
DIGITIZATION OF THE CONCRETE PRODUCTION CHAIN USING 

COMPUTER VISION AND ARTIFICIAL INTELLIGENCE 
 

Michael Haist1, Christian Heipke2, Dries Beyer1, Max Coenen1, Tobias Schack1, Christian Vogel1, 

Anne Ponick2, Amadeus Langer2 

 
1 Institute of Building Materials Science, Leibniz University Hannover, Germany 

(haist, d.beyer, m.coenen, t.schack, c.vogel)@baustoff.uni-hannover.de 

 
2 Institute of Photogrammetry and GeoInformation, Leibniz University Hannover, Germany 

(heipke, ponick, langer)@ipi.uni-hannover.de 

 

 

ABSTRACT 

The production of concrete currently goes along with pronounced CO2-emissions and an 

enormous consumption of (mineral) resources. In response to sustainability requirements, 

concretes thus are increasingly produced using recipes containing six to ten different raw 

materials including recycled materials and industrial wastes. This increasing complexity 

results in an increased sensitivity to unpredictable fluctuations in material properties or 

boundary conditions during the production process. Digital sensor systems and quality 

control schemes are considered as key to solving this problem, however, digital 

technologies from other industries have not yet fully established themselves in concrete 

construction sector, especially in the quality control. Despite the fact that the concrete 

industry has extremely high repetition factors, big data based quality control is missing, 

as we currently lack both sensor systems providing data and concrete specific data 

treatment algorithms. 

  
This paper presents an overview on digital methods based on computer vision and 

artificial intelligence to quantify the properties of concrete raw materials and the fresh 

concrete along the entire process chain. The methods differentiate between systems that 

are incorporated into the production process, i.e. in the concrete plant, and systems that 

are applied after production, i.e. at the construction site. While the first kind enables an 

online reaction and control of the concrete properties in real-time, namely already during 

the batch-production, the latter approach allows an offline and, therefore, post-production 

quality control. All proposed methods eventually contribute to a facilitation of a digital 

control loop for ready-mixed concrete production. The developed techniques can be 

easily applied to pre-cast elements production or concrete products. 
  
Keywords: digital concrete production, automated process monitoring, digital quality 

control, digital concrete loop, computer vision, artificial intelligence. 

 

 

1. INTRODUCTION 

 

With the Paris and Glasgow agreements, the international community has set binding action targets 

and implementation instruments for global climate protection [1]. The construction industry, and in 

particular the building materials industry, plays a decisive role in achieving these climate and 

environmental protection targets. In order to reduce the worldwide CO2-emissions, the use of 

composite cements containing three or more main constituents (including industrial wastes) and/or 

recycled aggregates is gaining significant importance, however leading to significantly more complex 

mixtures. This increasing complexity strongly stems from a strongly increased sensitivity to variations 

of the raw material properties and dosages as well as from the production-related side-conditions 

(deviations from the target composition, temperature and moisture conditions). As a result, concretes 

with recycled aggregate and composite cements are less robust than conventional concrete, especially 



due to variations in water content and water demand [2]. An increase of the robustness of such 

concrete mixtures can be achieved in different ways: 
i. Compensating the negative effects of fluctuations in material properties by increased safety 

margins, such as a significant increase in cement or powder content [3-5]. However, this is 

neither economically nor ecologically justifiable [6, 7]. 
ii. Using new types of quality control methods, which are able to react to and compensate for 

fluctuations in the mix. 
  
