Maximilian Schaeffner

Maximilian Schaeffner
Technische Universität Darmstadt | TU · Department of Mechanical Engineering (Dept.16)

Doctor of Engineering

About

25
Publications
2,564
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
72
Citations
Introduction
I am a postdoctoral researcher at Technische Universität Darmstadt - Germany at the department of System Reliability, Adaptronics and Machine Acoustics SAM. My research focus is on active buckling control, structural dynamics and uncertainty quantification.

Publications

Publications (25)
Article
Complex structural systems often entail computationally intensive models that require efficient methods for statistical model calibration due to the high number of required model evaluations. In this paper, we present a BAYESIAN inference-based methodology for efficient statistical model calibration that builds upon the combination of the speed in...
Chapter
Full-text available
This chapter describes the various approaches to analyse, quantify and evaluate uncertainty along the phases of the product life cycle. It is based on the previous chapters that introduce a consistent classification of uncertainty and a holistic approach to master the uncertainty of technical systems in mechanical engineering. Here, the following t...
Chapter
Full-text available
Uncertainty affects all phases of the product life cycle of technical systems, from design and production to their usage, even beyond the phase boundaries. Its identification, analysis and representation are discussed in the previous chapter. Based on the gained knowledge, our specific approach on mastering uncertainty can be applied. These approac...
Chapter
Full-text available
Bertolt Brecht once closed a text with the words “We are disappointed to see the curtain close and all questions are left unanswered” [1]. In this book, it has become clear that uncertainty is immanent in the product life cycle of technical systems in mechanical engineering from (B) production, (C) usage, (D) reuse to (E) sourcing. The latter is th...
Chapter
Full-text available
This chapter serves as an introduction to the main topic of this book, namely to master uncertainty in technical systems. First, the difference of our approach to previous ones is highlighted. We then discuss process chains as an important type of technical systems, in which uncertainty propagates along the chain. Five different approaches to maste...
Chapter
Full-text available
The goal of this chapter is to define different types of uncertainty in technical systems and to provide a unified terminology for this book. Indeed, uncertainty comes in different disguises. The first distinction is made with respect to the knowledge on the source of uncertainty: stochastic uncertainty, incertitude or ignorance. Then three main oc...
Chapter
Mathematical models are commonly used to predict the dynamic behavior of mechanical structures or to synthesize controllers for active systems. Calibrating the model parameters to experimental data is crucial to achieve reliable and adequate model predictions. However, the experimental dynamic behavior is uncertain due to variations in component pr...
Chapter
Designing the vibroacoustic properties of thin-walled structures is of particularly high practical relevance in the design of vehicle structures. The vibroacoustic properties of thin-walled structures, e.g., vehicle bodies, are usually designed using finite element models. Additional development effort, e.g., experimental tests, arises if the quali...
Conference Paper
Full-text available
Simplifications and assumptions in the modeling of a structural system may admit different feasible mathematical models that are subject to model uncertainty. In the pioneering work of Kennedy and O’Hagan, a discrepancy function was introduced to account for the model error that is inherent to every mathematical model. The discrepancy function is c...
Book
Full-text available
This open access book reports on innovative methods, technologies and strategies for mastering uncertainty in technical systems. Despite the fact that current research on uncertainty is mainly focusing on uncertainty quantification and analysis, this book gives emphasis to innovative ways to master uncertainty in engineering design, production and...
Chapter
In structural engineering, different assumptions and simplifications during the mathematical modeling process may lead to a set of competing mathematical models with different complexity and functional relationships. The quantification of the resulting model form uncertainty for competing mathematical models may be used to select the model that pre...
Chapter
Axial and lateral loads of lightweight beam truss structures e.g. used in automotive engineering may lead to undesired structural vibration that can be reduced near a structural resonance frequency via resonant piezoelectric shunt-damping. In order to tune the electrical circuits to the desired structural resonance frequency within a model-based ap...
Chapter
Model form uncertainty often arises in structural engineering problems when simplifications and assumptions in the mathematical modelling process admit multiple possible models. It is well known that all models incorporate a model error that is captured by a discrepancy due to missing or incomplete physics in the mathematical model. As an example,...
Chapter
Active buckling control of compressively loaded beam-columns provides a possibility to increase the maximum bearable axial load compared to passive beam-columns. Reliable mathematical beam-column models that adequately describe the lateral dynamic behavior are required for the model-based controller synthesis in order to avoid controller instabilit...
Article
Full-text available
The stiffness of metal formed products strongly affects the dynamic behavior of structures in which they are integrated. Forming processes underlie short and long-term variations which cause the stiffness to be uncertain.In the application of resonant shunted piezoelectric transducers for vibration attenuation, uncertain stiffness may cause signifi...
Article
Full-text available
Buckling of slender bars subject to axial compressive loads represents a critical design constraint for light-weight truss structures. Active buckling control by actuators provides a possibility to increase the maximum bearable axial load of individual bars and, thus, to stabilize the truss structure.For reasons of cost, it is in general not econom...
Article
For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, an approach for gain-scheduledH∞ buckling control of a slender beamcolumn with circular cross-section subject to time-varying axial loads is...
Chapter
In this paper, active buckling control of an imperfect slender beam-column with circular cross-section by piezo-elastic supports and Linear Parameter-Varying (LPV) control is investigated experimentally. The beam-column is loaded by a time-varying axial compressive load resulting in a lateral deflection of the beam-column due to imperfections. A fi...
Article
Undesired vibration may occur in lightweight structures due to excitation and low damping. For the purpose of lateral vibration attenuation in beam structures, piezoelectric transducers shunted to negative capacitances can be an appropriate measure. In this paper, a new concept for lateral vibration attenuation by integrated piezoelectric stack tra...
Article
Full-text available
For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, the potential of active buckling control of an imperfect beam-column with circular cross-section using piezo-elastic supports is investigated...
Article
Buckling of slender beam-columns subject to axial compressive loads represents a critical design constraint for light-weight structures. Active buckling control provides a possibility to stabilize slender beam-columns by active lateral forces or bending moments. In this paper, the potential of active buckling control of an axially loaded beam-colum...
Article
Beams in lightweight truss structures are subject to axial and lateral loads that may lead to undesired structural vibration or failure by buckling. The axial and lateral forces may be transferred via the truss supports that offer possibilities for state control of single beams and larger structures. In earlier own studies, the concept of a piezo-e...
Conference Paper
Buckling of axially loaded beam-columns represents a critical design constraint for light-weight structures. Besides passive solutions to increase the critical buckling load, active buckling control provides a possibility to stabilize slender elements in structures. So far, buckling control by active forces or bending moments has been mostly invest...

Network

Cited By

Projects

Projects (3)
Project
At the Collaborative Research Center (CRC) 805, about40 researchers from the fields of mechanical engineering, mathematics and law work closely together. Our common goal is to control uncertainty in load carrying systems. Together, we investigate new methods for product development under uncertainty, enhance procedures in manufacturing, and establish advanced mechatronic and adaptronic technologies to stabilize load-bearing systems during usage. (https://www.sfb805.tu-darmstadt.de/)