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Abstract--  In Round-Robin Scheduling, the time quantum is 

fixed and processes are scheduled such that no process uses 

CPU time more than one time quantum in one go. If time 

quantum is too large, the response time of the processes will 

not be tolerated in an interactive environment. If the time 

quantum is too small, unnecessary frequent context switch 

may occur. Consequently, overheads result in fewer 

throughputs. Round Robin scheduling algorithm is the most 

suitable choice for time shared system but not for soft real 

time systems due to a large turnaround time, large waiting 

time and high number of context switches. The choice of the 

quantum time in RR is the optimal solution for the problem 

of large turnaround and waiting time with RR. In this study, 

we propose a priority algorithm with dynamic quantum time 

(PDQT), to improve the work of RR by improving the concept 

of Improved Round Robin with varying time quantum 

(IRRVQ). The proposed algorithm gave results better than 

RR and IRRVQ in terms of minimizing the number of context 

switches, average waiting time, average turnaround time, 

design and analysis. The simple Round-Robin algorithm has 

been improved by about 40%. By controlling quantum time 

according to the priorities and burst times of the processes, 

we experience fewer context switches and shorter waiting and 

turnaround times, thereby obtaining higher throughput. 

Index Term--  Round Robin; dynamic quantum time; 

priority; burst time; Priority Dynamic Quantum Time. 

1. INTRODUCTION 

Modern operating systems are moving towards 

multitasking environments in which fast computer systems 

perform multitasking (executing more than one process at 

a time) and multiplexing (transmitting multiple flows 

simultaneously). This mainly depends on the CPU 

scheduling algorithm as the CPU is the essential part of the 

computer. In computer science, scheduling is the act by 

which processes are given access to system resources (e.g., 

processor cycles, communications bandwidth). CPU 

scheduling is an essential operating system task which 

permits allocating the CPU to a specific process for a time 

slice. In other words it determines which process runs when 

there are multiple runnable processes. As researchers [1] 

previously pointed out that the need for a scheduling 

algorithm arises from the requirement for fast computer 

systems to perform multitasking and multiplexing. CPU 

scheduling is important because it affects resource 

utilization and other performance parameters [2]. Several 

CPU scheduling algorithms are available [3], [4], such as 

First Come First Serve Scheduling (FCFS), Shortest Job 

First Scheduling (SJF), Round-Robin Scheduling (RR), 

and Priority Scheduling (PS). However, due to 

disadvantages, these algorithms are rarely used in shared 

time operating systems, except for RR Scheduling [5]. RR 

is considered the most widely used scheduling algorithm in 

CPU scheduling [3], [6] also used for flow passing 

scheduling through a network device [7]. An essential task 

in operating systems in CPU Scheduling is the process of 

allocating a specific process for a time slice. Scheduling 

requires careful attention to ensure fairness and avoid 

process starvation in the CPU. This allocation is carried out 

by software known as a scheduler [3], [6]. The scheduler is 

concerned mainly with the following tasks [8]: 

• CPU utilization - to keep the CPU as busy as 

possible 

• Throughput - number of processes that complete 

their execution per time unit 

• Turnaround - total time between submission of a 

process and its completion 

• Waiting time - amount of time a process has been 

waiting in the ready queue 

• Response time - amount of time taken from the 

time a request was submitted until the production of the 

first response 
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• Fairness - equal CPU time allocated to each 

process. 

2. PERFORMANCE FACTORS 

CPU is an essential part in the operating system which 

is scheduled by many of the scheduling algorithms to keep 

it busy as much as possible to achieve the perfect utilization 

of CPU. The processes that need to be processed submit to 

the system and wait in the ready queue to be selected by 

the scheduler for the processing. The scheduler is 

responsible of picking the processes from the ready queue 

and allocate the CPU if it is idle for that process [9].  

