
 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:15 No:06 1

 157706-9191-IJECS-IJENS © December 2015 IJENS I J E N S

CPU Burst Processes Prioritization Using

Dynamic Quantum Time Algorithm Compared

with Varying Time Quantum and Round Robin

Algorithms

Maysoon A. Mohammed1, 2, Mazlina AbdulMajid1, Balsam A. Mustafa1, and

Rana Fareed Ghani3
1 Faculty of Computer Systems & Software Engineering, UMP, Kuantan

26300 Pahang, Malaysia

maysoon.ameir1977@gmail.com

2 Department of mechanical Engineering, UOT.

10066 Baghdad, Iraq

maysoon.ameir1977@gmail.com

3 Department of Computer Sciences, UOT,

10066 Baghdad, Iraq

ranafghany@yahoo.com

Abstract-- In Round-Robin Scheduling, the time quantum is

fixed and processes are scheduled such that no process uses

CPU time more than one time quantum in one go. If time

quantum is too large, the response time of the processes will

not be tolerated in an interactive environment. If the time

quantum is too small, unnecessary frequent context switch

may occur. Consequently, overheads result in fewer

throughputs. Round Robin scheduling algorithm is the most

suitable choice for time shared system but not for soft real

time systems due to a large turnaround time, large waiting

time and high number of context switches. The choice of the

quantum time in RR is the optimal solution for the problem

of large turnaround and waiting time with RR. In this study,

we propose a priority algorithm with dynamic quantum time

(PDQT), to improve the work of RR by improving the concept

of Improved Round Robin with varying time quantum

(IRRVQ). The proposed algorithm gave results better than

RR and IRRVQ in terms of minimizing the number of context

switches, average waiting time, average turnaround time,

design and analysis. The simple Round-Robin algorithm has

been improved by about 40%. By controlling quantum time

according to the priorities and burst times of the processes,

we experience fewer context switches and shorter waiting and

turnaround times, thereby obtaining higher throughput.

Index Term-- Round Robin; dynamic quantum time;

priority; burst time; Priority Dynamic Quantum Time.

1. INTRODUCTION

Modern operating systems are moving towards

multitasking environments in which fast computer systems

perform multitasking (executing more than one process at

a time) and multiplexing (transmitting multiple flows

simultaneously). This mainly depends on the CPU

scheduling algorithm as the CPU is the essential part of the

computer. In computer science, scheduling is the act by

which processes are given access to system resources (e.g.,

processor cycles, communications bandwidth). CPU

scheduling is an essential operating system task which

permits allocating the CPU to a specific process for a time

slice. In other words it determines which process runs when

there are multiple runnable processes. As researchers [1]

previously pointed out that the need for a scheduling

algorithm arises from the requirement for fast computer

systems to perform multitasking and multiplexing. CPU

scheduling is important because it affects resource

utilization and other performance parameters [2]. Several

CPU scheduling algorithms are available [3], [4], such as

First Come First Serve Scheduling (FCFS), Shortest Job

First Scheduling (SJF), Round-Robin Scheduling (RR),

and Priority Scheduling (PS). However, due to

disadvantages, these algorithms are rarely used in shared

time operating systems, except for RR Scheduling [5]. RR

is considered the most widely used scheduling algorithm in

CPU scheduling [3], [6] also used for flow passing

scheduling through a network device [7]. An essential task

in operating systems in CPU Scheduling is the process of

allocating a specific process for a time slice. Scheduling

requires careful attention to ensure fairness and avoid

process starvation in the CPU. This allocation is carried out

by software known as a scheduler [3], [6]. The scheduler is

concerned mainly with the following tasks [8]:

• CPU utilization - to keep the CPU as busy as

possible

• Throughput - number of processes that complete

their execution per time unit

• Turnaround - total time between submission of a

process and its completion

• Waiting time - amount of time a process has been

waiting in the ready queue

• Response time - amount of time taken from the

time a request was submitted until the production of the

first response

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:15 No:06 2

 157706-9191-IJECS-IJENS © December 2015 IJENS I J E N S

• Fairness - equal CPU time allocated to each

process.

2. PERFORMANCE FACTORS

CPU is an essential part in the operating system which

is scheduled by many of the scheduling algorithms to keep

it busy as much as possible to achieve the perfect utilization

of CPU. The processes that need to be processed submit to

the system and wait in the ready queue to be selected by

the scheduler for the processing. The scheduler is

responsible of picking the processes from the ready queue

and allocate the CPU if it is idle for that process [9].

