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PHYLOGEOGRAPHIC PATTERNS OF DIFFERENTIATION IN THE
ACORN WOODPECKER

MAGALI HONEY-ESCANDON,'* BLANCA E. HERNANDEZ-BANOS,'
ADOLFO G. NAVARRO-SIGUENZA,' HESIQUIO BENITEZ-DIAZ.> AND
A. TOWNSEND PETERSON?

ABSTRACT.—Acorn Woodpecker (Melanerpes formicivorus) populations were sampled to evaluate geo-
graphic patterns of differentiation and connectivity across the species’ range. We observed patterns of differ-
entiation generally coincident with geographic patterns in plumage patterns with distinct subpopulations in Baja
California Sur, northern Central America, southern Central America, and mainland Mexico north into the south-
western United States. We confirmed the existence of geographic genetic structuring of populations of this
species, although shared haplotypes between Baja California Sur and mainland Mexico suggest that lineage
sorting is not yet complete. The process of geographic differentiation and speciation is likely still underway in
this group. Received 31 January 2007. Accepted 26 October 2007.

The montane forests of North and Central
America have had a complex history and geo-
graphy over the past 100,000 years (Graham
1975, Wells 1983). During the Pleistocene,
montane areas, particularly in the northern
part of the region, appear to have been largely
covered by ice or tundra and, thus, uninhab-
itable for forest birds, whereas desert basins
filled with what are presently ‘montane’ con-
iferous forests (Wells 1983). Pleistocene and
Holocene climatic shifts must have had im-
portant implications for avian biogeography in
terms of population connectivity and isolation,
and likely affected the species inhabiting these
biomes profoundly.

Studies have now addressed the climatic
and biogeographic implications of Pleisto-
cene-Holocene climate shifts (Hugall et al.
2002, Martinez-Meyer et al. 2004, Martinez-
Meyer and Peterson 2006, Ruegg et al. 2006),
but surprisingly few detailed phylogeographic
studies of birds have been conducted to illus-
trate how climatic changes and habitat shifts
influenced the evolution and differentiation of
birds. Only Aphelocoma jays (Peterson 1992,
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Rice et al. 2003), Sphyrapicus sapsuckers
(Cicero and Johnson 1995), MacGillivray’s
Warbler (Oporornis tolmiei) (Mild et al.
2000), and Hutton’s Vireos (Vireo huttoni)
(Cicero and Johnson 1992) have been studied
in North American pine-oak (Pinus-Quercus)
woodlands and forests. Patterns of genetic dif-
ferentiation and the extent to which they do—
or do not—relate to Pleistocene patterns of
connection and disjunction of habitats are
only beginning to be understood.

The objective of this paper is to present the
results of molecular genetic studies of 98 in-
dividuals from 15 populations of Acorn
Woodpeckers (Melanerpes formicivorus)
across North and Central America. An earlier
contribution based on many of the same sam-
ples as in this paper (Benitez-Diaz 1993) iden-
tified a series of morphologically distinct pop-
ulations with major units including popula-
tions in California, Baja California Sur, main-
land Mexico, Central America, and Colombia.
Samples are lacking to represent the distinc-
tive populations of northwestern South Amer-
ica, but sampling of the remainder of the dis-
tribution of the species is more or less inten-
sive. This study, based on sequences of two
mitochondrial genes, offers a first view of
geographic patterns of genetic differentiation
among populations of the Acorn Woodpecker.

METHODS

Samples and Sequencing.—Samples of
muscle, heart, and liver collected from 98 in-
dividual Acorn Woodpeckers across most of
the species’ range (the distinct Colombian
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populations, and those of lowland areas in Be-
lize and the remainder of the Petén region
were not included for lack of access to sam-
ples; Fig. 1). We included sequences from 10
individuals of seven related species, including
Melanerpes lewis, M. aurifrons (3 individu-
als), M. uropygialis, M. pygmaeus (2 individ-
uals), M. pucherani, Sphyrapicus nuchalis,
and (more distantly) Coracias spatulatus (Ap-
pendix). These samples were obtained from
field collections by several of the authors; full
specimen voucher specimens are deposited in
the Museo de Zoologia ““Alfonso L. Herrera”
of the Universidad Nacional Auténoma de
México (UNAM), Field Museum of Natural
History, and the University of Kansas Natural
History Museum, supplemented by tissue
samples associated with specimens kindly
provided by the Barrick Museum of Natural
History (University of Nevada—Las Vegas)
and the Museum of Vertebrate Zoology (Uni-
versity of California—Berkeley). Data were
obtained from GenBank for two outgroup in-
dividuals.

