About
93
Publications
8,961
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,852
Citations
Introduction
Publications
Publications (93)
Experimental studies and clinical trials of nanoparticles for treating diseases are increasing continuously. However, the reach to the market does not correlate with these efforts due to the enormous cost, several years of development, and off-target effects like cardiotoxicity. Multicellular organisms such as the Caenorhabditis elegans (C. elegans...
Introduction: The high prevalence of neurodegenerative diseases in our population and the lack of effective treatments encourage the search for new therapeutic targets for these pathologies. We have recently described that submaximal inhibition of the Sarco-Endoplasmic Reticulum Ca²⁺ ATPase (SERCA), the main responsible for ER calcium storage, is a...
The molecular mechanisms that mediate and regulate calcium (Ca2+) fluxes through the membranes of intracellular organelles play a key role in the generation and shaping of the local and global cytosolic Ca2+ signals triggering the process of regulated exocytosis in chromaffin cells. Beyond that role, intraorganellar Ca2+ homeostasis also regulates...
Alzheimer’s disease (AD) is the most frequent cause of dementia. After decades of research, we know the importance of the accumulation of protein aggregates such as β-amyloid peptide and phosphorylated tau. We also know that mutations in certain proteins generate early-onset Alzheimer’s disease (EOAD), and many other genes modulate the disease in i...
We have reported recently that the mitochondrial Na⁺/Ca²⁺ exchanger inhibitor CGP37157 extends lifespan in Caenorhabditis elegans by a mechanism involving mitochondria, the TOR pathway and the insulin/IGF1 pathway. Here we show that CGP37157 significantly improved the evolution with age of the sarcomeric regular structure, delaying development of s...
We have reported recently that submaximal inhibition of the Sarco Endoplasmic Reticulum Ca²⁺ ATPase (SERCA) produces an increase in the lifespan of C. elegans worms. We have explored here the mechanism of this increased survival by studying the effect of SERCA inhibition in several mutants of signaling pathways related to longevity. Our data show t...
Mitochondrial [Ca2+] plays an important role in the regulation of mitochondrial function, controlling ATP production and apoptosis triggered by mitochondrial Ca2+ overload. This regulation depends on Ca2+ entry into the mitochondria during cell activation processes, which is thought to occur through the mitochondrial Ca2+ uniporter (MCU). Here, we...
The benzothiazepine CGP37157 has shown neuroprotective effects in several in vitro models of excitotoxicity involving dysregulation of intracellular Ca2+ homeostasis. Although its mechanism of neuroprotection is unclear, it is probably related with some of its effects on Ca2+ homeostasis. CGP37157 is a well-known inhibitor of the mitochondrial Na+/...
The 5' AMP-activated protein kinase (AMPK) is a nutrient-sensitive kinase that plays a key role in the control of cellular energy metabolism. We have explored here the relationship between AMPK and Ca²⁺ signaling by looking at the effect of an AMPK activator (A769662) and an AMPK inhibitor (dorsomorphin) on histamine-induced Ca²⁺-release from the e...
The sarco-endoplasmic reticulum Ca²⁺-ATPase (SERCA) refills the endoplasmic reticulum (ER) with Ca²⁺ up to the millimolar range and is therefore the main controller of the ER [Ca²⁺] level ([Ca²⁺]ER), which has a key role in the modulation of cytosolic Ca²⁺ signaling and ER-mitochondria Ca²⁺ transfer. Given that both cytosolic and mitochondrial Ca²⁺...
Progressive decline in mitochondrial function is generally considered one of the hallmarks of aging. We have expressed a Ca2+ sensor in the mitochondrial matrix of C. elegans pharynx cells and we have measured for the first time mitochondrial [Ca2+] ([Ca2+]M) dynamics in the pharynx of live C. elegans worms during aging. Our results show that worms...
Key points:
Upon repeated application of short ACh pulses to C57BL6J mouse chromaffin cells, the amperometrically monitored secretory responses promptly decayed to a steady-state level of around 25% of the initial response. A subsequent K(+) pulse, however, overcame such decay. These data suggest that mouse chromaffin cells have a ready release-ve...
Ca?? is a key signal transducer for muscle contraction. Continuous in vivo monitoring of intracellular Ca??-dynamics in C. elegans pharynx muscle revealed surprisingly complex Ca?? patterns. Despite the age-dependent decline of pharynx pumping, we observed unaltered fast Ca?? oscillations both in young and old worms. In addition, sporadic prolonged...