The moment that the process joins to the ready queue is

called the arrival time. Burst time is the time that the

process needs to complete its job inside the CPU. The

turnaround time is the time that the process spends in the

system from the moment of submission to the moment of

completion the processing. Waiting time is the time that the

process waits in the ready queue waiting for its turn to be

selected by the scheduler for the processing. Therefore, we

can conclude that a good scheduling algorithm for real time

and time sharing system must possess the following

characteristics [10]:

• Minimum context switches

• Maximum CPU utilization

• Maximum throughput

• Minimum turnaround time

• Minimum waiting time

Operating systems may feature up to three distinct types

of schedulers, which are long term, mid-term or medium

term, and short-term as shown in Fig.1. The long-term

scheduler or job scheduler selects processes from the job

pool and loads them into the memory for execution. The

short-term scheduler or CPU scheduler selects from among

the processes that are ready for execution and allocates a

CPU to one of them. The medium term scheduler removes

processes from the memory and reduces the degree of

multiprogramming results in the scheme of swapping.

Swapping is performed by the scheduler, which is the

module that allows the CPU to control the process selected

by the short-term scheduler [11].

Fig. 1. Queuing diagram for scheduling

3. RELATED WORK

Many CPU scheduling algorithms have been introduced

in the past years to improve the performance of the CPU.

An algorithm for robust quantum time value [12] orders

processes according to the smallest to the highest burst

time. Then, quantum time would be calculated by taking

the average of minimum and maximum burst times of the

processes in the ready queue. An Improved Round Robin

Scheduling using the feature of SJF in which the process in

the ready queue would be allocated with static quantum

time in the first cycle, and then the process would be

selected by SJF [13]. Self-Adjustment Time Quantum in

RR Algorithm is an algorithm in accordance to the burst

time of the processes [14]. Reference [15] assigned a fare-

share weight to each process, such that the process with the

minimum burst time would have the maximum weight.

Quantum time would be calculated dynamically by using

the weighted time slice method. Thus, the processes would

be executed. An Improved RR (IRR) CPU Scheduling

Algorithm was presented by [16]. In this algorithm, the

CPU time is allocated to the first process from the ready

queue for a time interval of up to one quantum time. After

the quantum time of the process is completed, the

remaining burst time of this process would be compared

with quantum time. If its burst time was less than one

quantum time, the CPU would again allocate the same

process until execution is completed and the task is

removed from the queue. This algorithm reduces waiting

time in the ready queue, and hence improves performance.

Reference [17] proposed algorithm similar to IRR [16].

The proposed algorithm uses two queues, which are

ARRIVE and REQUEST. Compared with IRR, this

algorithm indicated performance improvement. Reference

[11] presented a mechanism of dynamic quantum time,

which overcame the problem of fixed quantum time.

Meanwhile, an algorithm of feedback scheduling focused

on lower priority queue process is proposed by [18].

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:15 No:06 3

 157706-9191-IJECS-IJENS © December 2015 IJENS I J E N S

4. RR ARCHITECTURE

RR architecture is a pre-emptive version of First Come,

First Serve scheduling algorithm. The tasks are arranged in

the ready queue in First Come, First Serve manner and the

processor executes the task from the ready queue based on

time slice. If the time slice ends and the tasks are still

executing on the processor, the scheduler will forcibly pre-

empt the executing task and keep it at the end of ready

queue. Then, the scheduler will allocate the processor to

the next task in the ready queue. The pre-empted task will

make its way to the beginning of the ready list and will be

executed by the processor from the point of interruption.

A scheduler requires a time management function to

implement the RR architecture and requires a tick timer

[19]. The time slice is proportional to the period of clock

ticks [8]. The time slice length is a critical issue in real time

operating systems. The time slice must not be too small, as

it would result in frequent context switches. Moreover, the

time slice should be slightly greater than the average task

computation time.

4.1. RR Pitfalls in Real Time Systems

RR when implemented in real time operating systems

faces two drawbacks, which are high rate of context switch

and low throughput. These two problems of RR

architecture are interrelated [20].

• Context switch: When the time slice of the task

ends and the task is still executing in the processor, the

scheduler forcibly pre-empts the tasks on the processor.

The interrupted task is then stored in stacks or registers,

and the processor is allocated the next task in the ready

queue. This action performed by the scheduler is called

“context switch.” Context switch leads to wastage of time,

memory, and scheduler overhead.

• Larger waiting and turnaround times: In RR

architecture, the time the process spends in the ready queue

waiting for the processor for task execution is known as

“waiting time.” The time the process completes its job and

exits from the task-set is called “turnaround time.” Larger

waiting and turnaround times are clearly a drawback in RR

architecture, as it leads to degradation of system

performance.

