and its change are used in speech recognition
applications [79].
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The short term energy of a signal is another simple time domain feature. If
a signal window contains N samples, then the short-term power is computed
according to the equation:

E =
1

N

N∑
n=1

|xi(n)|2 (13)

The short-term power exhibit high variation over successive speech window
i.e. power envelope rapidly alternates between high and low power states. There-
fore, an alternative statistic, which is independent of the signal intensity, is the
standard deviation by mean value ratio is also used. Signal power based features
are used in speech activity detection applications [80].

Edge is an important feature used computer vision. An edge in an image is
a local change in the image intensity. Edges in an image are associated with
discontinuity in the image intensity which generally corresponds to discontinu-
ities in depth, variations in material properties or scene illumination etc. Canny,
Sobel, Prewitt are some examples of edge detectors.

Fig. 12. Example of edge features (Canny).

Corner features are frequently used in motion detection, video tracking, and
object recognition. A corner is defined as the intersection of two edges. In the
region around a corner, image gradient has two or more dominant directions.
Corners are easily recognizable in an image when looking through a small window
and shifting the window in any direction give a large change in intensity. The
Shi-Tomasi detector[81] and the Harris detector [82] are examples of two popular
corner detectors

Among the high level local descriptors, Scale Invariant Feature Transform
(SIFT)[83] is one of the most popular feature descriptor for images. SIFT has
scale in-variance property. The feature extracted by the SIFT algorithm is called
feature descriptor which consists of a normalized 128-dimensional vector and it
describes a feature point in terms of location, scale, orientation. SIFT feature is
used in activity analysis such behaviour detection [84], activity recognition [85]
etc.
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Fig. 13. Example of Haris corner features.

Another edge/gradient-based feature detector inspired by the SIFT is speeded
up robust features (SURF) [86]. The main interest of the SURF approach lies
in its fast computation of operators using box filters, thus enabling real-time
applications such as tracking and object recognition [87–90].

Despite their good performance, both SIFT and SURF are quite memory
intensive (512 bytes and 256 bytes respectively per feature point) which makes
them infeasible for resource-constrained applications. Binary Robust Indepen-
dent Elementary Features (BRIEF) provides a shortcut to find binary string
from the floating point feature descriptors [91]. One important point is that
BRIEF is a feature descriptor, it doesn’t provide any method to find the fea-
tures, so a feature detector like SIFT, SURF, or FAST[92] has to be used to
locate the keypoints. Gunduz et al. extracted crowd dynamics using BRIEF
features in [93].

An efficient alternative to SIFT and SURF that provides better performance
than BRIEF is Oriented FAST and Rotated BRIEF (ORB) descriptor. BRIEF
performs poorly with rotation, so ORB steers BRIEF and according to the ori-
entation of keypoints. ORB features has been used in activity forecasting [94]
and motion detection [95] applications.

Binary Robust Invariant Scalable Keypoints (BRISK) [96], Fast Retina Key-
point (FREAK) [97], KAZE [98], and Accelerated-KAZE (AKAZE) [99], are
some other widely used feature descriptors. Fig. 14 shows the performance of
different low level feature detectors.

Frequency Domain Features The spectral centroid and the spectral spread
are two measures of spectral position and shape of a signal. The spectral centroid
is the center of gravity of the spectrum and the spectral spread is the second
central moment of the spectrum. These features are useful in audio analysis tasks
such as audio brightness prediction [100], audio timbre measurement [101] etc.

Spectral Entropy is another frequency domain feature. To compute spectral
entropy, first the signal spectrum is divided into L sub-bands, the energy el of
each sub-band is then normalized by the total spectral energy, and the entropy
is finally computed as
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Fig. 14. Low level feature detection, from top left to bottom right, original, Shi-Tomasi,
SIFT, SURF, FAST, and ORB.

H = −
L−1∑
l=0

el∑L−1
l=0 el

log

(
el∑L−1

l=0 el

)
(14)

Standard deviation of sequences of spectral entropy is used to classify sound
classes [102, ?]. Other applications include music fingerprinting [103], encoding
[104], signal monitoring [105] etc. A variant of spectral entropy called chromatic
entropy has been also used in order to efficiently discriminate between speech
and music.

Other examples of 1-D low level features include spectral flux [106], spectral
rollof, etc. Frequency domain techniques can be used in images in the same way
as one dimensional speech signals. However, images do not have their information
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encoded in frequency domain, which makes this techniques much less useful to
understand information encoded in images [107].