The moment that the process joins to the ready queue is 

called the arrival time. Burst time is the time that the 

process needs to complete its job inside the CPU. The 

turnaround time is the time that the process spends in the 

system from the moment of submission to the moment of 

completion the processing. Waiting time is the time that the 

process waits in the ready queue waiting for its turn to be 

selected by the scheduler for the processing. Therefore, we 

can conclude that a good scheduling algorithm for real time 

and time sharing system must possess the following 

characteristics [10]: 

• Minimum context switches 

• Maximum CPU utilization 

• Maximum throughput 

• Minimum turnaround time 

• Minimum waiting time 

 

Operating systems may feature up to three distinct types 

of schedulers, which are long term, mid-term or medium 

term, and short-term as shown in Fig.1. The long-term 

scheduler or job scheduler selects processes from the job 

pool and loads them into the memory for execution. The 

short-term scheduler or CPU scheduler selects from among 

the processes that are ready for execution and allocates a 

CPU to one of them. The medium term scheduler removes 

processes from the memory and reduces the degree of 

multiprogramming results in the scheme of swapping. 

Swapping is performed by the scheduler, which is the 

module that allows the CPU to control the process selected 

by the short-term scheduler [11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Queuing diagram for scheduling

 

3. RELATED WORK 

Many CPU scheduling algorithms have been introduced 

in the past years to improve the performance of the CPU. 

An algorithm for robust quantum time value [12] orders 

processes according to the smallest to the highest burst 

time. Then, quantum time would be calculated by taking 

the average of minimum and maximum burst times of the 

processes in the ready queue. An Improved Round Robin 

Scheduling using the feature of SJF in which the process in 

the ready queue would be allocated with static quantum 

time in the first cycle, and then the process would be 

selected by SJF [13]. Self-Adjustment Time Quantum in 

RR Algorithm is an algorithm in accordance to the burst 

time of the processes [14]. Reference [15] assigned a fare-

share weight to each process, such that the process with the 

minimum burst time would have the maximum weight. 

Quantum time would be calculated dynamically by using 

the weighted time slice method. Thus, the processes would 

be executed. An Improved RR (IRR) CPU Scheduling 

Algorithm was presented by [16]. In this algorithm, the 

CPU time is allocated to the first process from the ready 

queue for a time interval of up to one quantum time. After 

the quantum time of the process is completed, the 

remaining burst time of this process would be compared 

with quantum time. If its burst time was less than one 

quantum time, the CPU would again allocate the same 

process until execution is completed and the task is 

removed from the queue. This algorithm reduces waiting 

time in the ready queue, and hence improves performance. 

Reference [17] proposed algorithm similar to IRR [16]. 

The proposed algorithm uses two queues, which are 

ARRIVE and REQUEST. Compared with IRR, this 

algorithm indicated performance improvement. Reference 

[11] presented a mechanism of dynamic quantum time, 

which overcame the problem of fixed quantum time. 

Meanwhile, an algorithm of feedback scheduling focused 

on lower priority queue process is proposed by [18]. 
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4. RR ARCHITECTURE 

RR architecture is a pre-emptive version of First Come, 

First Serve scheduling algorithm. The tasks are arranged in 

the ready queue in First Come, First Serve manner and the 

processor executes the task from the ready queue based on 

time slice. If the time slice ends and the tasks are still 

executing on the processor, the scheduler will forcibly pre-

empt the executing task and keep it at the end of ready 

queue. Then, the scheduler will allocate the processor to 

the next task in the ready queue. The pre-empted task will 

make its way to the beginning of the ready list and will be 

executed by the processor from the point of interruption. 

A scheduler requires a time management function to 

implement the RR architecture and requires a tick timer 

[19]. The time slice is proportional to the period of clock 

ticks [8]. The time slice length is a critical issue in real time 

operating systems. The time slice must not be too small, as 

it would result in frequent context switches. Moreover, the 

time slice should be slightly greater than the average task 

computation time. 

4.1. RR Pitfalls in Real Time Systems 

RR when implemented in real time operating systems 

faces two drawbacks, which are high rate of context switch 

and low throughput. These two problems of RR 

architecture are interrelated [20]. 

• Context switch: When the time slice of the task 

ends and the task is still executing in the processor, the 

scheduler forcibly pre-empts the tasks on the processor. 

The interrupted task is then stored in stacks or registers, 

and the processor is allocated the next task in the ready 

queue. This action performed by the scheduler is called 

“context switch.” Context switch leads to wastage of time, 

memory, and scheduler overhead. 

• Larger waiting and turnaround times: In RR 

architecture, the time the process spends in the ready queue 

waiting for the processor for task execution is known as 

“waiting time.” The time the process completes its job and 

exits from the task-set is called “turnaround time.” Larger 

waiting and turnaround times are clearly a drawback in RR 

architecture, as it leads to degradation of system 

performance. 