• Low throughput: Throughput refers to the number

of processes completed per time unit. If RR is implemented

in real time operating systems, throughput will be low and

results in severe degradation of system performance. If the

number of context switches is low, then the throughput will

be high. Context switch and throughput are inversely

proportional to each other.

5. IMPROVED ROUND ROBIN WITH VARYING TIME

QUANTUM (IRRVQ)

The idea of improved Round Robin CPU scheduling

algorithm with varying quantum time (IRRVQ) is

depending on the combination between Shortest Job First

(SJF) and RR with using dynamic quantum time in each

round. First, the processes in the ready queue are ordered

from lowest to highest burst times. The scheduler allocates

the CPU to the first process using RR and assigns its burst

time as quantum time for this round. The same procedure

will be repeated in each round until all processes finish

their execution and ready queue assigns to NULL.

6. The Proposed Algorithm, Priority Dynamic

Quantum Time Scheduling Algorithm PDQT

RR scheduling algorithm has no priority and fixed

quantum time. However, this scheduling algorithm is not

suitable for real time operating system (RTOS) because of

drawbacks. In other words, the high context switch, high

waiting and response times, and low throughput are pitfalls

of RR. These disadvantages do not make the optimal

choice for RTOS. Priority RR scheduling still has the

problem of starvation, where the lowest priority process

with fixed quantum time will be starved and preempted by

the highest priority process. Hence, we propose an

algorithm that depends on the existing RR.

The proposed algorithm is the Priority Dynamic Quantum

Time Scheduling Algorithm (PDQT). The proposed

algorithm focuses on the pitfalls of existing Round-Robin

scheduling algorithm which have no priority for all the

processes, where the processes arranged in first in first out

architecture in the ready queue. This disadvantage of

Round-Robin architecture affects negatively for processes

with lower CPU burst. This leads to high turnaround and

waiting times which leads to reduce throughput of the

system. The proposed algorithm excludes the defects of

implementing existing Round-Robin scheduling algorithm.

Also the proposed algorithm focuses on IRRVQ

scheduling algorithm and try to improve it by prioritizing

the processes in the ready queue and changing the quantum

time of each round besides changing the quantum time for

each process in each round depending on its priority.

One of the optimal CPU scheduling algorithms in time

sharing systems is Round Robin (RR). In time sharing

systems the selection of the quantum time is an important

factor that the performance of the CPU depends on [21].

The quantum time that taken by RR is fixed that reduces

the CPU performance [22]. In this paper selection of

quantum time and priority has been discussed by a new

CPU scheduling algorithm for time shared systems, which

is PDQT and compared with an existing one which is

IRRVQ. It includes the advantage of RR CPU scheduling

algorithm of less chance of starvation. Round robin CPU

scheduling algorithm has high context switch rates, large

response time, large waiting time, large turnaround time

and less throughput [23], these disadvantages can be

improved with new proposed CPU scheduling algorithm.

6.1. The Proposed Algorithm Design

The basic idea of our algorithm considers different

priorities and different quantum times [24].

The steps of PDQT:

• Processes are arranged in increasing order in the

ready queue. New priorities and quantum times are

assigned according to the CPU bursts of processes; the

process with lowest burst time is set with highest priority.

• Choose the first process in Round-Robin fashion

and assign its burst time as quantum time for this round,

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:15 No:06 4

 157706-9191-IJECS-IJENS © December 2015 IJENS I J E N S

and allocate CPU to this process only for one quantum

time.

• Calculate quantum times of all processes in this

round depending on their priorities and the quantum time

of this cycle by using a simple formula, which is q=k+p-1,

where q is the new quantum time, k is the old quantum

time, and p is the priority of the processes in the ready

queue.

• Set different quantum times for the processes

according to their priorities. The highest priority process

will get the largest quantum time, which is q, and the lowest

priority process will get the smallest quantum time, which

is k.

• Each process gets the control of the CPU until

they finished their execution.

• Repeat the steps above until all processes

complete and ready queue assign to NULL.

• Apply the original RR, IRRVQ and our PDQT

with the priorities and new different quantum times.

• Calculate context switches, average turnaround

time and average waiting time.

By changing the quantum time of each cycle and all

processes and assigning priority to the lowest burst time

process, we could improve the existing IRRVQ algorithm

by reducing context switches and lessening average

turnaround and average waiting times. Hence, throughput

will increase. The next section presents a case study to

show the simulation between PDQT and IRRVQ

algorithms.