The focus of the paper at hand is on the second approach (ii). Herefore, we propose to continuously 

monitor the raw material properties and to quantify the concrete quality in real-time using newly 

developed sensor systems. In this way, for example, the influence of variations in recycled aggregate - 

but also other concrete raw materials - on the end product can be compensated for without negatively 

affecting the economic efficiency and environmental balance. The development of such methods and 

processes is currently the subject of various research projects at Leibniz University Hannover. The 

objective of the joint project ReCyCONtrol1 is to significantly increase the sustainability and resource 

efficiency of concrete construction by introducing automated process monitoring and control methods 

in concrete production based on computer vision (CV) and artificial intelligence (AI). The project is 

carried out in a consortium with numerous industrial partners. The research network consists of the 

companies Heidelberger Beton GmbH, Master Builders Solutions Deutschland GmbH, Pemat 

Mischtechnik GmbH, Bikotronic GmbH, alcemy GmbH, Moß Abbruch-Erdbau-Recycling GmbH & 

Co. KG and the Bundesanstalt für Wasserbau (BAW) - coordinated by the Leibniz University 

Hannover. In other related research projects, image-based methods for the digital evaluation of (fresh) 

concrete properties as part of the discharge process or the quality control on the construction site were 

developed. 
  
In this paper, a concept and associated methods for digitization of the concrete process chain using 

computer vision and artificial intelligence is presented. The paper begins by giving a review on the 

current state of the digitization in context of automatic monitoring and control of the concrete 

production chain followed by an overview on our conceptual design towards the digitization of the 

concrete production chain. Building up on that, the developed methods for a real-time monitoring of 

the production process are described, including the sensor-based characterisation of raw aggregate 

material and the AI based determination of rheological properties already during the mixing process. 

Finally we provide an overview on image-based approaches for the characterisation of fresh concrete 

from both, video sequences of a discharge process of a mixing truck and from images of the flow table 

test. 

 

 

2. RELATED WORK AND BACKGROUND 

 

In many manufacturing industries, automation and digitization have enabled a strong increase in 

productivity in recent decades. However, productivity in the construction industry stagnated during 

this period [8]. The construction industry – and here especially the concrete sector – is still one of the 

least digitized industries of the global economy. This is despite the fact, that concrete dominates 

building industry worldwide with more than 380 Mio. m³ of ready-mix concrete produced in Europe 

annually (data status 2018; [9]). Due to the batch production of the fresh concrete, there are high 

repetition rates thus offering great potential for the use of digital methods (in particular of methods 

based on machine learning), often referred to as Industry 4.0.  

The process chain of producing concrete structures includes the planning phase, the production phase, 

the manufacturing phase and the maintenance. Digital processes are already integrated in all phases, 

but the degree of digitization varies greatly. Methods for digital design and planning of structures 

(CAD, BIM etc.) are an integral part of the planning phase [10, 11] and BIM-based augmented reality 

systems are slowly gaining ground [12, 13]. Further, in recent years, various approaches for the 

additive manufacturing of concrete structures have been developed and some large-scale 
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demonstration projects have been successfully completed [14-16]. The advantage of additive 

manufacturing or 3D printing of concrete is the high degree of automation and individualization. In 

addition, 3D printing technologies only uses material where it is structurally or functionally necessary 

[17]. However, one of the key challenges in additive manufacturing is the control over material 

properties.  

With the technologies described above, the planning phase and the production phase can be directly 

linked digitally. However, a clear lack in the application of digital methods can be seen in concrete 

production. Especially the characterization of the properties of raw materials and the quality control of 

the concrete production process are still based on conventional non-digital methods. For this reason, 

an increasing interest has emerged in developing and providing methods for digitization in the 

concrete production industry. Regarding the prediction of concrete properties from its mix design, 

artificial neural networks have been successfully employed [18, 19], but mainly focus on properties 

like compressive strength instead of fresh concrete properties and are only based on the nominal 

composition design of the concrete so far. The use of actual or sensorial information on the raw 

material properties is not considered yet for the prediction and control of (fresh) concrete properties. 

Looking at the monitoring of raw material, in [20] a method for the classification of individual 

recycled aggregates based on convolutional neural networks (CNN) was proposed. However, the data 

requires the particles to be separated from each other, which is an unrealistic setting in practice and 

completely disregards properties like the particle size distribution, which has an essential impact on 

the concrete properties. In this paper, we present a computer vision based analysis of the grain size 

distribution of the raw aggregate material in order to enable a proper mix adaptation considering the 

actual grain size distribution of the aggregates. 