• Low throughput: Throughput refers to the number 

of processes completed per time unit. If RR is implemented 

in real time operating systems, throughput will be low and 

results in severe degradation of system performance. If the 

number of context switches is low, then the throughput will 

be high. Context switch and throughput are inversely 

proportional to each other. 

5. IMPROVED ROUND ROBIN WITH VARYING TIME 

QUANTUM (IRRVQ) 

The idea of improved Round Robin CPU scheduling 

algorithm with varying quantum time (IRRVQ) is 

depending on the combination between Shortest Job First 

(SJF) and RR with using dynamic quantum time in each 

round. First, the processes in the ready queue are ordered 

from lowest to highest burst times. The scheduler allocates 

the CPU to the first process using RR and assigns its burst 

time as quantum time for this round. The same procedure 

will be repeated in each round until all processes finish 

their execution and ready queue assigns to NULL. 

 

6. The Proposed Algorithm, Priority Dynamic 

Quantum Time Scheduling Algorithm PDQT 

RR scheduling algorithm has no priority and fixed 

quantum time. However, this scheduling algorithm is not 

suitable for real time operating system (RTOS) because of 

drawbacks. In other words, the high context switch, high 

waiting and response times, and low throughput are pitfalls 

of RR. These disadvantages do not make the optimal 

choice for RTOS. Priority RR scheduling still has the 

problem of starvation, where the lowest priority process 

with fixed quantum time will be starved and preempted by 

the highest priority process. Hence, we propose an 

algorithm that depends on the existing RR. 

 

The proposed algorithm is the Priority Dynamic Quantum 

Time Scheduling Algorithm (PDQT). The proposed 

algorithm focuses on the pitfalls of existing Round-Robin 

scheduling algorithm which have no priority for all the 

processes, where the processes arranged in first in first out 

architecture in the ready queue. This disadvantage of 

Round-Robin architecture affects negatively for processes 

with lower CPU burst. This leads to high turnaround and 

waiting times which leads to reduce throughput of the 

system. The proposed algorithm excludes the defects of 

implementing existing Round-Robin scheduling algorithm. 

Also the proposed algorithm focuses on IRRVQ 

scheduling algorithm and try to improve it by prioritizing 

the processes in the ready queue and changing the quantum 

time of each round besides changing the quantum time for 

each process in each round depending on its priority. 

One of the optimal CPU scheduling algorithms in time 

sharing systems is Round Robin (RR). In time sharing 

systems the selection of the quantum time is an important 

factor that the performance of the CPU depends on [21]. 

The quantum time that taken by RR is fixed that reduces 

the CPU performance [22]. In this paper selection of 

quantum time and priority has been discussed by a new 

CPU scheduling algorithm for time shared systems, which 

is PDQT and compared with an existing one which is 

IRRVQ. It includes the advantage of RR CPU scheduling 

algorithm of less chance of starvation. Round robin CPU 

scheduling algorithm has high context switch rates, large 

response time, large waiting time, large turnaround time 

and less throughput [23], these disadvantages can be 

improved with new proposed CPU scheduling algorithm. 

 

6.1. The Proposed Algorithm Design 

The basic idea of our algorithm considers different 

priorities and different quantum times [24]. 

The steps of PDQT: 

• Processes are arranged in increasing order in the 

ready queue. New priorities and quantum times are 

assigned according to the CPU bursts of processes; the 

process with lowest burst time is set with highest priority. 

• Choose the first process in Round-Robin fashion 

and assign its burst time as quantum time for this round, 
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and allocate CPU to this process only for one quantum 

time.  

• Calculate quantum times of all processes in this 

round depending on their priorities and the quantum time 

of this cycle by using a simple formula, which is q=k+p-1, 

where q is the new quantum time, k is the old quantum 

time, and p is the priority of the processes in the ready 

queue. 

• Set different quantum times for the processes 

according to their priorities. The highest priority process 

will get the largest quantum time, which is q, and the lowest 

priority process will get the smallest quantum time, which 

is k. 

• Each process gets the control of the CPU until 

they finished their execution. 

• Repeat the steps above until all processes 

complete and ready queue assign to NULL. 

• Apply the original RR, IRRVQ and our PDQT 

with the priorities and new different quantum times. 

• Calculate context switches, average turnaround 

time and average waiting time. 