6.2. Assumptions

The assumptions that we followed in the case studies

are: The Quantum time has been taken in milliseconds, the

CPU bound is active that mean all processes are in CPU

bound not in I/O bound. For IRRVQ all processes with the

same priorities while in our algorithm different priorities

used for all processes. For experimental purposes, the burst

times and arrival times of all processes are known and

chosen by the researchers. The context switches in IRRVQ

are considered zero while in PDQT are computed. The

overhead of arranging the ready queue processes in

ascending order has been considered zero in IRRVQ [25]

as well in PDQT.

6.3. Experimental Simulation (Case Study)

In this case study, priorities are assigned to the processes

according to their burst time. The highest priority sets to

the lowest burst time process [26]. Thus, the lowest burst

time process with the highest priority gets the highest

quantum time. The proposed algorithm helps to minimize

a number of performance factors like context switches,

average turnaround time and average waiting time.

Ten processes have been defined with CPU arrival time,

burst time, and their priorities. These ten processes are

scheduled in RR technique as well as according to the

IRRVQ and PDQT algorithms. The context switch,

average waiting time, and average turnaround time are

calculated; the results are compared and analyzed using ten

equations of queueing theory. To accomplish this task, we

implemented the algorithm in JAVA programming

language and conducted several experiments. However,

only one experiment is discussed and analyzed here for

dynamic quantum time process, and we assure that the

analysis remain the same for the other experiments.

The processes with their CPU arrival times and burst

times are given in Table I. Quantum time is 10

milliseconds.

Table I

 Inputs of the processes

The equations that used to calculate average

turnaround and average waiting time are:

Average turnaround time = ∑ T/n𝑛
𝑘=1

 (1)

Average waiting time = ∑ B/n𝑛
𝑘=1

 (2)

, where n = number of processes, T = completion time –

arrival time and B = turnaround time – burst time.

Table 2 represents the results that obtained from the three

algorithms.

Table II

 Inputs of the processes

Algorithm Average

TAT

Average

WT

CS

RR 138.3 114.2 28

IRRVQ 142.4 118.3 28

PDQT 127.9 103.8 25

The results above proved that the existing algorithm

IRRVQ is not efficient to improve RR for the large number

of processes where RR gives average turnaround and

average waiting time better that IRRVQ. On the contrast

our proposed PDQT conducts better results with the large

number of processes over that RR and IRRVQ, so IRRVQ

has been improved in effective way by using PDQT.

Figs. 2, 3, and 4 represent the Gantt chart of the three

algorithms RR, IRRVQ and PDQT respectively, and figure

Processes Arrival

Time

Burst Time Priority

A 0 10 10

B 5 18 8

C 10 25 3

D 15 15 9

E 15 20 6

F 20 19 7

K 25 22 5

L 30 42 2

M 35 25 4

N 35 45 1

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:15 No:06 5

 157706-9191-IJECS-IJENS © December 2015 IJENS I J E N S

8 shows the comparison of performance of the three

algorithms.

Fig. 2. Gantt chart of RR

Fig. 3. Gantt chart of IRRVQ

Fig. 4. Gantt chart of PDQT

6.4. Analysis of the case study

In this section the three algorithms are applied with the

given arrival time, burst times, and priorities, where the

processes still enter to the ready queue until the processing

is finished and go out the CPU. Analyzing for the times of

these processes in the ready queue and the system by using

equations of queueing theory which is the mathematical

approach of the waiting queues has been obtained. Tables

III and IV and V show the analysis of the RR, IRRVQ and

PDQT processing times, respectively.