 
A digital and holistic quality monitoring and quality control during the concrete production phase is 

quasi non-existent so far. A research approach for fresh concrete quality monitoring has been proposed 

in [21], where the concrete mix proportion is determined from images of fresh concrete using a 

convolutional neural network (CNN). In [22], an approach for determining the workability from image 

sequences acquired during the mixing process using a LSTM deep learning network has been 

postulated. While promising results were obtained, processing was done on rather low resolution grey 

scale images only and the approach relied on 2D transformations, ignoring the clearly visible effects 

perspective distortions. In contrast, the paper at hand proposes to introduce 3D data of the concrete’s 

surface during the mixing process, as valuable additional information of the flow behaviour to a 

LSTM network, which is trained to determine the rheological properties of the concrete directly during 

the mixing procedure. 
 

 

3. CONCEPT FOR A DIGITIZED CONCRETE PRODUCTION CHAIN 

 

In the transition process towards a more sustainable high-quality concrete construction industry, 

essential process steps in the concrete process chain must be digitally mapped:  

In the opinion of the authors, this comprises (i) a continuous monitoring using automated sensor 

technologies of the relevant parameters influencing the concrete properties such as raw material 

properties, environmental and production influences as well (ii) a sensor monitoring of the result of 

the involved processes, such as the fresh concrete properties after mixing or delivery at the 

construction site. Monitoring both input (e.g. raw material properties) and output (e.g. fresh concrete 

properties) will enable to establish a control-loop. For establishing this loop (iii) deep learning based 

control schemes are needed, with which the concrete properties can be predicted based on the 

concrete raw material properties and the mix composition and appropriate countermeasures can be 

defined in real-time in case of deviations between the prediction and the measured properties. With 

this 3-fold approach, the authors believe that the usage of recycled raw materials, composite cements 

and environmentally optimized concretes can be greatly increased without increasing the risks going 

along with that. At the same time, using such technologies will allow for a reduction of the large safety 



margins in the mix development of concrete, which are typically applied in order to counteract 

fluctuations in the raw material properties and in the processing conditions.  

The proposed concept significantly extends the current state of the art in the concrete mixture 

development and concrete production process, which has so far been purely empirical. A key role in 

achieving this goal is played by a combination of contact and non-contact sensor systems, providing 

the data necessary for such a data-driven control loop. 

 

An overview of the different AI based online monitoring methods addressed in this paper and their 

association to the individual process steps within the concrete production chain are shown Fig. 1. In 

this context, we differentiate between systems to be incorporated into the production process, i.e. in 

the concrete plant, and systems to be applied after production, i.e. at the construction site. While the 

first kind enables an online reaction and control of the concrete properties in real-time, namely already 

during the batch-based mixing of the concrete, the latter approaches allow for a post-production 

quality control (cf. Fig. 1). All methods can be combined into a digital control loop for ready-mixed 

concrete. 

 

 
 
Figure 1 – Concrete production chain and AI based monitoring in the different process steps of the concrete 

production chain. 

 

As shown in Fig. 1, the proposed sensor-based monitoring methods related to the concrete 

production process include the characterisation of the raw materials – here with a focus on the 

aggregates (e. g. grain shape, grading curve, composition of recycled aggregate fractions) – and the 

continuous quantification of the fresh concrete properties (rheological parameters, mix homogeneity) 

during the mixing process. Corresponding control algorithms make it possible to adjust the concrete 

composition before mixing begins as to react to fluctuations in the raw material properties or to add 

suitable additives during the mixing process in case deviations from the desired properties are 

detected. The characteristic values determined by means of optical non-contact measurement methods 

are thus fed directly back into the process and allow direct intervention in the production process 

(online production control). The proposed methods for construction site concrete quality control 

cover the concrete transport, the discharge, and the quality inspection at the construction site. The 

focus here is particularly on fresh concrete properties (in-situ composition, consistency, segregation 

tendency, pumping properties). The gained sensor information can be used as decision support for the 

further concrete processing on the construction site or can be fed back into the production process for a 

self-learning mix adaptation (post-production control). 

