
Maxime StauffertAtomic Energy and Alternative Energies Commission | CEA · Centre d'Etudes de Saclay
Maxime Stauffert
PhD in Applied Mathematics
About
7
Publications
391
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
29
Citations
Introduction
Skills and Expertise
Additional affiliations
December 2019 - present
December 2018 - October 2019
Education
September 2015 - September 2018
September 2014 - June 2015
September 2013 - June 2015
Publications
Publications (7)
We are interested in the numerical approximation of the shallow water equations in two space dimensions. We propose a well-balanced, all-regime, and positive scheme. Our approach is based on a Lagrange-projection decomposition which allows to naturally decouple the acoustic and transport terms.
In this work, we focus on the numerical approximation of the shallow water equations in two space dimensions. Our aim is to propose a well-balanced, all-regime and positive scheme. By well-balanced, it is meant that the scheme is able to preserve the so-called lake at rest smooth equilibrium solutions. By all-regime, we mean that the scheme is able...
In this thesis we study a family of numerical schemes solving the shal-
low water equations system. These schemes use a Lagrange-projection like splitting operator technique in order to separate the gravity waves and the transport waves. An implicit-explicit treatment of the acoustic system (linked to the gravity waves) allows the schemes to stay s...
This work considers the barotropic Euler equations and proposes a high-order conservative scheme based on a Lagrange-Projection decomposition. The high-order in space and time are achieved using Discontinuous Galerkin (DG) and Runge-Kutta (RK) strategies. The use of a Lagrange-Projection decomposition enables the use of time steps that are not cons...
This work focuses on the numerical approximation of the Shallow Water Equations (SWE) using a Lagrange-Projection type approach. We propose to extend to this context recent implicit-explicit schemes developed in the framework of compressibleflows, with or without stiff source terms. These methods enable the use of time steps that are no longer cons...