Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
Editors: W. Clegg and D. G. Watson

$\operatorname{Bis}\{\mu$-2-[bis(2-hydroxyethyl)amino]ethanolato $\}$ bis(4-methylbenzoato)dicopper(II) dihydrate

Alexander M. Kirillov, Matti Haukka, Maximilian N. Kopylovich and Armando J. L. Pombeiro

Copyright © International Union of Crystallography
Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Alexander M. Kirillov, ${ }^{\text {a }}$ Matti Haukka, ${ }^{\text {b* }}$ Maximilian N.
Kopylovich ${ }^{\mathrm{a}}$ and Armando J. L. Pombeiro ${ }^{\text {a }}$
${ }^{\text {a }}$ Centro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Joensuu, P.O. Box 111, 80101 Joensuu, Finland

Correspondence e-mail:
matti.haukka@joensuu.fi

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.040$
$w R$ factor $=0.086$
Data-to-parameter ratio $=16.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2007 International Union of Crystallography All rights reserved

Bis $\{\mu$-2-[bis(2-hydroxyethyl)amino]ethanolato $\}$ -bis(4-methylbenzoato)dicopper(II) dihydrate

The title compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{3}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, contains a centrosymmetric binuclear $\left[\mathrm{Cu}_{2}\left(\mathrm{H}_{2} \text { tea }\right)_{2}\right]^{2+}$ fragment (H_{3} tea is triethanolamine), with two bound 4-methylbenzoate anions. All O atoms of H_{2} tea, one O atom of 4methylbenzoate and two solvent water molecules are involved in $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, providing additional stabilization of the binuclear molecular units and also linking them into one-dimensional hydrogen-bonded chains.

Comment

The title compound, (I), has been previously obtained (Kirillov et al., 2006) and applied as a catalyst or catalyst precursor for the mild peroxidative oxidation of cyclohexane within our ongoing research on the synthesis and catalytic properties of various Cu (Kirillov, Kopylovich, Kirillova, Haukka et al., 2005; Karabach et al., 2006), Re (Kirillov, Haukka et al., 2005) and Ni (Haukka et al., 2005) complexes derived from triethanolamine (H_{3} tea). Compound (I) has been characterized previously by FT-IR, $\mathrm{FAB}^{+}-\mathrm{MS}$ and elemental analysis. We report here its X-ray crystal structure.

The crystal structure of (I) (Fig. 1) consists of binuclear $\left[\mathrm{Cu}_{2}\left(\mathrm{H}_{2} \text { tea }\right)_{2}\right]^{2+}$ units linked to two monodentate 4-methylbenzoate anions. Each $\mathrm{Cu}^{\mathrm{II}}$ centre has a distorted tetragonalbipyramidal geometry and each H_{2} tea acts as a tetradentate ligand with one bridging alkoxo-group generating a centrosymmetric planar $\mathrm{Cu}_{2}(\mu-\mathrm{O})_{2}$ core, in which the $\mathrm{Cu} \cdots \mathrm{Cu}$ separation is 2.9070 (7) \AA. Most of the bonding parameters of (I) (Table 1) are comparable to those of related copper

Received 26 December 2006
Accepted 13 January 2007

Figure 1
The molecular structure of (I), showing displacement ellipsoids at the 50% probability level for non-H atoms. Unlabelled atoms are related to labelled atoms by the symmetry operator $(1-x,-y, 2-z)$. Dashed lines denote hydrogen bonds.

Figure 2
View of (I) along the b axis, showing the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding network (dashed lines). H atoms are omitted. O atoms of the solvent water molecules are shown as red spheres.
triethanolaminate dimeric or polymeric complexes in which the $\left[\mathrm{Cu}_{2}\left(\mathrm{H}_{2} \text { tea }\right)_{2}\right]^{2+}$ unit is linked to benzoate and terephthalate (Kirillov, Kopylovich, Kirillova, Haukka et al., 2005), 3chlorobenzoate (Kirillov et al., 2006), saccharinate (Topcu et al., 2002) or trans-1,2-bis(4-pyridyl)ethylene (Tudor et al., 2003).

In (I), the binding of the 4-methylbenzoate anion is additionally stabilized by intramolecular $\mathrm{O} 1-\mathrm{H} 10 \cdots \mathrm{O} 5$ hydrogen bonds (Fig. 1, Table 2) between an OH group of H_{2} tea and the free carboxylate oxygen, forming an almost planar sixmembered $\mathrm{O} 1 / \mathrm{H} 10 / \mathrm{O} 5 / \mathrm{C} 7 / \mathrm{O} 4 / \mathrm{Cu} 1$ ring. Each solvent water molecule acts as both a hydrogen-bond acceptor and donor (Table 2), bridging between triethanolaminate OH groups, providing further reinforcement of the binuclear units (Fig. 1). The water molecules also interact with the μ-O atoms of H_{2} tea in neighbouring molecular units, forming one-dimensional hydrogen-bonded polymers running along the a axis (Fig. 2).