Table III

Analysis Times of RR

Task Arrival

times

Burst

times

Quantum

time

Start

service

time

End

service

time

Time

in

queue

Waiting

time

Finishing

of service

A 0 10 10 0 10 0 0 completed

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:15 No:06 6

 157706-9191-IJECS-IJENS © December 2015 IJENS I J E N S

B 5 18 10 10 20 1 5

C 10 25 10 20 30 1 10

D 15 15 10 30 40 1 15

E 15 20 10 40 50 1 25

F 20 19 10 50 60 1 30

K 25 22 10 60 70 1 35

L 30 42 10 70 80 1 40

M 35 25 10 80 90 1 45

N 35 45 10 90 100 1 55

B - 8 10 100 108 0 80 completed

C - 15 10 108 118 1 78

D - 5 10 118 123 0 78 completed

E - 10 10 123 133 0 73 completed

F - 9 10 133 142 0 73 completed

K - 12 10 142 152 1 72

L - 32 10 152 162 1 72

M - 15 10 162 172 1 72

N - 35 10 172 182 1 72

C - 5 10 182 187 0 64 completed

K - 2 10 187 189 0 35 completed

L - 22 10 189 199 1 27

M - 5 10 199 204 0 27 completed

N - 25 10 204 214 1 22

L - 12 10 214 224 1 15

N - 15 10 224 234 1 10

L - 2 10 234 236 0 10 completed

N - 5 10 236 241 0 2 completed

Total 190 18 1142

Table IV

Analysis Times of IRRVQ

Task Arrival

times

Burst

times

Quantum

time

Start

service

time

End

service

time

Time

in

queue

Waiting

time

Finishing

of service

A 0 10 10 0 10 0 0 completed

B 5 18 10 10 20 1 5

C 10 25 10 20 30 1 10

D 15 15 10 30 40 1 15

E 15 20 10 40 50 1 25

F 20 19 10 50 60 1 30

K 25 22 10 60 70 1 35

L 30 42 10 70 80 1 40

M 35 25 10 80 90 1 45

N 35 45 10 90 100 1 55

B - 8 8 100 108 0 80 completed

C - 15 8 108 116 1 78

D - 5 8 116 121 0 76 completed

E - 10 8 121 129 1 71

F - 9 8 129 137 1 69

K - 12 8 137 145 1 67

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:15 No:06 7

 157706-9191-IJECS-IJENS © December 2015 IJENS I J E N S

L - 32 8 145 153 1 65

M - 15 8 153 161 1 63

N - 35 8 161 169 1 61

C - 7 7 169 176 0 53 completed

E - 2 7 176 178 0 47 completed

F - 1 7 178 179 0 41 completed

K - 4 7 179 183 0 34 completed

L - 24 7 183 190 1 30

M - 7 7 190 197 0 29

N - 27 7 197 204 1 28

L - 17 17 204 221 0 14 completed

N - 20 17 221 238 1 17

N - 3 3 238 241 0 0 completed

Total 190

 19 1183

Table V

Analysis Times of PDQT

Task Arrival

times

Burst

times

Quantum

time

Priority Start

service

time

End

service

time

Time

in

queue

Waiting

time

Finishing

of service

A 0 10 19 10 0 10 0 0 completed

B 5 18 17 8 10 27 1 5

C 10 25 12 3 27 39 1 17

D 15 15 18 9 39 54 0 24 completed

E 15 20 15 6 54 69 1 39

F 20 19 16 7 69 85 1 49

K 25 22 14 5 85 99 1 60

L 30 42 11 2 99 110 1 69

M 35 25 13 4 110 123 1 75

N 35 45 10 1 123 133 1 88

B - 1 8 8 133 134 0 106 completed

C - 13 3 3 134 137 1 95

E - 5 6 6 137 142 0 68 completed

F - 3 7 7 142 145 0 57 completed

K - 8 5 5 145 150 1 46

L - 31 2 2 150 152 1 40

M - 12 4 4 152 156 1 29

N - 35 1 1 156 157 1 23

C - 10 12 3 157 167 0 20 completed

K - 3 14 5 167 170 0 17 completed

L - 29 11 2 170 181 1 18
M - 8 13 4 181 189 0 25 completed

N - 34 10 1 189 199 1 32
L - 18 19 2 199 217 0 18 completed

N - 24 18 1 217 235 1 18

N - 6 6 1 235 241 0 0 completed

Total 190

 16 1038

The basic model of the queue in our case study is shown in fig. 5, which contains three general elements.

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:15 No:06 8

 157706-9191-IJECS-IJENS © December 2015 IJENS I J E N S

Fig. 5. Basic model of a queue

• The arrival process in the system, which needs to be

executed within a specific period of time.

• The order by which the process obtains access to the CPU

service, once it joins the queue, where the queue may be

finite or infinite, is also known as the queue size.

• The server is the CPU and the departure from the system.

Queue discipline refers to the priority system by

which the next process to be serviced is selected from a set

of waiting processes. One common queue discipline is the

First-In-First-Out process. Service rate (or service

capacity) refers to the overall average number of processes

a system can handle in a given time. Utilization refers to

the proportion of time that a server is busy handling

processes.

Several types of queues, such as M/M/1, M/G/1,

and G/G/1, are handled using the queueing theory. Our

model is focused on M/M/1.