 

 

 

 

 



4. DIGITAL PRODUCTION CONTROL IN THE CONCRETE PLANT 

 

In this section, the proposed monitoring approaches that are dedicated to be applied during the 

concrete production process which enable an online control of the concrete properties are outlined.  

 

4.1. Sensor based characterisation of concrete aggregates 

 

With up to 80 % of volume, a large component of concrete consists of fine and coarse aggregate 

particles (normally with mean diameters between 0.125 and 32 mm) which are dispersed in the cement 

paste matrix. As an essential constituent of concrete, the aggregate’s characteristics such as type, 

density, particle shape and particle size distribution have a substantial effect on the properties of the 

fresh and hardened concrete [23, 24]. In practice, the grading curve of the aggregates is usually 

determined from small random batch-samples using mechanical sieving (cf. (a) of Fig. 2), thus 

extrapolating from a sample of a few kilograms to many tons of aggregates. As a consequence, the 

unknown variations of the aggregate’s grading curve (especially pronounced in the case of recycled 

materials), is not properly taken into account in the mix design. Further, variations in the particle 

shape and composition of the aggregates (e.g. fractions of brick rubble in recycled aggregates) remain 

undetected. In order to still adhere to the concrete’s quality requirements, these variations are usually 

compensated for by a distinct increase of the cement conotext, which, however, is neither 

economically nor ecologically justifiable. 

 

In contrast, we developed an approach for an image based sensor detection of the size distribution, 

particle shape and composition of concrete aggregates (cf. (b) of Fig. 2) which forms the basis for an 

automated concrete mix control. Herefore, an online measurement process has been established, in 

which cameras are installed over the aggregate feeding belt, thus, observing the total amount of 

aggregates actually used for the particular concrete mix. Modern techniques of artificial intelligence in 

form of convolutional neural networks (CNN) have been developed and trained in order to derive 

characteristics from the image data of the visible aggregate. Fig. 2 shows a schematic overview of the 

sensor-based prediction of the aggregate grading curve in comparison to the classical monitoring by 

mechanical sieving. 

 

Figure 2 – Prediction of the grading curve by sieving (a) and automated AI based methods (b) and resulting 

grading curves (c). 
 

For concrete production, usually aggregate fractions ranging from 0.125 mm up to 32 mm in mean 

diameter are employed, resulting in very large-scale differences of the object sizes to be considered. In 

order to account for these differences, a multi-scale mechanism has been implemented within the 

framework of the CNN, which enables the simultaneous consideration of aggregate particles of 

different sizes. More specifically, the CNN produces intermediate multi-scale feature maps that are 

able to deliver latent representations suitable for both, smaller and larger sized particles at the same 

time, which are used by a classification head in order to predict the final particle size distribution. 

Details on the described method can be found in [25].  Experiments demonstrate that the described 

method is able to predict the correct grading curve of the observed aggregates with an accuracy of 



more than 95 %. For the training and evaluation of the presented method, a large data set of images 

showing concrete aggregates with different grain size distributions was created [25] and made publicly 

available2. As can be seen from the exemplary results depicted in Fig. 2 (c), the computer vision based 

methods in general tends to give higher fractions for larger particles in the grain size distribution. This 

result was expected, as classical sieve testing is an approximation in itself, as it only measures the 

smaller axis of non-spherical particles. The proposed optical methods in contrast allow to also measure 

the sphericity of the particles. The combined data then serves as an input for maximum packing 

density calculations using the CIPM model [26]. 

In ongoing research, we expand the approach to also quantify the material composition of recycled 

aggregates, i.e. the different fractions of crushed concrete, crushed masonry, natural aggregate, etc. 

contained in the recycled materials. Combined with the knowledge on the grain size distribution 

additional valuable knowledge, e.g. regarding the specific water absorption of the aggregates can be 

derived. Further, sensor information on the moisture content of the aggregates is implemented in the 

model using classical moisture sensors. The combination of the above mentioned sensor inputs is used 

as a basis for the development of an AI based concrete control scheme, with the goal to adapt the mix 

composition in real time to correspond to the detected fluctuations in the raw materials.  

