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Abstract Complex networks are often used to model the network of indi-
viduals for analysing various problems in human networks e.g. information
diffusion and epidemic spreading. Various epidemic models have been pro-
posed for analyzing and understanding the spreading of infectious diseases in
human networks. In the classical epidemiological model, a susceptible person
becomes infected instantly after getting in contact with the infected per-
son. However, this scenario is not realistic. In reality, a healthy person takes
some time to get infected after becoming in contact with the infected person.
Therefore, efforts are needed for creating more realistic models to study the
dynamics of epidemics in the human population.
In order to handle delays in the infection process, we propose an epidemic
model SIR with delay in human networks, which are modelled as a complex
network. We introduce a parameter, delay in infection to handle the pro-
cess of infected nodes not getting infected instantly. The critical threshold
is derived for epidemic spreading on complex network considering delay in
infection. We perform simulations of our SIR with delay model on three differ-
ent underlying dynamic network topologies, which represents the real world
scenario, where humans constantly create new connections. The simulation
results are in accordance with our theoretical derivations which shows that
increment of delay decreases the critical threshold of epidemic spreading rate
and the disease persists for longer time.
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1 Introduction

Dynamics processes such as information diffusion [16] and epidemic spread-
ing [2] in human networks is often studied through complex systems [20] [14].
The underlying network in these system consists of nodes representing indi-
viduals and edges as the connections. Specifically, the problem of spreading
of infectious diseases is an important topic as it can help in improving public
health policies.

Various models have been proposed for understanding the epidemic spread
in human networks [2] [22]. In this course of research and development, to
find the patterns of spread, Satorras and Vespignani [20] investigated to
understand the effect of network structure for epidemic spreading.

The two most widely studied models to explain the epidemic spreading
in human population is the i) susceptible-infected-removed (SIR) [7] and ii)
susceptible-infected-susceptible (SIS) model [6]. The theoretical approach of
epidemiological model is based on compartmental concept, in which popula-
tion is categorized into compartments. In SIR model, there are three compart-
ments i) susceptible (denoted by S), ii) infected (I), and iii) recovered (R).
Individuals in the susceptible compartment represent the group of healthy
persons that can be infected when get in contact with infected persons. If
a person gets infected, it is transferred into infected compartment. Finally,
after recovery an infected person is moved into recovered compartment. In
case of SIS model, there are only two compartments i) susceptible (denoted
by S), and ii) infected (I), where, a recovered individual can again become
susceptible unlike the SIR model, where an individual is considered forever
recovered and not being prone to susceptible from a disease. Subsequently,
various variations of these models have been proposed. For example, Takeuchi
et al. [19] proposed a delayed SIR epidemic model to analyze the propagation
of vector diseases. Later, Wang et al.[21] investigated the delayed SIR model
with time delay in incubation with some carrying capacity. This carrying
capacity decides the growth of susceptible individual in absence of disease.

Most of the studies have not focused on the underlying network structure,
which also plays an important part in epidemic spreading [2] [6] [21] [25]. In
summary, except works like [10], these studies consider the underlying net-
works as static which is unrealistic from real world scenario where the network
is dynamics. By the term dynamics we mean, the connections between in-
dividuals. That is new connections are formed and some of the connections
disappeared with time. Thus, rigorous studies are need of time for under-
standing the epidemic dynamics to show how dynamic human interaction
impact epidemic spreading.

In this paper, we study epidemic spreading in human population using
SIR with delay, by modelling human networks as complex networks. To in-
corporate the delay, we introduce a new parameter, which we call as delay
in infection. This parameter handles the real world scenario where people
generally do not get infected instantly when they come in contact with the
infected person. We also derive the critical threshold for epidemic spreading
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by considering delay in the infection. In particular, we evaluated our model
to investigate the effect of delay using following three types of dynamic net-
works:

I Random graph: Classical random graph was proposed by Erdos-Renye
[5]. A random graph, is created when a node is connected with another
nodes with connecting probability. It is represented by G(N, p), where N
is number of nodes and p is connection probability.

II Random geometric graph: A random geometric graph (RGG) is an
undirected graph created by randomly distributed nodes in the space and
two nodes are connected if the distance between two nodes is in a given
range called connectivity radius. A random geometric graph (RGG) [15],
denoted byG(N, r) is an undirected graph created by randomly distributed
N nodes in the space and two nodes are connected if the distance between
two nodes is in a given range r. Consider N nodes located at random
positions, X = {X1, ..., XN}, where Xi are i.i.d. s uniformly distributed
random variable in the 2-dimensional region. The nodes i, j are connected
if |Xi −Xj | ≤ r.