Total tissue DNA was extracted via DNEa-
sy Extraction Kits (Qiagen, Valencia, CA,
USA). Specific fragments were amplified via
polymerase chain reaction (PCR) using prim-
ers spanning 334 bp of the mitochondrial gene
ND2 segment (L5215 TAT CGG GCC CAT
ACC CCG AAA AT; H5578 CCT TGA AGC
ACT TCT GGG AAT CAG A) (Hackett 1996)
and a 608 bp fragment of the cytochrome b
gene (L15413 CTG ACA AAA TTC CAT
TTC ACC C; H16064 CTT CAG TTT TTG
GTT TAC AAG ACC) (Kocher et al. 1989
and Sorenson et al. 1999, respectively). All
numbers refer to the 3-prime end of the primer
reference of the complete mtDNA sequence of
the domestic chicken (Gallus gallus) (Desjar-
dins and Morais 1990).

A typical ND2 amplification involved 35
cycles of 95°C for 1 min, 48° C for 2 min,
72° C for 3 min, and a final 10 min extension
period at 72° C. Cytb amplification involved
27 cycles of 94° C for 1 min, 50° C for 1 min,
and 72°C for 2 min, followed by a 7 min
extension period at 72° C. PCRs were con-
ducted on a GeneAmp PCR System 9700 (Ap-
plied Biosystems, Foster City, CA, USA).
Products were verified on a 1% agarose gel
with added ethidium bromide and cleaned us-
ing a QiaQuick Kit (Qiagen, Valencia, CA,
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USA), obtaining a final volume of 15-30 pL
of PCR products.

We purified PCR products using Gene-
clean® (Qbiogene, Biol01® Systems, Krack-
eler Scientific Inc., Albany, NY, USA) and
Millipore purification kits following manufac-
turers’ protocols. Purified PCR products were
sequenced on a Perkin-Elmer ABI 373 auto-
matic sequencing machine. Sequences were
cleaned using Chromas 1.45 (McCarthy
1996), and aligned using ClustalX (Thompson
et al. 1997). We corroborated the origin of our
sequences by combining at least two of the
following: amplifying overlapping gene seg-
ments, sequencing both DNA strands, and/or
using multiple individuals of single popula-
tions.

Statistical Analyses.—We used MEGA 2.0
(Kumar et al. 2004) to derive basic statistics
regarding sequences, and their variation and
diversity. We used Arlequin (Schneider et al.
2000) to calculate Nei’s pairwise differences
(raw distances corrected following Nei
[1987]) among populations, as well as F|, val-
ues. DnaSP Version 4.10 (Rozas et al. 2003)
was used to calculate nucleotide diversity ()
and haplotype diversity (k). We used TCS
Version 1.13 (Clement et al. 2000) to estimate
networks summarizing mutational differences
among haplotypes. We compared matrices of
Nei’s corrected genetic distances with matri-
ces of straight-line geographic distances sep-
arating populations using a Mantel test; we
plotted the ratio of genetic to geographic dis-
tances on maps to visualize spatial patterns of
genetic differentiation on a per kilometer ba-
sis.

Only informative characters and unique
haplotypes were used for parsimony searches
using Coracias as the only designated out-
group to avoid problems of non-monophyly of
in-group taxa. Maximum parsimony trees
were constructed for ND2 and cytb sequences
both separately and combined, using heuristic
search options in PAUP 4.0 (Swofford 1999)
with TBR and ACCTRAN optimization op-
tions. We used character-based bootstrap anal-
ysis (100 replicates) to estimate support for
each node in the resulting tree.