The role of mitochondria in intracellular Ca2+ signaling relies mainly in its capacity to take up Ca2+ from the cytosol and thus modulate the cytosolic [Ca2+]. Because of the low Ca2+-affinity of the mitochondrial Ca2+-uptake system, this organelle appears specially adapted to take up Ca2+ from local high-Ca2+ microdomains and not from the bulk cyt...
MICU1 and MICU2 are the main regulators of the mitochondrial Ca(2+)-uniporter (MCU), but their precise functional role is still under debate. We show here that MICU2 behaves as a pure inhibitor of MCU at low cytosolic [Ca(2+)] ([Ca(2+)]c), though its effects decrease as [Ca(2+)]c is increased an disappear above 7 μM. Regarding MICU1, studying its e...
The presence of more than one non-severe pathogenic mutation in the same mitochondrial DNA (mtDNA) molecule is very rare. Moreover, it is unclear whether their co-occurrence results in an additive impact on mitochondrial function relative to single mutation effects. Here we describe the first example of a mtDNA molecule harboring three Leber's here...
The effect of the intake of antioxidant polyphenols such as resveratrol and others on survival and different parameters of life quality has been a matter of debate in the last years. We have studied here the effects of the polyphenols resveratrol and kaempferol added to the diet in a murine model undergoing long-term hypercaloric diet. Using 50 mic...
MICU1 is an important regulator of the mitochondrial Ca2+-uniporter (MCU) that has been recently shown to act as a gatekeeper of MCU at low cytosolic [Ca2+] ([Ca2+]c). We have studied here in detail the dynamics of MCU activity after shRNA-knockdown of MICU1 and we find several new interesting properties. In MICU1-knockdown cells, the rate of mitoc...
We use here a new very low-Ca(2+)-affinity targeted aequorin to measure the [Ca(2+)] in the endoplasmic reticulum ([Ca(2+)]ER). The new aequorin chimera has the right Ca(2+)-affinity to make long-lasting measurements of [Ca(2+)]ER in the millimolar range. Moreover, previous Ca(2+)-depletion of the ER is no longer required. The steady-state [Ca(2+)]...
Mitochondria have a very large capacity to accumulate Ca(2+) during cell stimulation driven by the mitochondrial membrane potential. Under these conditions, [Ca(2+)](M) (mitochondrial [Ca(2+)]) may well reach millimolar levels in a few seconds. Measuring the dynamics of [Ca(2+)](M) during prolonged stimulation has been previously precluded by the h...
Ca(2+) signalling and exocytosis mediated by nicotinic receptor (nAChR) subtypes, especially the α7 nAChR, in bovine chromaffin cells are still matters of debate.
We have used chromaffin cell cultures loaded with Fluo-4 or transfected with aequorins directed to the cytosol or mitochondria, several nAChR agonists (nicotine, 5-iodo-A-85380, PNU282987...
Secretory vesicles have low pH and have been classically identified as those labelled by a series of acidic fluorescent dyes such as acridine orange or neutral red, which accumulate into the vesicles according to the pH gradient. More recently, several fusion proteins containing enhanced green fluorescent protein (EGFP) and targeted to the secretor...
We have investigated the dynamics of the free [Ca(2+)] inside the secretory granules of neurosecretory PC12 and INS1 cells using a low-Ca(2+)-affinity aequorin chimera fused to synaptobrevin-2. The steady-state secretory granule [Ca(2+)] ([Ca(2+)](SG)] was around 20-40 μM in both cell types, about half the values previously found in chromaffin cell...
We have investigated the kinetics of mitochondrial Ca(2+) influx and efflux and their dependence on cytosolic [Ca(2+)] and [Na(+)] using low-Ca(2+)-affinity aequorin. The rate of Ca(2+) release from mitochondria increased linearly with mitochondrial [Ca(2+)] ([Ca(2+)](M)). Na(+)-dependent Ca(2+) release was predominant al low [Ca(2+)](M) but satura...
The dynamics of mitochondrial [Ca(2+)] ([Ca(2+)](M)) plays a key role in a variety of cellular processes. The most important methods available to monitor [Ca(2+)](M) are fluorescent dyes such as rhod-2 and specifically targeted proteins such as aequorin and pericam. However, significant discrepancies, both quantitative and qualitative, exist in the...