By changing the quantum time of each cycle and all 

processes and assigning priority to the lowest burst time 

process, we could improve the existing IRRVQ algorithm 

by reducing context switches and lessening average 

turnaround and average waiting times. Hence, throughput 

will increase. The next section presents a case study to 

show the simulation between PDQT and IRRVQ 

algorithms. 

 

6.2. Assumptions 

The assumptions that we followed in the case studies 

are: The Quantum time has been taken in milliseconds, the 

CPU bound is active that mean all processes are in CPU 

bound not in I/O bound. For IRRVQ all processes with the 

same priorities while in our algorithm different priorities 

used for all processes. For experimental purposes, the burst 

times and arrival times of all processes are known and 

chosen by the researchers. The context switches in IRRVQ 

are considered zero while in PDQT are computed. The 

overhead of arranging the ready queue processes in 

ascending order has been considered zero in IRRVQ [25] 

as well in PDQT. 

 

6.3. Experimental Simulation (Case Study) 

In this case study, priorities are assigned to the processes 

according to their burst time. The highest priority sets to 

the lowest burst time process [26]. Thus, the lowest burst 

time process with the highest priority gets the highest 

quantum time. The proposed algorithm helps to minimize 

a number of performance factors like context switches, 

average turnaround time and average waiting time. 

Ten processes have been defined with CPU arrival time, 

burst time, and their priorities. These ten processes are 

scheduled in RR technique as well as according to the 

IRRVQ and PDQT algorithms. The context switch, 

average waiting time, and average turnaround time are 

calculated; the results are compared and analyzed using ten 

equations of queueing theory. To accomplish this task, we 

implemented the algorithm in JAVA programming 

language and conducted several experiments. However, 

only one experiment is discussed and analyzed here for 

dynamic quantum time process, and we assure that the 

analysis remain the same for the other experiments. 

The processes with their CPU arrival times and burst 

times are given in Table I. Quantum time is 10 

milliseconds.  

 
Table I 

 Inputs of the processes  

 

The equations that used to calculate average 

turnaround and average waiting time are: 

Average turnaround time = ∑ T/n𝑛
𝑘=1   

   (1) 

Average waiting time = ∑ B/n𝑛
𝑘=1   

   (2) 

, where n = number of processes, T = completion time – 

arrival time and B = turnaround time – burst time. 

Table 2 represents the results that obtained from the three 

algorithms.   

 
Table II 

 Inputs of the processes  

Algorithm Average 

TAT 

Average 

WT 

CS 

RR 138.3 114.2 28 

IRRVQ 142.4 118.3 28 

PDQT 127.9 103.8 25 

 

The results above proved that the existing algorithm 

IRRVQ is not efficient to improve RR for the large number 

of processes where RR gives average turnaround and 

average waiting time better that IRRVQ. On the contrast 

our proposed PDQT conducts better results with the large 

number of processes over that RR and IRRVQ, so IRRVQ 

has been improved in effective way by using PDQT. 

Figs. 2, 3, and 4 represent the Gantt chart of the three 

algorithms RR, IRRVQ and PDQT respectively, and figure 

Processes Arrival 

Time 

Burst Time Priority 

A 0 10 10 

B 5 18 8 

C 10 25 3 

D 15 15 9 

E 15 20 6 

F 20 19 7 

K 25 22 5 

L 30 42 2 

M 35 25 4 

N 35 45 1 
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8 shows the comparison of performance of the three 

algorithms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Gantt chart of RR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Gantt chart of IRRVQ 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Gantt chart of PDQT

6.4. Analysis of the case study 

In this section the three algorithms are applied with the 

given arrival time, burst times, and priorities, where the 

processes still enter to the ready queue until the processing 

is finished and go out the CPU. Analyzing for the times of 

these processes in the ready queue and the system by using 

equations of queueing theory which is the mathematical 

approach of the waiting queues has been obtained. Tables 

III and IV and V show the analysis of the RR, IRRVQ and 

PDQT processing times, respectively. 