ModelTest 3.0 (Posada and Crandall 1998)
was used to identify appropriate models of se-
quence evolution for haplotypes of Melaner-
pes formicivorus. Bayesian inference (BI) ap-
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FIG. 1.
obtained.

proaches, as implemented in Mr.Bayes Ver-
sion 3.1 (Huelsenbeck and Ronquist 2001)
used the substitution model GTR (nset = 6)
for the number of rate parameters and a gam-
ma distribution for rates at each site. We ran
four Markov Chains (random starting trees)
for 107 generations, each sampling every 250
generations and identifying stationarity visu-
ally. We allowed an initial “‘burn-in”’ of 250
trees to avoid non-optimal solutions and com-
puted a majority-rule consensus tree, as well
as posterior probabilities for each node (Huel-
senbeck et al. 2002).

RESULTS

Genetic Variation.—We obtained a total of
942 base pairs across the two genes. Of these
sites, 586 were conserved, 356 were variable,
and 231 were parsimony-informative. The
transition/transversion ratio was 3.4 and nu-

Geographic distribution of Melanerpes formicivorus (shaded) showing localities where samples were

cleotide composition was T = 0.26, C = 0.36,
A = 0.27, and G = 0.11. Nucleotide diversity
was 0.00482 and haplotype diversity was
0.851 with lowest nucleotide diversity values
in Baja California Norte and Oaxaca popula-
tions. Overall, we found 44 haplotypes (Fig.
2) among the 98 sequences that were distin-
guishable by 66 polymorphic sites. Almost all
(41) haplotypes were restricted to single pop-
ulations. Haplotype H4 was present in single
individuals from population samples from
Guerrero and Hidalgo, Mexico; haplotype
H35 occurred in seven individuals from Baja
California Norte, Mexico, and California,
USA, and (most impressively) H29 was found
in 33 individuals from 10 localities from Ar-
izona south to Honduras.

Pairwise average population differences
(Table 1) ranged from O to 8.07 within the
Arizona sample, and O to 8.35 in the Baja Cal-
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FIG. 2. Haplotype network of the 44 haplotypes of Melanerpes formicivorus. Mutational steps are indicated
by the number of line segments connecting haplotypes. The size of the ovals represents the number of samples
with that haplotype; shaded ovals are haplotypes with more than one sample.

ifornia Norte versus Baja California Sur, Mex-
ico samples. The overall F, statistic for the
species was 0.484. Pairwise values between
population samples ranged from O (several
population pairs) to >0.7, most related to the
Baja California Sur and Baja California Norte
populations and, to a lesser extent, with the
Central American populations.

The haplotype network (Fig. 2) had several

features. One haplotype (H29) was common,
occurring in about one-third of all individuals.
Closely associated to this haplotype were 22
other haplotypes that differed by =3 muta-
tions from H29; overall, this group of haplo-
types generally corresponds to populations of
mainland Mexico and Arizona (with one rep-
resentative from as far south as Honduras).
Closely associated to the mainland Mexico
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haplotype assemblage are six haplotypes re-
stricted to Baja California Norte and Califor-
nia. Less closely associated with the main
haplotype mass, however, are four haplotypes
from Chiapas and northern Central America
(7 mutational steps from H29, one sample an
additional 6 steps distant) and one from Ari-
zona (H11). More removed from H29 are
clusters corresponding to Baja California Sur
individuals (4 haplotypes, 14 mutational steps
from H29) and Costa Rican individuals (6 in-
dividuals, 13 mutational steps from H29). One
Baja California Sur haplotype (H36) grouped
with the mainland Mexico assemblage of hap-
lotypes, two mutational steps from H?29, the
most common haplotype.

A generally positive relationship was ob-
served in plots of genetic distances versus
geographic distances. The relationship is not
tight (Fig. 3), but is statistically significant
(Mantel’s test, observed r = 0.792, P <
0.001). The impressive genetic disconnection
of the Baja California Sur populations can be
appreciated by standardizing genetic distances
to geographic distances and plotting these in-
dices of differentiation per kilometer on maps
(Fig. 3). Central American populations are
also disconnected from northern populations
genetically.