4.2 Global Descriptors

Among different available global descriptors, Motion History Image (MHI) and
its variants are very widely explored for various human action recognition and
applications for a longer period [108–111]. MHI template or image can incorpo-
rate the entire motion information of a motion sequence or video in a compact
manner [110]. It has been a very useful template, especially when a single per-
son’s action or motion information is needed to extract. So, from a video of many
frames, finally we can create just a single image called MHI. A binarized image
from MHI or based on MHI is called Motion Energy Image (MEI) [110]. The
MEI retains the entire motion area or locations where there were any motion
information in the entire video sequence.

Figure 15’s (top row) depicts five Motion History Images for an action for
for the first 10 frames (as shown in the 1st column), until 15 frames, until 34
frames, until 36 frames, and until the end of 46 frames from the beginning [108].
The respective Motion Energy Images are demonstrated in Figure 15 (bottom
row) for the same action. These are computed from a gesture from the Kaggle
Gesture Challenge ‘ChaLearn’ Database.

The MHI and MEI pairs have been explored for many action recognition and
analysis. The MHI provides the history of the motion information and direction
or flow of the motion. On the other hand, the MEI retains the motion region
or area – thereby, it provides the energy or the points of motion areas. The
MHI is a grayscale image, whereas the MEI is a binary image. However, smarter
silhouette sequence can allow us to get better MHI template. The MHI also
provides the temporal changes and directions of the motion. For example, if a
video has sitting to standing sequences, the produced MHI can give a final image
where past or initial motion information becomes less-brighter than the later or
final motion regions with brighter pixel values. From these, we can assume that

Fig. 15. Examples of the computation of the MHI (top row) and the MEI (bottom
row) images for a gesture at different temporal states from the beginning of the action
[108].
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the motion has lower to upper direction. The MHI representation is less sensitive
to shadows, silhouette noises or minor missing parts.

The MHI can be used for Action recognition and analysis, Gait recognition,
Gesture recognition, Video analysis, Surveillance, Face-based depressive symp-
tomatology [112] analysis, Fall detection [113], Visualization of the hypoperfusion
(decreased blood flow) in a mouse brain [114], Depth image-based action recogni-
tion and removal of self-occlussion [115], Body movement trajectory recognition
[116], Biospeckle assessment of growing bacteria [117], and Emotion recognition
[118].

It has been also explored for gaming and other interactive applications and
in real-time, as the computational cost is really minimal.

There have been a number of variants at the top of the MHI. For example,
Average Motion Energy (AME) [119], Mean Motion Shape (MMS) [119], Motion-
shape Model, modified-MHI, Silhouette History Image (SHI) [120], Silhouette
Energy Image (SEI) [120], Hierarchical Motion History Histogram (HMHH)
[121], Directional Motion History Image (DMHI) [122, 123], Multi-level Motion
History Image (MMHI) [124], Edge MHI [125], Hierarchical Filtered Motion
(HFM) [126], Landmark MHI [127], Gabor MHI [112], Enhanced-MHI [113],
Local Enhanced MHI (LEMHI) [118, 128], etc. are exploited for human action
recognition.

For gait recognition with the MHI/MEI, Dominant Energy Image (DEI)
[129], Motion Energy Histogram (MEH) [130], Gait Moment Energy Image
(GMI) [131], Moment Deviation Image (MDI) [131] are explored along with
the most-widely explored approach for gait recognition called Gait Energy Im-
age (GEI) [132]. Till-to-date, the GEI becomes the unparalleled leader for gait
recognition methods. Motion Color Image (MCI) [133], Volume Motion Template
(VMT) [134], Silhouette History Image (SHI), Silhouette Energy Image (SEI),
etc. are exploited for gesture recognition. Motion History Volume (MHV) [135,
136] and Motion Energy Volume (MEV) are explored to detect unusual behav-
ior for the application of video surveillance. Volumetric Motion History Image
(VMHI) [137, 138] is another model similar to the VMT [134], or the MHV [136]
as 3D model of the MHI template for other applications.

MHI and its variants have also seen some applications in deep learning do-
main. A recent work explored the MHI in deep learning [139] for gesture recog-
nition. They fed the MHI into a 2D CNN based VGGNet, in parallel with 3D
DenseNet model to recognize some gestures. Depressive symptomatology are as-
sessed by using a variant of the MHI called Gabor MHI [112] and they explored
deep learning in their method. In another approach, the MHI is used with ResNet
classifier to detect the early-start intention of cyclists [140]. For emotion recog-
nition, a Local Enhanced MHI (LEMHI) is fed into a CNN network in [118, 128].
However, in the future, the MHI or its variants can be explored more along with
deep learning approaches by the researchers. Convolutional Neural Networks
(CNN) are also successfully being used to generate global descriptors. Autoen-
coder networks [141] learns a compact representation/descriptor of the input
data which is used in dimensionality reduction [142], clustering [143] etc. State-
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of-the-Art classifier models such as ResNet [144], InceptionNet [145], RetinaNet
[146] etc. are also used in global descriptor learning [147] and has demonstrated
superior performance over traditional embeddings [148].