IIIRandom geometric graph with mobility: A random geometric graph
with mobile agents is similar to RGG but in RGG, position of each node
changes uniformly, while in RGG with mobile agents, position of only
mobile nodes changes and rest of nodes is static.

The simulation results being obtained using our model in accordance with
the theoretical derivations. That is, increment of delay decreases the critical
threshold and the disease persists for longer time.

The remainder of this paper is organized as follows: Section II discusses
the current state of arts regarding traditional disease models and underline
network topology. Section III explains the effect of delay in SIR epidemic
model. Section IV presents simulation and result analysis. In this section
we have simulated the model for number of times to get the result. Finally,
Section V describe conclusions and outlines some of our future directions.

2 Current State of The Art

In this section, we discuss two streams of relevant literature at the intersection
of which our work lies. The first set of works are related to SIR and SIS
model and their modifications. The second set of works related to epidemic
spreading which have analysed using various different types of networks.

2.1 Mathematical Modelling of Epidemic Spreading

In 1760, Daniel Bernoulli [3] proposed the first mathematical approach for
epidemics study for the spread of infectious diseases. In this course of action,
the classical SIR model is proposed by Kermack and McKendrick [7] as
follows:
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dS(t)

dt
= −βS(t)I(t) (1)

dI(t)

dt
= βS(t)I(t)− µI(t) (2)

dR(t)

dt
= µI(t) (3)

where, S(t), I(t), R(t) is the fraction of susceptible, infected and recovered
population at time t. However, the classical SIR epidemic model does not
consider the heterogeneity and topology of complex network.

Later, Anderson and May proposed various models to describe the disease-
related deaths and disease-reduced reproduction that had great impact on the
population size [2].

There have been numerous works which explored the SIS and SIR models
for understanding the epidemic spreading. For example, Shi et al. [17] studied
the behaviour of the SIS epidemic model by including the propagation vector
and observe that the propagation vector reduced the epidemic threshold and
lead the disease spreading. C.Xia et.al [23] presented a model based on the
SIR model, to investigate the impact of infection delay and propagation vec-
tor on the spreading behaviors in complex networks, however, they did not
explain the impact of infection delay on susceptible.

In addition, various modified SIR and SIS models have been proposed as
well. For example, Anurag et.al. proposed the modified SIR model by con-
sidering the standard SIR rumor spreading model with degree dependent
tie strength of nodes and nonlinear spread of rumor by introducing two pa-
rameters named as nonlinear exponent and degree dependent tie strength
exponent [18]. Some of the works have introduced delays in the models, such
as [9], [24].

In Time delay models, a delay parameter (τ) is introduced during infection,
which subsequently modifies the above Eq. (1- 3) to follow:

dS(t)

dt
= −βS(t)I(t− τ) (4)

dI(t)

dt
= βS(t)I(t− τ)− µI(t) (5)

dR(t)

dt
= µI(t) (6)

In addition to SIR and SIS models, Pastor-Satorras et.al. [14] describe
the epidemic process in complex network by applying degree based mean-field
approach.

2.2 Network structure

Due to stochasticity of epidemic spreading, different underlying network
structure have been used to show the different spreading patterns. The ad-
vancement in the area of complex networks sets the base for the epidemic
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dynamics and initiated several related studies [13]. For example, a lot of
emergent events in social networks and biological networks are pretended
using the concept of complex networks [1]. Therefore, disease spreading pat-
tern in human population can be seen and analyzed by using the different
topological structure [12] [13].

Satorras and Vespignani [20] proposed the epidemic spreading model
on scale free network to analyze the absence of epidemic threshold and its
associated critical behaviour. Their proposal was based on computer virus
spreading on communication and social networks. Yamir Moreno et.al. [10]
presented a new epidemiological framework characterized by a highly het-
erogeneous response of the system to the introduction of infected individuals
with different connectivity considering underlying scale free network. Xiang
Li and Xiaofan Wang [8] proposed the general spreading dynamical behav-
iors in small-world evolving networks when control strategies are applied to
suppress the propagation of diseases, viruses, and disasters.