 

Table III 

Analysis Times of RR 

Task Arrival 

times 

Burst 

times 

Quantum 

time 

Start 

service 

time 

End 

service 

time 

Time 

in 

queue 

Waiting 

time 

Finishing 

of service 

A 0 10 10 0 10 0 0 completed 
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B 5 18 10 10 20 1 5  

C 10 25 10 20 30 1 10  

D 15 15 10 30 40 1 15  

E 15 20 10 40 50 1 25  

F 20 19 10 50 60 1 30  

K 25 22 10 60 70 1 35  

L 30 42 10 70 80 1 40  

M 35 25 10 80 90 1 45  

N 35 45 10 90 100 1 55  

B - 8 10 100 108 0 80 completed 

C - 15 10 108 118 1 78  

D - 5 10 118 123 0 78 completed 

E - 10 10 123 133 0 73 completed 

F - 9 10 133 142 0 73 completed 

K - 12 10 142 152 1 72  

L - 32 10 152 162 1 72  

M - 15 10 162 172 1 72  

N - 35 10 172 182 1 72  

C - 5 10 182 187 0 64 completed 

K - 2 10 187 189 0 35 completed 

L - 22 10 189 199 1 27  

M - 5 10 199 204 0 27 completed 

N - 25 10 204 214 1 22  

L - 12 10 214 224 1 15  

N - 15 10 224 234 1 10  

L - 2 10 234 236 0 10 completed 

N - 5 10 236 241 0 2 completed 

Total 190     18 1142  

 
Table IV 

Analysis Times of IRRVQ 

Task Arrival 

times 

Burst 

times 

Quantum 

time 

Start 

service 

time 

End 

service 

time 

Time 

in 

queue 

Waiting 

time 

Finishing 

of service 

A 0 10 10 0 10 0 0 completed 

B 5 18 10 10 20 1 5  

C 10 25 10 20 30 1 10  

D 15 15 10 30 40 1 15  

E 15 20 10 40 50 1 25  

F 20 19 10 50 60 1 30  

K 25 22 10 60 70 1 35  

L 30 42 10 70 80 1 40  

M 35 25 10 80 90 1 45  

N 35 45 10 90 100 1 55  

B - 8 8 100 108 0 80 completed 

C - 15 8 108 116 1 78  

D - 5 8 116 121 0 76 completed 

E - 10 8 121 129 1 71  

F - 9 8 129 137 1 69  

K - 12 8 137 145 1 67  
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L - 32 8 145 153 1 65  

M - 15 8 153 161 1 63  

N - 35 8 161 169 1 61  

C - 7 7 169 176 0 53 completed 

E - 2 7 176 178 0 47 completed 

F - 1 7 178 179 0 41 completed 

K - 4 7 179 183 0 34 completed 

L - 24 7 183 190 1 30  

M - 7 7 190 197 0 29  

N - 27 7 197 204 1 28  

L - 17 17 204 221 0 14 completed 

N - 20 17 221 238 1 17  

N - 3 3 238 241 0 0 completed 

Total 190   

 

 

 

 

  19 1183  

 

Table V 

Analysis Times of PDQT 

Task Arrival 

times 

Burst 

times 

Quantum 

time 

Priority Start 

service 

time 

End 

service 

time 

Time 

in 

queue 

Waiting 

time 

Finishing 

of service 

A 0 10 19 10 0 10 0 0 completed 

B 5 18 17 8 10 27 1 5  

C 10 25 12 3 27 39 1 17  

D 15 15 18 9 39 54 0 24 completed 

E 15 20 15 6 54 69 1 39  

F 20 19 16 7 69 85 1 49  

K 25 22 14 5 85 99 1 60  

L 30 42 11 2 99 110 1 69  

M 35 25 13 4 110 123 1 75  

N 35 45 10 1 123 133 1 88  

B - 1 8 8 133 134 0 106 completed 

C - 13 3 3 134 137 1 95  

E - 5 6 6 137 142 0 68 completed 

F - 3 7 7 142 145 0 57 completed 

K - 8 5 5 145 150 1 46  

L - 31 2 2 150 152 1 40  

M - 12 4 4 152 156 1 29  

N - 35 1 1 156 157 1 23  

C - 10 12 3 157 167 0 20 completed 

K - 3 14 5 167 170 0 17 completed 

L - 29 11 2 170 181 1 18  
M - 8 13 4 181 189 0 25 completed 

N - 34 10 1 189 199 1 32  
L - 18 19 2 199 217 0 18 completed 

N - 24 18 1 217 235 1 18  

N - 6 6 1 235 241 0 0 completed 

Total 190   

 

 

 

 

   16 1038  

 

 

The basic model of the queue in our case study is shown in fig. 5, which contains three general elements. 
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Fig. 5.  Basic model of a queue 

 

• The arrival process in the system, which needs to be 

executed within a specific period of time. 