5 Dimensionality Reduction Methods

Working with data in high-dimensional spaces in not always suitable due to
high computational requirement and the sparsity of raw data. Dimensionality
reduction is the transformation of data from a high dimensional space to low
dimensional space while retaining some of its meaningful properties.

If we have data with dimensionality D lying on the space S that has intrinsic
dimesionality d, where d < D and often d << D. Here, intrinsic dimensionality
means that the data is lying on or near a manifold with dimensionality d that is
embedded in the D-dimensional space without making any assumptions on the
structure of this manifold. Dimensionality reduction techniques transform data
with dimensionality D into a new data with dimensionality d, while retaining
as much information as possible. The problem of dimensionality reduction can
then be formalized as follows:

Given sample {x}Nn=1 ⊂ S, find a space T of dimension d, a dimensionality
reduction mapping F , and a smooth, non-singular reconstruction mapping f ,
such that d < D is as small as possible and the reconstruction error of the sample
is small [149].

Unsupervised dimensionality reduction techniques can be subdivided into
convex and non-convex techniques. Among the convex techniques that perform
decomposition of full matrices also known as full spectral techniques, Principal
Components Analysis (PCA) is the most popular. It is a linear technique for
dimensionality reduction, which means that it performs dimensionality reduction
by embedding the data into a linear subspace of lower dimensionality. Fig. 16
shows an application of PCA on a MNIST sample image [150]. Kernel PCA
(KPCA) is the reformulation of traditional linear PCA in a high-dimensional
space that is constructed using a kernel function. Unfortunately, it is unclear
how the kernel function κ should be selected. Maximum Variance Unfolding
(MVU) is a technique that attempts to resolve this problem by learning the
kernel matrix. Some other full spectral techniques are Diffusion Maps [151, 152],
Isomaps [153], etc.

The other type of techniques optimizes a non-convex objective function. One
such technique is Sammon mapping that adapts the classical PCA cost function
by weighting the contribution of each pair to the cost function by the inverse
of their pairwise distance in the high dimensional space. Another technique is
Multilayer autoencoders that are feed-forward neural networks that are trained
to minimize the mean squared error between the input and the output of the
network (ideally, the input and the output are equal). Locally Linear Coordina-
tion (LLC) [154] computes a number of locally linear models and subsequently
performs a global alignment of the linear models.
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Fig. 16. Comparison between dimensionality reduction (top) and downsampling (bot-
tom). Top: Original and reconstructed image after PCA compression. The original
image has 784 components (left). The compression is performed by keeping 87, 43, and
26 principle components respectively. Bottom: Original and images down-sampled with
same number of components.

Outside of this class of unsupervised dimensionality reduction only tech-
niques, there are techniques that combine dimensionality reduction technique
with clustering such as self-organizing maps[155] and their probabilistic exten-
sion (GTM). There are techniques of supervised nature such as Linear Discrimi-
nant Analysis (LDA) [156], Generalized Discriminant Analysis (GDA) [157], and
Neighborhood Components Analysis (NCA) [158], and recently proposed metric
learners [159, 160]. Techniques for Independent Component Analysis (ICA) are
mainly designed for blind-source separation [161].

6 Conclusion

In this chapter, we shed light on the inherent yet inevitable usage of signal pro-
cessing techniques in contactless, automatic human activity monitoring frame-
works. Since the early days of contactless monitoring till the recent advancements
and, in fact, for all future research and developments, signal processing has been
and will be an integral part of any such system. The chapter covers a wide range
of activity signals and associated application areas - highlighting different signal
processing methods that are being utilized for different purposes. Interestingly,
it is imperceptible to determine the boundaries between signal processing and
machine learning, since the underlying mechanism of most,if not all, machine
learning techniques are essentially signal processing approaches. Starting from
describing a generic contactless monitoring pipeline, the chapter covers the ba-
sic idea, usage areas and trends of numerous signal processing methods that are
closely associated with different parts of the pipeline. Hence, we believe that this
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chapter will provide researchers proper guidance for designing efficient contac-
less monitoring systems for human activities and to determine task-appropriate
signal processing approaches for different components of such system.
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