But realistic model should include some time delay as delay plays an im-
portant role in the dynamics of epidemic. For instance, it can be the incu-
bation period of the infectious disease, the infectious period of patients, and
the immunity period of recovery of the disease with time delay. However,
very less attention has been given to the epidemic models with time delays
on heterogeneous networks as most of the dynamical process on networks are
done without considering delay in process.

3 Proposed Methodology

In this section, we explain the SIR with delay model. Let graph G(N , E)
defines the network of N nodes that represents the total population and E
denotes the connections between nodes representing the interaction between
individuals through which epidemic spreads. The propagation of disease is
explained as: Each healthy node takes a time delay of τ to get infected.
Thus, a node which gets in contact with the infected person at time (t − τ)
becomes infected after the time delay of τ . The infection rate is represented
by β and µ represents the recovery rate where, β and µ are ∈ [0, 1].

Let Sk(t), Ik(t) and Rk(t) be the fraction of the susceptible, infected and
recovered nodes at time t which are having degree of k. Let p(k) be the
degree distribution of the network, during the epidemic process, the node
with degree k will be kp(k) where, k ∈ [1, N − 1].

The transition rules of nodes’ from one state to other state is defined as:

1. A healthy node after becoming infected moves from susceptible to infected
state.

2. A node may be recovered spontaneously at any time with rate µ. Recovery
of a node doesnot require any contact. µ =1 is considered for each time
stamp a node will be recovered.

3. Once a node will get recovered it will never be infected nor become sus-
ceptible.
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4. In addition, we are not considering demography that is birth and death
of nodes, therefore, the total number of nodes will be constant through
out the transition.

Now, using the mean-field equation for dynamics of epidemic on network,
based on the above transitions:

dSk(t)

dt
= −βkSk(t)Ωk(t− τ) (7)

dIk(t)

dt
= βkSk(t)Ωk(t− τ)− Ik(t) (8)

dRk(t)

dt
= Ik(t) (9)

Where, Eq. 7 describes the rate of change of susceptible nodes and Eq. 8 refers
to rate of change of infected nodes while Eq. 9 explains the rate of change
of recovered nodes. The dynamics of SIR are coupled through the function
Ω(t) that describes the probability that an any given link of susceptible node
connected to an infected node of degree k at time t as shown in Eq. (10,11,12).
Here, the heterogeneous uncorrelated network [13] is considered, hence, Ωk(t)
can be defined as:

Ωk(t) =

kmax∑
k=1

P (k
′
|k)Ik(t) (10)

Ωk(t− τ) =

kmax∑
k=1

P (k
′
|k)Ik(t− τ) (11)

Ωk(t− τ) =

∑kmax

k=1 k
′
P (k

′
)Ik(t− τ)

〈k〉
(12)

where P (k
′ |k) is degree-degree correlation and Ik(t) is density of infected

nodes at time t having degree k.

3.1 Dynamical behaviors of the model

Eq. (7 - 9) represent nonlinear dynamical system of epidemic spreading, where
at any time t,

Sk(t) + Ik(t) +Rk(t) = 1

. Therefore, from Eq.7 and Eq.9

dSk(t)

dRk(t)
=
−βkSk(t)

∑kmax

k=1 P (k
′ |k)Ik(t− τ)

Ik(t)
(13)

After setting non-negativity and boundness of solution by using [11] as
Sk(0) > 0 , Ik(s) = 0 for s ∈ [−τ, 0] and Rk(0) = 0 where 0 ≤ τ ≤ t. Delay(τ)
should always be less than current time of spreading, because if τ is greater
than t that creates negativity. integrating both side of Eq.13
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Sk(t) = e−βk
∑kmax

k=1 P (k
′
|k)τRk(t)

Let

θk(t) =

∑kmax

k=1 k
′
P (k

′
)Rk(t)

〈k〉

Sk(t) = e−βkτθk(t) (14)

As epidemic arrives at steady state when t→∞ hence Ik(∞) = 0. There-
fore, normalized condition for steady state is,

Sk(∞) = 1−Rk(∞)

Sk(∞) = e−βkτθk(∞) (15)

Rk(∞) = 1− e−βkτθk(∞) (16)

Negative exponent in Eq. 15 shows that the number of susceptible nodes
are decreasing and converted into recovered nodes.Therefore,

Therefore,

θk(∞) =

∑kmax

k=1 k
′
P (k

′
)Rk(∞)