• The order by which the process obtains access to the CPU 

service, once it joins the queue, where the queue may be 

finite or infinite, is also known as the queue size. 

• The server is the CPU and the departure from the system. 

Queue discipline refers to the priority system by 

which the next process to be serviced is selected from a set 

of waiting processes. One common queue discipline is the 

First-In-First-Out process. Service rate (or service 

capacity) refers to the overall average number of processes 

a system can handle in a given time. Utilization refers to 

the proportion of time that a server is busy handling 

processes. 

Several types of queues, such as M/M/1, M/G/1, 

and G/G/1, are handled using the queueing theory. Our 

model is focused on M/M/1. 

The suitable model with our case study is M/M/1 

queue, in which a single server serves jobs that arrive 

according to a Poisson process and has exponentially 

distributed service requirements [27]. Equations 1 to 10 

illustrate the equations of queueing theory that have been 

used in the mathematical analysis of the above case study: 

 

Avg. T= ∑ T/n𝑛
𝑘=1      

   (1) 

Avg. W = ∑ W/n𝑛
𝑘=1     

   (2) 

P= nw/n     

   (3) 

Cactive = 1 ̶   (I/To)    

   (4) 

Ccapacity= ∑ ℷ/µ𝑛
𝑘=1     

   (5) 

Avg. S= ∑ S/n𝑛
𝑘=1     

   (6) 

Avg. A= ∑ A/n𝑛
𝑘=1     

   (7) 

Avg.stay= To/n    

   (8) 

P1= (1 ̶   P) Pn    

   (9) 

       M= P/ (1 ̶   P)                          

                       (10) 

, where Avg. T is the average turnaround time, n is the 

number of processes, T is the turnaround time (which is 

equal to the difference between the completion time and 

arrival time), Avg. W is the average waiting time, W is the 

difference between the turnaround time and burst time, P is 

the probability to wait in queue, nw is the number of 

waiting processes, Cactive is the CPU activity, I is the idle 

time of the processor, To is the total time in the system, 

Ccapacity is the CPU capacity, ℷ is the arrival rate (process 

arrival per millisecond), µ is the service rate (which is 

equal to 1/quantum time), Avg. S is the average service 

time, S is the service time, Avg. A is the average arrival 

time, A is the arrival time, Avg.stay is the average stay time 

in the system, P1 is the probability of n processes in CPU, 

and M is the mean number of processes in CPU.  

Table 6 shows the results obtained after applying the ten 

equations with the input processes of the three algorithms, 

the traditional algorithm (RR), the improved algorithm 

(IRRVQ), and the proposed algorithm (PDQT). 

 
 

Table VI 

Analysis Times of PDQT 

Factors RR IRVVQ PDQT 

n 10 10 10 

T 1383 1424 1279 

Avg. T 138.3 142.4 127.9 

W 1142 1183 1038 

Avg. W 114.2 118.3 103.8 

CS 28 28 25 

nw 18 19 16 

P 1.8 1.9 1.6 

I 0 0 0 

To 241 241 241 

Cactive 100% 100% 100% 

ℷ 0.6 0.6 0.6 

µ 2.8 3.5 4 

Ccapacity 0.2 0.2 0.2 

S  1573 1613 1469 

Avg. S 157.3 161.3 146.9 

A 190 190 190 

Avg. A 19 19 19 

Avg. stay 24.1 24.1 24.1 

P1 1.44n 1.71n 0.96n 

M 2.25 2.11 2.66 
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In the table above, nw for RR is 18 and 19 in 