Phylogenetic Patterns.—The MP analysis
yielded =500 equally parsimonious 532-step
trees (CI = 0.594, RI = 0.812; Fig. 4). These
trees grouped all Melanerpes formicivorus
populations as a monophyletic group with
high bootstrap support (100% of bootstrap
replicates). Subclades corresponding to indi-
viduals from Baja California Sur (84% sup-
port), northern Central America (Chiapas,
Honduras; 80% support), and southern Central
America (Costa Rica; 73% support) were
found within this clade, although none had
solid branch support in the bootstrap analyses.
The remaining individuals in the study were
grouped in one large, but poorly supported
clade (51% bootstrap support) of individuals
from mainland Mexico, Arizona, California,
and Baja California Norte. Two individuals
(from Guerrero and Zacatecas) were not con-
nected with any of the subclades within the
species, one Baja California Sur individual
(haplotype H36) grouped with the mainland
Mexico assemblage, and one Arizona individ-
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ual (haplotype H11) grouped with the Chia-
pas-Honduras clade.

The BI analyses were based on the TVM +
I + G model of substitution and showed a to-
pology (Fig. 5) generally close to that of the MP
tree. The clade corresponding to all Melanerpes
Jformicivorus populations was well-defined and
subclades with intriguing but inconclusive con-
stitution were encountered. In particular, we re-
covered the Baja California Sur (0.97 posterior
probability), northern Central America with the
single Arizona sample (0.99 posterior probabil-
ity), and southern Central America (0.78 pos-
terior probability) nodes. We encountered a
weakly supported node corresponding to the
California and Baja California Norte samples
(0.63 posterior probability); the mainland Mex-
ico and Arizona and single Baja California Sur
samples formed a large and poorly-defined as-
semblage.

DISCUSSION

An earlier morphological analysis (Benitez-
Diaz 1993), in many cases of precisely the
same individuals as were analyzed in this
study, found marked subdivision of the spe-
cies into seven groups, two of which (Belize
and Colombia) were not analyzed in this
study. These groups were supported by the
distribution of genetic variation found in our
study, albeit not strongly or with marked ge-
netic differentiation. Recalculating F|, statis-
tics hierarchically, we found that 73.7% of
overall genetic variation was assorted among
these five groups, as opposed to 26% within
them, suggesting these groups have explana-
tory power regarding population differentia-
tion in the overall complex.

The five groups included in this study, with
one exception, were distinct from one another
in terms of mutational steps in a haplotype
network. The exception was that of the Cali-
fornia/Baja California Norte populations,
which, although they grouped together, were
only one mutational step from the mainland
Mexico haplotype group. Other groups were
more distinct; each was =6 mutational steps
removed from all other groups. Thus, the hap-
lotypes of the plumage-based groups appear
to differ markedly from group to group. Given
the high number of unique haplotypes, addi-
tional sampling may prove necessary for the
details of the situation to be completely clear.
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FIG. 3.

Geographic patterns of genetic differentiation: (top) relationship between genetic distance and geo-

graphic distance based on 15 collecting localities; (bottom) map of genetic distance/km illustrating patterns of
genetic connectivity among Acorn Woodpecker population samples. Thick continuous lines indicate rates of <1
genetic distance unit/km, thin continuous lines indicate rates of 1-5 genetic distance unit/km, and thin broken

lines indicate rates of >5 genetic distance unit/km.

Our results clearly indicate lack of full es-
tablishment of reciprocal monophyly among
the various populations in spite of the overall
picture of differentiation. This muted differ-
entiation is visible in both the relatively un-
resolved and poorly supported trees that were

recovered, and in the mixture of one Baja Cal-
ifornia Sur haplotype among the ‘““mainland
Mexico’ haplotypes and the presence of one
(H29, the most common haplotype) in Hon-
duras in both the phylogenetic analyses and
the haplotype network.
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FIG. 4. Maximum parsimony tree (50% majority rule consensus) of the 44 haplotypes of Acorn Woodpeckers
and 10 outgroup samples. Numbers on branches indicate bootstrap support. + = haplotypes with more than one
sample; * = the most common haplotype (which was represented in a single sample from Honduras). Note that
some branches have relatively low bootstrap support and may not be robust hypotheses of relationships.