The suitable model with our case study is M/M/1

queue, in which a single server serves jobs that arrive

according to a Poisson process and has exponentially

distributed service requirements [27]. Equations 1 to 10

illustrate the equations of queueing theory that have been

used in the mathematical analysis of the above case study:

Avg. T= ∑ T/n𝑛
𝑘=1

 (1)

Avg. W = ∑ W/n𝑛
𝑘=1

 (2)

P= nw/n

 (3)

Cactive = 1 ̶ (I/To)

 (4)

Ccapacity= ∑ ℷ/µ𝑛
𝑘=1

 (5)

Avg. S= ∑ S/n𝑛
𝑘=1

 (6)

Avg. A= ∑ A/n𝑛
𝑘=1

 (7)

Avg.stay= To/n

 (8)

P1= (1 ̶ P) Pn

 (9)

 M= P/ (1 ̶ P)

 (10)

, where Avg. T is the average turnaround time, n is the

number of processes, T is the turnaround time (which is

equal to the difference between the completion time and

arrival time), Avg. W is the average waiting time, W is the

difference between the turnaround time and burst time, P is

the probability to wait in queue, nw is the number of

waiting processes, Cactive is the CPU activity, I is the idle

time of the processor, To is the total time in the system,

Ccapacity is the CPU capacity, ℷ is the arrival rate (process

arrival per millisecond), µ is the service rate (which is

equal to 1/quantum time), Avg. S is the average service

time, S is the service time, Avg. A is the average arrival

time, A is the arrival time, Avg.stay is the average stay time

in the system, P1 is the probability of n processes in CPU,

and M is the mean number of processes in CPU.

Table 6 shows the results obtained after applying the ten

equations with the input processes of the three algorithms,

the traditional algorithm (RR), the improved algorithm

(IRRVQ), and the proposed algorithm (PDQT).

Table VI

Analysis Times of PDQT

Factors RR IRVVQ PDQT

n 10 10 10

T 1383 1424 1279

Avg. T 138.3 142.4 127.9

W 1142 1183 1038

Avg. W 114.2 118.3 103.8

CS 28 28 25

nw 18 19 16

P 1.8 1.9 1.6

I 0 0 0

To 241 241 241

Cactive 100% 100% 100%

ℷ 0.6 0.6 0.6

µ 2.8 3.5 4

Ccapacity 0.2 0.2 0.2

S 1573 1613 1469

Avg. S 157.3 161.3 146.9

A 190 190 190

Avg. A 19 19 19

Avg. stay 24.1 24.1 24.1

P1 1.44n 1.71n 0.96n

M 2.25 2.11 2.66

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:15 No:06 9

 157706-9191-IJECS-IJENS © December 2015 IJENS I J E N S

In the table above, nw for RR is 18 and 19 in

IRRVQ while in PDQT is 16. That mean the number of

processes in RR and IRRVQ that had to repeat their cycle

to enter again to the ready queue and waiting for processing

is more than in PDQT by 2 and 3 respectively. Thus, the

probability of the processes to wait in the ready queue with

PDQT less than in RR and IRRVQ. Because the total time

for service in the three algorithms is the same and there is

no idle time in CPU (i.e. CPU always busy), so the activity

of CPU is 100% for the algorithms. Moreover, the capacity

of CPU with RR, IRRVQ and PDQT is the same for this

case study. However, other experiments and case studies

conducted higher CPU capacity with PDQT over the other

algorithms. Processes in RR and IRRVQ take more time

for service and average time for service than in PDQT

where they are 1573, 157.3, 1613, 161.3 and 1469, 146.9

for RR, IRRVQ and PDQT respectively. The probability of

n number of processes to stay in CPU in PDQT less than in

RR and IRRVQ, this lead to high mean number of

processes in CPU with PDQT over RR and IRRVQ. From

all these results we conclude that by setting priorities and

changing the quantum time from fixed to dynamic will give

RR more flexibility to execute more processes with less

time and high throughput.

6.5. Simulation and comparison RR, IRRVQ and

PDQT

The performance of the three algorithms can be compared

by considering the number of context switches, average

waiting time, and average turnaround time with different

quantum times to ensure that the same effective results

with PDQT are obtained over RR and IRRVQ. We got

results of context switches, average turnaround time and

average waiting time after applying five different quantum

times. Table 7 and Figs 6, 7 and 8 show the obtained results

from these different times of RR, IRRVQ and PDQT,

respectively.

Table VII

Results of Simulation between RR, IRRVQ and PDQT for five different quantum times

Algorithms

RR IRRVQ PDQT

 Factors

QT
CS

Avg.

T.T.

Avg.

W.T.
CS

Avg.

T.T.

Avg.

W.T.
CS

Avg.

T.T.