Mitochondrial Ca(2+) activates many processes, from mitochondrial metabolism to opening of the permeability transition pore (PTP) and apoptosis. However, there is considerable controversy regarding the free mitochondrial [Ca(2+)] ([Ca(2+)](M)) levels that can be attained during cell activation or even in mitochondrial preparations. Studies using fl...
The secretory granules constitute one of the less well-known compartments in terms of Ca2+ dynamics. They contain large amounts of total Ca2+, but the free intragranular [Ca2+] ([Ca2+]SG), the mechanisms for Ca2+ uptake and release from the granules and their physiological significance regarding exocytosis are still matters of debate. We used in th...
The thiourea derivative KB-R7943, originally developed as inhibitor of the plasma membrane Na(+)/Ca(2+) exchanger, has been shown to protect against myocardial ischemia-reperfusion injury. We have studied here its effects on mitochondrial Ca(2+) fluxes.
[Ca(2+)] in cytosol, mitochondria and endoplasmic reticulum (ER), and mitochondrial membrane pot...
The recent availability of activators of the mitochondrial Ca(2+) uniporter allows direct testing of the influence of mitochondrial Ca(2+) uptake on the overall Ca(2+) homeostasis of the cell. We show here that activation of mitochondrial Ca(2+) uptake by 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) or kaempferol stimulates histami...
There is increasing evidence that mitochondria play an important role in the control of cytosolic Ca2+ signaling. We show here that the main mitochondrial Ca2+-exit pathway, the mitochondrial Na+/Ca2+ exchanger, controls the pattern of cytosolic Ca2+ oscillations in non-excitable cells. In HeLa cells, the inhibitor of the mitochondrial Na+/Ca2+ exc...
Ca ²⁺ uptake by mitochondria is a key element in the control of cellular Ca ²⁺ homeostasis and Ca ²⁺ ‐dependent phenomena. It has been known for many years that this Ca ²⁺ uptake is mediated by the mitochondrial Ca ²⁺ uniporter, a specific Ca ²⁺ channel of the inner mitochondrial membrane. We have shown previously that this channel is strongly acti...
We have used an aequorin chimera targeted to the membrane of the secretory granules to monitor the free [Ca(2+)] inside them in neurosecretory PC12 cells. More than 95% of the probe was located in a compartment with an homogeneous [Ca(2+)] around 40 microM. Cell stimulation with either ATP, caffeine or high-K(+) depolarization increased cytosolic [...
During cell activation, mitochondria play an important role in Ca2+ homoeostasis due to the presence of a fast and specific Ca2+ channel in its inner membrane, the mitochondrial Ca2+ uniporter. This channel allows mitochondria to buffer local cytosolic [Ca2+] changes and controls the intramitochondrial Ca2+ levels, thus modulating a variety of phen...
Cyclosporin A (CsA) is a widely used compound because of its potent immunosupressive properties, derived mainly from the inhibition of calcineurin, and also because of its ability to block the mitochondrial permeability transition pore (PTP). This second effect has been involved in the protection against apoptosis mediated by release of mitochondri...
In HeLa cells, histamine induces production of inositol 1,4,5-trisphosphate (InsP3) and release of Ca2+ from the endoplasmic reticulum (ER). Ca2+ release is typically biphasic, with a fast and brief initial phase, followed by a much slower and prolonged one. In the presence
of inhibitors of protein kinase C (PKC), including staurosporine and the sp...
It is widely acknowledged that mitochondrial Ca2+ uptake modulates the cytosolic [Ca2+] ([Ca2+]c) acting as a transient Ca2+ buffer. In addition, mitochondrial [Ca2+] ([Ca2+]M) regulates the rate of respiration and may trigger opening of the permeability transition pore and start apoptosis. However, no mechanism for the physiological regulation of...
The endoplasmic reticulum (ER) has been suggested to modulate secretion either behaving as a Ca2+ sink or as a Ca2+ source in neuronal cells. Working as a Ca2+ sink, through ER-Ca2+ pumping, it may reduce secretion induced by different stimuli. Instead, working as a Ca2+ source through the Ca2+ induced Ca2+ release (CICR) phenomenon, it may potenti...
The photoprotein aequorin was the first probe used to measure specifically the [Ca(2+)] inside the lumen of the endoplasmic reticulum ([Ca(2+)](ER)) of intact cells and it provides values for the steady-state [Ca(2+)](ER), around 500 microM, that closely match those obtained now by other procedures. Aequorin-based methods to measure [Ca(2+)](ER) of...