 

4.2. Image based monitoring of the mixing process 

In current practice, the quality inspection of fresh concrete is mainly conducted offline, i.e. after the 

mixing and production process, using empirical test methods based on small batch samples of the 

concrete. However, at this stage of the production process, only very limited control of the concrete 

properties remains possible. For this reason, an online quality assessment during the mixing process is 

desirable, since it would enable real-time control of the concrete properties and an online reaction (i. e. 

during the mixing process) on potential deviations from the target properties. However, currently, the 

online quality assessment during the concrete mixing process is restricted to coarse consistency 

estimations based on the electrical energy consumption of the mixer. In the opinion of the authors, this 

method in itself is not sufficient for a precise derivation of the complex rheological properties of fresh 

concrete as it only allows to determine one parameter, i.e. the dynamic viscosity η=τ/ ̇γ at one given 

shear rate γ̇. However, the fresh concrete properties are characterized by a great number of parameters, 

such as the Bingham yield stress τ0 and plastic viscosity μ (see e.g. [27]), the thixotropy Athix (see 

[28]), the sedimentation and bleeding behaviour or setting behaviour. In the literature therefore 

mechanical probes to be installed in the mixer have been proposed, which however, are technically 

complex and nearly always result in prolonged mixing durations [29, 30].  
  
In contrast, in this paper we propose to augment the electrical power measurements during mixing 

(which is a standard technology in concrete plants worldwide) with a video-optical monitoring of the 

mixing process as basis for a computer vision-based online derivation of the rheological properties of 

the fresh concrete. Starting from the hypothesis, that concretes with different rheological properties 

lead to different flow patterns during the mixing process, we investigate methods in order to solve the 

inverse problem, namely to infer the concretes fresh properties from camera observations of the 

mixing process. More specifically, we make use of a stereoscopic camera setup, allowing the 

reconstruction of the 3D concrete surface, carrying valuable additional information related to the fresh 

concrete properties. Based on the gathered video-data a recurrent neural network (RNN) is being 

developed and trained in order to infer characteristics from the three-dimensional image data of the 

flowing concrete in the mixer. In its current implementation, the 3D surface of the fresh concrete is 

calculated as a function of time from the acquired stereo-image sequences using classical image 

mapping methods [31]. Then, both, the acquired image sequences and the calculated 3D information 

are used as input data for the RNN. A Convolutional Neural Network (CNN) – as a component of the 

RNN – learns the extraction of a features embedding of the recorded image and depth frames. To 

consider the temporal aspect, namely the flow behaviour over time, a Long Short-Term Memory 

(LSTM) cell is applied on top of the architecture, as a realisation of the recurrent component of the 
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network. The regression performed in the RNN finally produces values for viscosity and yield stress of 

the fresh concrete. For methodological and mathematical details on the described approach, we refer 

the reader to [32].  

 

Building upon the proposed method for online concrete production monitoring, strategies can be 

applied that specifically control and adjust the concrete towards its target rheological properties, e.g. 

by developing a suitable concept of chemical additives that are added to the mixing process. The 

technical opportunity to determine the rheology of fresh concrete in real-time makes it possible to 

iteratively develop self-learning algorithms for controlling the concrete properties and, thus, to enable 

digital control and monitoring of the whole production process. 

 

 

5. DIGITAL QUALITY ASSESSMENT ON THE CONSTRUCTION SITE 

 

In order to gain precise control over the concrete properties, it does not suffice to digitally map the 

concrete production process. In addition to the previously described methodology to be implemented 

in the ready mix plant, digital quality control tests on the construction site are necessary. The digital 

test methods – here defined as automated contact-less digital determination of the concretes properties 

– must provide a much deeper insight into the concretes properties, i. e. must ideally detect all relevant 

fresh concrete properties. Herefore the authors developed various image-based quality acceptance test 

methods, which can be seamlessly integrated into the quality acceptance test scheme.  