〈k〉

θk(∞) =

∑kmax

k=1 k
′
P (k

′
)(1− e−βkτθk(∞))

〈k〉
= G(θk(∞))

where G(θk(∞)) is a continuous, and increasing function for θk(∞),

θk(∞) =

∑kmax

k=1 k
′
P (k

′
(1− e−βk

∑kmax
k=1 P (k

′
|k)τRk(∞))

〈k〉

Above equation will have value 0 when Rk(∞) = 0, which provides the
disease-free state and the disappearance of epidemics. Therefore, to make
equation with a solution, put the limit between 0 and 1 and following condi-
tion must hold,:

dG(θk(∞))

dθk(∞)

∣∣∣
θk(∞)=0

> 1 (17)

After solving Eq. 17 we get

β =
〈k〉
〈k2〉τ

> 1

Therefore , the critical spreading rate under heterogeneous network can
defined as
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β > βc =
〈k〉
〈k2〉τ

(18)

From the Eq. 18 if τ → 0, then βc → ∞ . To make value of βc countable
τ + 1 is used in place of τ .

β > βc =
〈k〉

〈k2〉(τ + 1)

If there is no infection delay (τ = 0) then the delayed SIR will become the
standard SIR model and the critical threshold is βc = 〈k〉

〈k2〉 which is similar

to that in [13].
Therefore, critical threshold is inversely proportional to delay, as delay

increases critical threshold decreases. If the delay is too large then epidemic
will die out automatically and disease will not spread out.

4 Experimental Results

In this section, we first explain our experimental settings and next, we dis-
cuss the results of our simulations performed using SIR with delay model
performed using three different types of underlying networking topologies.

4.1 Experimental setup

We have simulated the critical threshold of epidemic outbreak by consider-
ing the delay in the SIR using following three different types of underlying
networks:

I SIR model with delay considering Random Network
II SIR model with delay considering Random Geometric Network
IIISIR model with delay considering Random Geometric Network with mo-

bile agents.

Each type of network consists of 2000 nodes that represent the human
population in an area of 2500m X 2500m square region, where connecting
probability of a node with other nodes is considered 0.2 for random net-
work model(G(N, p). For random geometric networks with or without mobile
agents, the connecting radius, r of 2m is kept for a possibility of creating a
connection with other nodes in the region. The rationale behind keeping this
distance small is that as generally infectious diseases like chicken pox and
tuberculosis spread when two persons get in contact at a short distance. For
random geometric network with mobile agents, velocity (v) of nodes has been
assigned random from the range of [3, 100] km/h. The logic behind keeping
the varying velocity is due to the fact that some individuals prefer to walk
and others tend to move by vehicles. The expected length between two ran-
dom points is (0.521*square length of simulation area)[4]. Various parameters
for simulations are listed in Table 1.
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Table 1 Simulation Parameter

Name of Parameter Value

Nodes 2000

Simulation Area 2500m x 2500m

Square Length(a) 2500m

Connectivity Radius(r)

(RGG) 2m

Spreading Rate(β) 0.6

Recovery Rate(µ) 0.1

Delay(τ) [0,10,20,....100]

Connectivity probability

(E-R model) 0.2

Expected length between
two random point 0.521*a

Velocity(v)

(Mobile RGG) Random(3,100)

4.2 Results

We perform different simulation to explain the proposed delayed SIR on
complex network by using different parameters (see Table 1). We focus on
the effect of delay on the dynamics of epidemics on heterogenous networks.

In simulation if τ = 0, the critical threshold will become βc = 〈k〉
〈k2〉

4.2.1 Effect of Delay on SIR considering underlying Network as
Random Network:

Fig. 1 shows the results of the epidemic spreading with delay in case of random
networks. Fig. 1(a) to 1(j) shows the epidemic dynamics with different values
of τ (τ = 0 to 90, with an interval of 10). We observed that with the increase
in delay, there is decrease in critical threshold but the time scale for the
existance of disease increases.

4.2.2 Effect of Delay on SIR considering underlying Network as
Random Geometric Network:

The results of the epidemic spreading with delay in case of random geometric
networks is shown in Fig. 2. Fig. 2(a) to 2(j) shows the epidemic dynamics
with different values of τ starting with τ= 0 to 90, with an interval of 10.
Apart from the decrease in the critical threshold we observed that epidemic
spreading in case of random geometric networks does not differ too much
from random networks as the average degree of random network as well as
in case of random geometric network is almost constant.