In the last years, intracellular organella have emerged as key components in the generation and transduction of Ca(2+) signals in adrenal chromaffin cells. Therefore, accurate measurements of Ca(2+) inside cytoplasmic organella are essential for a comprehensive analysis of the Ca(2+) redistribution that follows cell stimulation. We have engineered...
Ca(2+) uptake by mitochondria is a potentially important buffering system able to control cytosolic [Ca(2+)]. In chromaffin cells, we have shown previously that stimulation of either Ca(2+) entry or Ca(2+) release via ryanodine receptors triggers large increases in mitochondrial [Ca(2+)] ([Ca(2+)](M)) approaching the millimolar range, whose blockad...
Recent results indicate that Ca2+ transport by organella contributes to shaping Ca2+ signals and exocytosis in adrenal chromaffin cells. Therefore, accurate measurements of [Ca2+] inside cytoplasmic organella are essential for a comprehensive analysis of the Ca2+ redistribution that follows cell stimulation. Here we have studied changes in Ca2+ ins...
The oxidizing thiol reagent, thimerosal, has been shown to activate reversibly the inositol 1,4,5-trisphosphate (InsP(3)) receptor in several cell types. We have studied here the effects of thimerosal by monitoring the [Ca(2+)] inside the endoplasmic reticulum (ER) of intact HeLa cells with targeted aequorin. We show that thimerosal produced little...
In chromaffin cells, plasma membrane calcium (Ca2+) channels and mitochondria constitute defined functional units controlling the availability of Ca2+ nearby exocytotic sites. We show here that, when L-/N-type Ca2+ channels were inhibited with nisoldipine and omega-conotoxin GVIA, cytosolic [Ca2+] ([Ca2+]c) peaks measured in fura-4F-loaded cells we...
We have reported that a population of chromaffin cell mitochondria takes up large amounts of Ca(2+) during cell stimulation. The present study focuses on the pathways for mitochondrial Ca(2+) efflux. Treatment with protonophores before cell stimulation abolished mitochondrial Ca(2+) uptake and increased the cytosolic [Ca(2+)] ([Ca(2+)](c)) peak ind...
The photoprotein aequorin can be used to measure specifically the [Ca2+] inside the lumen of the endoplasmic reticulum ([Ca2+ ER) of intact cells. The main advantage of this technique is the highly precise targeting of the probe. The main disadvantage relies in the relatively low amount of emitted light, which makes it difficult to perform single-c...
Activation of calcium-ion (Ca2+) channels on the plasma membrane and on intracellular Ca2+ stores, such as the endoplasmic reticulum, generates local transient increases in the cytosolic Ca2+ concentration that induce Ca2+ uptake by neighbouring mitochondria. Here, by using mitochondrially targeted aequorin proteins with different Ca2+ affinities,...
The novel antimigraineur, dotarizine (30 μ M ), increased cytosolic Ca ²⁺ concentration, [Ca ²⁺ ] c , in fura‐2‐loaded bovine adrenal chromaffin cells. This increase was transient, reached a peak in about 2–5 min (0.53±0.07 μ M ; n =19) and then declined to basal levels over a further 5 min period.
This transient rise of [Ca ²⁺ ] c was mimicked by...
The field of subcellular Ca(2+) homeostasis is evolving rapidly. In parallel with improvements in spatial and temporal resolution of Ca(2+) imaging techniques, new methods using the natural cell machinery to target Ca(2+)-sensitive proteins such as aequorin to precise intracellular locations promise superb specificity to measure [Ca(2+)] in defined...
The field of subcellular Ca2+ homeostasis is evolving rapidly. In parallel with improvements in spatial and temporal resolution of Ca2+ imaging techniques, new methods using the natural cell machinery to target Ca2+-sensitive proteins such as aequorin to precise intracellular locations promise superb specificity to measure [Ca2+] in defined subcell...
The effect of secretory phospholipase A2 (sPLA2) on intracellular Ca2+ signaling in human astrocytoma cells was studied. sPLA2 increased cytosolic [Ca2+] ([Ca2+]c) in both Ca2+-containing and Ca2+-free medium, thus suggesting Ca2+ release from intracellular stores. The activation by sPLA2 of arachidonate release via cytosolic PLA2 (cPLA2) was also...
The presence and physiological role of Ca2+-induced Ca2+ release (CICR) in nonmuscle excitable cells has been investigated only indirectly through measurements of cytosolic [Ca2+] ([Ca2+]c). Using targeted aequorin, we have directly monitored [Ca2+] changes inside the ER ([Ca2+]ER) in bovine adrenal chromaffin cells. Ca2+ entry induced by cell depo...