Avg.

W.T.

10 28 138.3 114.2 28 142.4 118.3 25 127.9 103.8

11 25 139.8 115.6 28 144.8 120.6 19 119.8 95.6

12 24 145.6 100.7 28 143.3 119 19 122.9 98.6

13 22 152.1 117.7 28 149.6 125.2 18 118.7 94.3

14 21 145.6 121.1 28 152 127.5 18 121.3 96.8

Fig. 6. Performance of RR, IRRVQ and PDQT with different quantum times and context switches

17

19

21

23

25

27

29

10 11 12 13 14 15

C
O

N
T

E
X

T
 S

W
IT

C
H

E
S

QUANTUM TIMES

RR

IRRVQ

PDQT

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:15 No:06

10

 157706-9191-IJECS-IJENS © December 2015 IJENS I J E N S

Fig. 7. Performance of RR, IRRVQ and PDQT with different quantum times and Avg. turnaround times

Fig. 8. Performance of RR, IRRVQ and PDQT with different quantum times and Avg. waiting times

The figures above show that the proposed algorithm

performs better over the existing algorithm RR and the

improved one IRRVQ for dynamic time quantum. It is

obvious that the proposed algorithm conduct better results

over all factors of performance (context switches, average

turnaround time and average waiting time). On the other

hand, the improved algorithm called IRRVQ did not

actually improve RR for the large number of processes.

However, IRRVQ gives a good result over RR with small

values of burst times. So, with change the quantum time

from fixed to dynamic for processes and cycles will

increase the performance of Round Robin scheduling

algorithm and forward it to the level of soft real systems.

7. CONCLUSIONS AND FUTURE WORKS

Our focusing in this study is the priority and dynamic

quantum time for Round-Robin scheduling algorithm and

varying time quantum algorithm.

The idea of our algorithm considers different priorities and

different quantum times [24]. The two factors that we

studied and used in the algorithm are:

• Priority: Fixed Priorities have been assigned to

every process, on contrast to RR which has no priorities,

and the scheduler arranges the processes in the ready queue

in order to their priority.

• Dynamic quantum time: Varying quantum time

has been taken instead of fixed quantum time; where the

quantum time changes depending on the priorities of the

processes. Our experimental results show that our

algorithm performs better than RR and IRRVQ algorithms

in terms of reducing the number of context switches,

average turnaround time and average waiting time.

We have successfully compared three algorithms, namely,

simple RR, improved IRRVQ and the proposed algorithm

(PDQT). Results indicated that PDQT is more efficient

because the fewer context switches and shorter average

turnaround and average waiting times over the other both

algorithms. Moreover, the results reduced operating system

overhead and increased throughput. PDQT lessened the

problem of starvation as the processes with highest

priorities are assigned with largest quantum time and are

executed before lower priority processes.

117

122

127

132

137

142

147

152

157

10 11 12 13 14 15

A
V

G
.

T
U

R
N

A
R

O
U

N
D

 T
IM

E
S

QUANTUM TIMES

RR

IRRVQ

PDQT

90

95

100

105

110

115

120

125

130

10 11 12 13 14 15

A
V

G
.

W
A

IT
IN

G
 T

IM
E

S

QUANTUM TIMES

RR

IRRVQ

PDQT

 International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:15 No:06

11

 157706-9191-IJECS-IJENS © December 2015 IJENS I J E N S

For future work, performance of time-sharing systems can

be improved with the proposed algorithm, and can be

modified to enhance the performance of real time system.

REFERENCES
[1] H. Kopetz, Real-time systems: design principles for

distributed embedded applications: Springer. (2011).
[2] H. J. Hassan, "Operating system Concepts," Memory, p. 8.

(2013).

[3] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating system
concepts vol. 8: Wiley. (2013).

[4] E. Oyetunji and A. Oluleye, "Performance Assessment of

Some CPU Scheduling Algorithms," Research Journal of
Information and Technology, vol. 1, pp. 22-26. (2009).

[5] F. Cerqueira and B. Brandenburg, "A comparison of

scheduling latency in linux, PREEMPT-RT, and
LITMUSRT," in Proceedings of the 9th Annual Workshop on

Operating Systems Platforms for Embedded Real-Time

applications, pp. 19-29. (2013).

[6] L. Yang, J. M. Schopf, and I. Foster, "Conservative

scheduling: Using predicted variance to improve scheduling

decisions in dynamic environments," in Proceedings of the
2003 ACM/IEEE conference on Supercomputing, p. 31.

(2003).