486

THE WILSON JOURNAL OF ORNITHOLOGY ¢ Vol. 120, No. 3, September 2008

icus nuchalis

(=]
©

1.00

0.77

=
9
®

0.63

0.69

0.88 b4t

H17+
Hao

0.70

M.

0.99

—0.1

FIG. 5.

Coracias spatulatus

Mexico, Arizona

———>» Baja California Sur

H6
=
i
e +
38 a7
Hi+
0.97 H8+

Chiapas, Honduras

Baja California Sur

Costa Rica

Baja California Norte California

Michoacan Jalisco

Arizona
Michoacan

Jalisco
Michoacan

M. uropygialis 1 aurifrons
0.99 . aurifrons
1.00 M. aurifrons

—' M. pygmaeus
1.00

M. pygmaeus

Bayesian inference tree of the 44 haplotypes and 10 outgroups. Numbers below the branches show

the values of the posterior probability of each branch. + = haplotypes with more than one sample; * = the
most common haplotype (which was represented in a single sample from Honduras). Note that some of the
branches have relatively low probabilities associated and may not be robust hypotheses of relationships.

Benitez-Diaz (1993) documented the exis-
tence of seven subgroups within Melanerpes
Jformicivorus on the basis of external pheno-
type. These groups should be considered for
formal taxonomic recognition (Navarro and
Peterson 2004), at least under the Evolution-
ary Species Concept (Wiley 1978) and the
Phylogenetic Species Concept (Zink and
McKitrick 1995, Zink 1996). Benitez-Diaz
(1993) recommended recognition of Melaner-
pes bairdi of California and Baja California
Norte, M. angustifrons of Baja California Sur,
M. formicivorus of the southwestern United
States and mainland Mexico, M. lineatus of
northern Central America, M. striatipectus of
southern Central America, M. albeolus of Be-
lize, and M. flavigula of Colombia. M. albeo-
lus and M. flavigula were not available to us
for molecular analysis and we did not find
marked differentiation between populations in

California and Mexico. Hence, we focus at-
tention on M. formicivorus (including Califor-
nia populations of the bairdi group), M. an-
gustifrons, M. lineatus, and M. striatipectus in
the rest of our discussion.

Benitez-Diaz’s (1993) general picture of dif-
ferentiation of Acorn Woodpecker populations
was supported, but decisions regarding species
limits were less clear. From the perspective of
the Biological Species Concept (AOU 1998),
these populations can be interpreted either as (1)
exchanging few genes after a relatively recent
separation, or (2) still exchanging genes (which
may cause the intermixing of haplotypes),
which would probably point to caution in split-
ting populations under this concept. The Phy-
logenetic Species Concept would clearly rec-
ognize these different forms as species in view
of their distinctiveness in plumage, but would
hold back from recognition using molecular
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characters on the basis of intermixing of hap-
lotypes from Baja California Sur, mainland
Mexico, and Central America. Finally, under the
Evolutionary Species Concept, one would most
likely accord them species status, given that not
only are populations apparently in the process
of diverging, but unique phenotypic characters
are now fixed in at least some populations.
The patterns of genetic variation and dif-
ferentiation identified would appear to corre-
spond closely to known Pleistocene geogra-
phy of pine-oak woodlands at the Last Glacial
Maximum (LGM, ca. 20,000 years ago). That
is, at LGM, montane woodlands moved on
large spatial scales, broadly invading the
southwestern North American deserts (Lanner
and Van Devender 1981, Spaulding et al.
1983, Wells 1983). The major zones of ge-
netic differentiation in Melanerpes formici-
vorus are between the southern tip of Baja
California and the California/Mexico portion
of the range, and across the Isthmus of Te-
huantepec—the lack of differentiation across
the Mohave Desert may reflect the Pleistocene
connectivity of populations of this species.
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