Experimental

The title compound was obtained according to the previously described procedure (Kirillov et al., 2006). Pale-blue crystals were formed in a few days upon evaporation of the aqueous reaction mixture in air at ambient temperature.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{3}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& V=782.69(9) \AA^{3} \\
& Z=1 \\
& D_{x}=1.548 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }^{\mu=1.42 \mathrm{~mm}^{-1}} \\
& T=120(2) \mathrm{K} \\
& \text { Plate, pale blue } \\
& 0.17 \times 0.15 \times 0.04 \mathrm{~mm}
\end{aligned}
$$

$\beta=70.805$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: numerical
(XPREP; Bruker, 2005)
$T_{\text {min }}=0.794, T_{\text {max }}=0.944$
12377 measured reflections 3429 independent reflections 2743 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\text {max }}=27.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0307 P)^{2} \\
&+0.6222 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.66 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA,{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{O} 1$			
$\mathrm{Cu} 1-\mathrm{O} 2$	$2.5249(18)$	$\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$1.9497(17)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$2.4535(18)$	$\mathrm{Cu} 1-\mathrm{O} 4$	$1.9491(18)$
	$1.9443(17)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.051(2)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 4$			
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 3^{\mathrm{i}}$	$95.09(7)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$76.44(7)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$83.42(7)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 1$	$114.12(6)$
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 1$	$161.95(8)$	$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 1$	$88.55(7)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 2$	$96.98(8)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$	$79.62(7)$
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 2$	$91.36(7)$	$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 1$	$154.18(6)$

Symmetry code: (i) $-x+1,-y,-z+2$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1O \cdots O5	0.91	1.70	$2.594(3)$	168
O2-H2O O^{i}	0.87	1.82	$2.680(3)$	174
O6-H6O ${ }^{\text {OO1 }}$	0.82	2.02	$2.824(3)$	165
O6-H6P \cdots O3 $^{\text {ii }}$	0.90	2.07	$2.891(2)$	151

Symmetry codes: (i) $-x+1,-y,-z+2$; (ii) $x-1, y, z$.
H atoms bound to C atoms were positioned geometrically and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$, or $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl group. H atoms bound to O atoms were located in difference Fourier maps, then constrained to ride on their parent atoms in their as-found positions (distances given in Table 2), with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

metal-organic papers

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski \& Minor, 1997); data reduction: $D E N Z O / S C A L E P A C K$; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

This work has been partially supported by the Fundação para a Ciência e a Tecnologia (FCT), Portugal, its POCI 2010 programme (FEDER funded), by a Human Resources and Mobility Marie-Curie Research Training Network (AQUACHEM project, CMTN-CT-2003-503864), and by the Academy of Finland. AMK and MNK are grateful to the FCT and the POCI programme for fellowships (BPD/28729/2006 and BPD/14465/2003).

References

Brandenburg, K. (2006). DIAMOND. Release 3.1d. Crystal Impact GbR, Bonn, Germany.

Bruker (2005). XPREP in SHELXTL. Version 6.14-1. Bruker AXS Inc., Madison, Wisconsin, USA.
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
Haukka, M., Kirillov, A. M., Kopylovich, M. N. \& Pombeiro, A. J. L. (2005) Acta Cryst. E61, m2746-m2748.
Karabach, Y. Y., Kirillov, A. M., da Silva, M. F. C. G., Kopylovich, M. N. \& Pombeiro, A. J. L. (2006). Cryst. Growth Des. 6, 2200-2203.
Kirillov, A. M., Haukka, M., da Silva, M. F. C. G. \& Pombeiro, A. J. L. (2005). Eur. J. Inorg. Chem. pp. 2071-2080.
Kirillov, A. M., Kopylovich, M. N., Kirillova, M. V., Haukka, M., da Silva, M. F. C. G. \& Pombeiro, A. J. L. (2005). Angew. Chem. Int. Ed. 44, 43454349.

Kirillov, A. M., Kopylovich, M. N., Kirillova, M. V., Karabach, E. Y., Haukka, M., da Silva, M. F. C. G. \& Pombeiro, A. J. L. (2006). Adv. Synth. Catal. 348, 159-174.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97. University of Gottingen, Germany.
Topcu, Y., Andac, O., Yilmaz, V. T. \& Harrison, W. T. A. (2002). J. Coord. Chem. 55, 805-815.
Tudor, V., Marin, G., Kravtsov, V., Simonov, Y. A., Lipkowski, J., Brezeanu, M \& Andruh, M. (2003). Inorg. Chim. Acta, 353, 35-42.