[7] W. Tong and J. Zhao, "Quantum varying deficit round robin
scheduling over priority queues," in Computational

Intelligence and Security, 2007 International Conference on,

pp. 252-256. (2007).
[8] M.-X. Chen and S.-H. Liu, "Hierarchical Deficit Round-Robin

Packet Scheduling Algorithm," in Advances in Intelligent

Systems and Applications-Volume 1, ed: Springer, pp. 419-
427. (2013).

[9] T. F. Hasan, "CPU SCHEDULING VISUALIZATION."

Diyala Journal of Engineering Sciences, Vol. 07, No. 01, pp.
16-29. (2013).

[10] A. Singh, P. Goyal, and S. Batra, "An Optimized Round Robin
Scheduling Algorithm for CPU Scheduling," IJCSE)

International Journal on Computer Science and Engineering,

vol. 2, pp. 2383-2385. (2010).
[11] A. Noon, A. Kalakech, and S. Kadry, "A new round robin

based scheduling algorithm for operating systems: dynamic

quantum using the mean average," arXiv preprint
arXiv:1111.5348. (2011).

[12] M. Lavanya¹ and S. Saravanan, "Robust Quantum Based Low-

power Switching Technique to improve System Performance,"
International Journal of Engineering and Technology, Vol 5

No 4. (2013).

[13] R. K. Yadav, A. K. Mishra, N. Prakash, and H. Sharma, "An
improved round robin scheduling algorithm for CPU

scheduling," International Journal on Computer Science and

Engineering, vol. 2, pp. 1064-1066. (2010).
[14] D. Nayak, S. K. Malla, and D. Debadarshini, "Improved round

robin scheduling using dynamic time quantum," International

Journal of Computer Applications (0975–8887) Volume.
(2012).

[15] H. Behera, R. Mohanty, and D. Nayak, "A New Proposed

Dynamic Quantum with Re-Adjusted Round Robin
Scheduling Algorithm and Its Performance Analysis," arXiv

preprint arXiv:1103.3831. (2011).

[16] M. K. Mishra, "An Improved Round Robin CPU scheduling
algorithm," Journal of Global Research in Computer Science,

vol. 3, pp. 64-69. (2012).

[17] A. Abdulrahim, S. E Abdullahi, and J. B Sahalu, "A New
Improved Round Robin (NIRR) CPU Scheduling Algorithm,"

International Journal of Computer Applications, vol. 90, pp.

27-33. (2014).
[18] A. Bhunia, "Enhancing the Performance of Feedback

Scheduling," International Journal of Computer Applications,

vol. 18, pp. 11-16. (2011).
[19] N. Goel and R. Garg, "An Optimum Multilevel Dynamic

Round Robin Scheduling Algorithm," arXiv preprint

arXiv:1307.4167. (2013).

[20] B. Lampard, "Program scheduling and simulation in an

operating system environment,". (2011).
[21] P. S. Varma, "A FINEST TIME QUANTUM FOR

IMPROVING SHORTEST REMAINING BURST ROUND

ROBIN (SRBRR) ALGORITHM," Journal of Global
Research in Computer Science, vol. 4, pp. 10-15. (2013).

[22] M. Mahesh Kumar, B. Renuka Rajendra, M. Sreenatha, and C.

Niranjan, "AN IMPROVED APPROACH TO MINIMIZE
CONTEXT SWITCHING IN ROUND ROBIN

SCHEDULING ALGORITHM USING OPTIMIZATION

TECHNIQUES." International journal of research in
engineering and technology, vol. 3. (2014).

[23] M. U. Siregar, "A New Approach to CPU Scheduling

Algorithm: Genetic Round Robin," International Journal of
Computer Applications, vol. 47. (2012).

[24] R. Mohanty, H. Behera, K. Patwari, M. Dash, and M. L.

Prasanna, "Priority based dynamic round robin (PBDRR)
algorithm with intelligent time slice for soft real time

systems," arXiv preprint arXiv:1105.1736. (2011).

[25] M. K. Mishra and F. Rashid, "AN IMPROVED ROUND
ROBIN CPU SCHEDULING ALGORITHM WITH

VARYING TIME QUANTUM," International Journal of

Computer Science, Engineering & Applications, vol. 4.
(2014).

[26] I. S. Rajput and D. Gupta, "A Priority based Round Robin CPU

Scheduling Algorithm for Real Time Systems," International
Journal of Innovations in Engineering and Technology.

(2012).

[27] M. Harchol-Balter, Performance Modeling and Design of
Computer Systems: Queueing Theory in Action: Cambridge

University Press. (2013).