4.2.3 Effect of Delay on SIR considering underlying Network as
Random Geometric Network with mobile agents:

Fig. 3 shows the results of the epidemic spreading with delay by considering
random geometric networks with mobile agents. Fig 3(a) to 3(j) shows the
epidemic dynamics with different values of τ starting with τ= 0 to 90, with
an interval of 10. We observed that in case of random geometric networks
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Fig. 1 Effect of delay in SIR considering underlying Random Network (E-R)

with mobile agents, spreading pattern is different from above two networks.
In particular, the epidemic spreading varies on the node’s location because
the average degree of a node is stochastic in random geometric networks with
mobile agents. That is the number of neighbors it comes in contact at any
particular location.

4.2.4 Effect of Delay on Epidemic Threshold

It may also be seen that delay in infection decreases the critical threshold
of spreading rate as shown in Fig 4. This shows that critical threshold in



Modelling and Analysis of Delayed SIR Model on Complex Network xv

0 50 100 150 200 250 300 350 400 450 500

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S(
t),

I(t
),R

(t)

Susceptible
Infected
Recovered

0 50 100 150 200 250 300 350 400 450 500

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S(
t),

I(t
),R

(t)

Susceptible
Infected
Recovered

(a) Spreading with Delay 0. (b) Spreading with Delay 10

0 50 100 150 200 250 300 350 400

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S(
t),

I(t
),R

(t)

Susceptible
Infected
Recovered

0 50 100 150 200 250 300 350 400

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S(
t),

I(t
),R

(t)

Susceptible
Infected
Recovered

(c) Spreading with Delay 20 (d) Spreading with Delay 30

0 50 100 150 200 250 300 350 400

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S(
t),

I(t
),R

(t)

Susceptible
Infected
Recovered

0 50 100 150 200 250 300 350 400

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S(
t),

I(t
),R

(t)

Susceptible
Infected
Recovered

(e) Spreading with Delay 40 (f) Spreading with Delay 50

0 50 100 150 200 250 300 350 400

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S(
t),

I(t
),R

(t)

Susceptible
Infected
Recovered

0 100 200 300 400 500 600

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S(
t),

I(t
),R

(t)

Susceptible
Infected
Recovered

(g) Spreading with Delay 60. (h) Spreading with Delay 70

0 50 100 150 200 250 300 350 400 450 500 550 600

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S(
t),

I(t
),R

(t)

Susceptible
Infected
Recovered

0 100 200 300 400 500 600 700

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S(
t),

I(t
),R

(t)

Susceptible
Infected
Recovered

(i) Spreading with Delay 80. (j) Spreading with Delay 90

Fig. 2 Effect of delay in SIR considering underlying Random Geometric Network

SIR model is higher on a random network as compared to random geometric
network with mobility and random geometric network. The critical spreading
rate for having an outbreak in random graph is high, which increases with
value of delay. Therefore, if the delay will be increased in the random graph
then for an outbreak to happen in the network, a higher spreading rate is
required. It may be concluded that higher delay may be used to stop the
epidemic outbreak against the given spreading rate.
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(c) Spreading with Delay 20 (d) Spreading with Delay 30
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Fig. 3 Effect of delay in SIR considering underlying Random Geometric Network with
Mobile agents

5 Conclusion and Future work
Classical epidemiological models unable to describe the spreading pattern of
infectious diseases and effect of delay in spreading. Underlying network shows
the contact pattern between human population. Delay in infection plays an
important role in epidemic spreading. We obtained the spreading threshold
that is inversely proportional to delay (τ). We have simulated the delayed
SIR model considering 3 different underlying network as Random Network,
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Fig. 4 Effect of delay on critical threshold on RG,RGG, RMG

Random Geometric Network with and without mobile agents. Simulations
also show that delay decreases the critical threshold value of spreading rate.
By considering a different delay in conversion from susceptible to infected
nodes for different instances we have found that diseases persist for longer
time in human population as delay increases the duration of existence of
diseases. Simulation also shows that if delay is much larger then epidemic die
out automatically.

We plan to include various future directions for this work. We plan to use
additional dynamic networks for our future study. Another direction could be
to use larger and real networks for understanding the epidemic behavior. Im-
portant, we plan to include infection delay and recovery delay simultaneously
in our model, in our future studies.
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