The presence and physiological role of Ca2+-induced Ca2+ release (CICR) in nonmuscle excitable cells has been investigated only indirectly through measurements of cytosolic [Ca2+] ([Ca2+]c). Using targeted aequorin, we have directly monitored [Ca2+] changes inside the ER ([Ca2+]ER) in bovine adrenal chromaffin cells. Ca2+ entry induced by cell depo...
Changes in the free calcium concentration of the endoplasmic reticulum ([Ca2+]er) play a central role controlling cellular functions like contraction, secretion or neuronal signaling. We recently reported that recombinant aequorin targeted to the endoplasmic reticulum (ER) [Montero M., Brini M., Marsault R. et al. Monitoring dynamic changes in free...
Two recombinant aequorin isoforms with different Ca2+ affinities, specifically targeted to the endoplasmic reticulum (ER), were used in parallel to investigate free Ca2+ homeostasis in the lumen of this organelle. Here we show that, although identically and homogeneously distributed in the ER system, as revealed by both immunocytochemical and funct...
Two recombinant aequorin isoforms with different Ca²⁺ affinities, specifically targeted to the endoplasmic reticulum (ER), were used in parallel to investigate free Ca²⁺ homeostasis in the lumen of this organelle. Here we show that, although identically and homogeneously distributed in the ER system, as revealed by both immunocytochemical and funct...
We have measured the [Ca2+] in the endoplasmic reticulum ([Ca2+]er) of intact HeLa cells at both 22 degrees C and 37 degrees C using endoplamsic reticulum-targeted, low Ca2+ affinity aequorin reconstituted with coelenterazine n. Aequorin consumption was much slower at 22 degrees C, and this allowed performing a much longer study of the dynamics of...
We have monitored specifically the [Ca2+] in the lumen of the endoplasmic reticulum (ER) of intact HeLa cells using an ER-targeted low-Ca2+-affinity aequorin. The steady-state [Ca2+] in the ER was around 600 microM. Histamine induced a concentration-dependent decrease in lumenal [Ca2+], whose rate increased near one order of magnitude and became "q...
Two proteins of Aequorea victoria were molecularly engineered and produced in mammalian cells, in order to serve as specific reporters of subcellular microenvironments. Aequorin (AEQ), a Ca(2+)-sensitive photoprotein, was successfully targeted to three intracellular locations: cytosol, nucleus and mitochondria. The recombinant apoprotein, reconstit...
Direct monitoring of the free Ca2+ concentration in the lumen of the endoplasmic reticulum (ER) is an important but still unsolved experimental problem. We have shown that a Ca(2+)-sensitive photoprotein, aequorin, can be addressed to defined subcellular compartments by adding the appropriate targeting sequences. By engineering a new aequorin chime...
ATP and UTP cause mobilization of Ca2+ from the intracellular stores with similar potency in several cell types including both undifferentiated and differentiated HL60 cells. We show here that, in HL60 cells with Ca2+ stores that had been fully and irreversibly emptied using the endomembrane Ca(2+)-ATPase inhibitor thapsigargin, both nucleotides pr...
Insoluble immune complexes (IIC) stimulate human neutrophils by binding to their FcR. It is known that they are able to release Ca2+ from intracellular stores but they induce little Ca2+ entry from the extracellular medium, a dissociation that cannot be explained within the framework of the capacitative model for Ca2+ entry, which is well establish...
N-Formyl-methionyl-leucyl-phenylalanine (fMLP) is able to accelerate Ca2+ entry into differentiated HL60 cells by a rather indirect mechanism consisting of the opening of a plasma membrane pathway activated by the emptying of the intracellular Ca2+ stores caused by the agonist. This Ca2+ pathway can also be fully activated by Ca2+ store depletion w...
When human neutrophils were incubated in the presence of the protein phosphatase inhibitors calyculin A or okadaic acid, the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) produced a sustained (> 5 min) inhibition of the Ca2+ mobilization from intracellular stores induced by platelet-activating factor (PAF) or by leukotriene B4...
We have reported previously that the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) inhibits transiently Ca2+ entry through the plasma membrane Ca2+ pathway activated by emptying the intracellular Ca2+ stores (Montero, M., García-Sancho, J., and Alvarez, J. (1993) J. Biol. Chem. 268, 13055-13061). We show here that calyculin A a...