IRRVQ while in PDQT is 16. That mean the number of 

processes in RR and IRRVQ that had to repeat their cycle 

to enter again to the ready queue and waiting for processing 

is more than in PDQT by 2 and 3 respectively. Thus, the 

probability of the processes to wait in the ready queue with 

PDQT less than in RR and IRRVQ. Because the total time 

for service in the three algorithms is the same and there is 

no idle time in CPU (i.e. CPU always busy), so the activity 

of CPU is 100% for the algorithms. Moreover, the capacity 

of CPU with RR, IRRVQ and PDQT is the same for this 

case study. However, other experiments and case studies 

conducted higher CPU capacity with PDQT over the other 

algorithms. Processes in RR and IRRVQ take more time 

for service and average time for service than in PDQT 

where they are 1573, 157.3, 1613, 161.3 and 1469, 146.9 

for RR, IRRVQ and PDQT respectively. The probability of 

n number of processes to stay in CPU in PDQT less than in 

RR and IRRVQ, this lead to high mean number of 

processes in CPU with PDQT over RR and IRRVQ. From 

all these results we conclude that by setting priorities and 

changing the quantum time from fixed to dynamic will give 

RR more flexibility to execute more processes with less 

time and high throughput. 

 

 

6.5. Simulation and comparison RR, IRRVQ and 

PDQT 

The performance of the three algorithms can be compared 

by considering the number of context switches, average 

waiting time, and average turnaround time with different 

quantum times to ensure that the same effective results 

with PDQT are obtained over RR and IRRVQ. We got 

results of context switches, average turnaround time and 

average waiting time after applying five different quantum 

times. Table 7 and Figs 6, 7 and 8 show the obtained results 

from these different times of RR, IRRVQ and PDQT, 

respectively.  

 

 

Table VII 

Results of Simulation between RR, IRRVQ and PDQT for five different quantum times 

Algorithms 

 
RR IRRVQ PDQT 

           Factors 

QT 
CS 

Avg. 

T.T. 

Avg. 

W.T. 
CS 

Avg. 

T.T. 

Avg. 

W.T. 
CS 

Avg. 

T.T. 

Avg. 

W.T. 

10 28 138.3 114.2 28 142.4 118.3 25 127.9 103.8 

11 25 139.8 115.6 28 144.8 120.6 19 119.8 95.6 

12 24 145.6 100.7 28 143.3 119 19 122.9 98.6 

13 22 152.1 117.7 28 149.6 125.2 18 118.7 94.3 

14 21 145.6 121.1 28 152 127.5 18 121.3 96.8 

 

 

 

 

 

 

 

 

 

Fig. 6. Performance of RR, IRRVQ and PDQT with different quantum times and context switches 
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Fig. 7. Performance of RR, IRRVQ and PDQT with different quantum times and Avg. turnaround times 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Performance of RR, IRRVQ and PDQT with different quantum times and Avg. waiting times 

The figures above show that the proposed algorithm 

performs better over the existing algorithm RR and the 

improved one IRRVQ for dynamic time quantum. It is 

obvious that the proposed algorithm conduct better results 

over all factors of performance (context switches, average 

turnaround time and average waiting time). On the other 

hand, the improved algorithm called IRRVQ did not 

actually improve RR for the large number of processes. 

However, IRRVQ gives a good result over RR with small 

values of burst times. So, with change the quantum time 

from fixed to dynamic for processes and cycles will 

increase the performance of Round Robin scheduling 

algorithm and forward it to the level of soft real systems. 
 

7. CONCLUSIONS AND FUTURE WORKS 

Our focusing in this study is the priority and dynamic 

quantum time for Round-Robin scheduling algorithm and 

varying time quantum algorithm. 

The idea of our algorithm considers different priorities and 

different quantum times [24]. The two factors that we 

studied and used in the algorithm are: 

• Priority:  Fixed Priorities have been assigned to 

every process, on contrast to RR which has no priorities, 

and the scheduler arranges the processes in the ready queue 

in order to their priority.  

• Dynamic quantum time: Varying quantum time 

has been taken instead of fixed quantum time; where the 

quantum time changes depending on the priorities of the 

processes. Our experimental results show that our 

algorithm performs better than RR and IRRVQ algorithms 

in terms of reducing the number of context switches, 

average turnaround time and average waiting time.  

We have successfully compared three algorithms, namely, 

simple RR, improved IRRVQ and the proposed algorithm 

(PDQT). Results indicated that PDQT is more efficient 

because the fewer context switches and shorter average 

turnaround and average waiting times over the other both 

algorithms. Moreover, the results reduced operating system 

overhead and increased throughput. PDQT lessened the 

problem of starvation as the processes with highest 

priorities are assigned with largest quantum time and are 

executed before lower priority processes.  
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For future work, performance of time-sharing systems can 

be improved with the proposed algorithm, and can be 

modified to enhance the performance of real time system. 
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