 

5.1. Image-based methods for evaluating concrete properties  

 

Enabling a fast determination of the fresh concrete properties on the construction site has gained 

increasing interest in recent years. Approaches for determining the rheology, e.g. by correlating the 

energy consumption for rotating the mixing drum of a truck mixer to values obtained by rheometer 

tests or using a concrete mixing truck itself as a rheometer, have been proposed and represent a key 

step forward in digitizing the concrete industry [33, 34]. Nevertheless, all of the mentioned methods 

have in common, that they require substantial technical modifications on the mixing truck, thus 

limiting these techniques to the truck owner. Besides such truck mixer based systems, rheometer test 

methods have gained attraction in testing of fresh concrete [35]. However, these test methods today are 

exclusively batch-based, laborious and the data interpretation is highly challenging [36].  

Fresh concrete testing today therefore remains primarily empirical and is dominated by batch-based 

methods such as the slump or slump flow test, where concrete exhibits a spread flow behaviour. With 

the introduction of self-compacting concretes, horizontal channels and flow boxes have become a 

common tool in concrete science for gaining information about rheological properties by observing the 

flow behaviour under non-stationary conditions, i.e. considering the gradual filling of a container 

going along with a horizontal, gravity driven levelling of the material [37-39]. Such a channel flow 

like behaviour can also be observed when observing the discharge behaviour of a mixing truck, where 

concrete flows down a chute. Even though the experienced technologist can gather an abundance of 

information in watching the flow behaviour of the concrete in the aforementioned tests, the 

possibilities for quantifying the individual properties are extremely limited. Currently, only the 

diameter of the flow cake of fresh concrete is measured. However, the surface topography and other 

surface features of the spread out fresh concrete yield an abundance of additional information, which 

until now was not accessible of a quantified assessment.  

 

The goal of the presented work was to employ image-based analysis methods, which consist in 

monitoring the flow behaviour of the concrete or the resulting spread flow cake by cameras. A similar 

approach has been previously presented in [40] in order to determine the Bingham properties of fresh 

concrete. In our work, we however extend this approach by implementing photogrammetric computer 

vision and CNN based algorithms, to correlate optical patterns in the visual data with concrete 

technological properties determined using standard empirical tests. In a first step, a 3D-surface model 

of the spread out fresh concrete can be calculated using Multi-View Stereo (MVS) reconstruction. 



Furthermore, a semantic segmentation of the classes table, suspension and aggregate is performed 

using the approach of [41, 42]. In this way, a large number of concrete properties (e.g. the paste 

content, the grain size distribution (> 4 mm) or the maximum grain size) can be digitally evaluated as 

part of the slump flow or flow table test on the construction site [43]. In addition, systematic 

investigations show that it is possible to quantify the homogeneity of the fresh concrete in analogy to 

the Visual Stability Index [44] based on images of the fresh concrete. Fig. 3 exemplarily shows the 

application of algorithms for semantic segmentation the classes and individual areas of the concrete 

spread flow. As can be seen in this example, essential information on the concretes actual composition 

can be derived from a single image of the slump cake.  

 

Figure 3 – Application of algorithms for semantic segmentation the classes and individual areas of the concrete 

spread flow  

 

5.2. Image-based methods for evaluating the rheology properties at concrete discharge 

 

The above mentioned computer vision techniques can also be applied to observations of fresh concrete 

flowing down the discharge-chute of a mixing truck. The corresponding measurement setup consists 

of an inclined open channel equipped with a camera system to investigate the flow behaviour under 

stationary flow conditions. As could be shown in systematic laboratory tests, a digital evaluation of 

rheological properties (yield stress and plastic viscosity) can be performed accurately by observing the 

flow behaviour and deriving characteristic values (flow velocity, flow around obstacles, etc.) from 

optical flow computations of the recorded video data [45]. Furthermore, initial tests show a very good 

applicability of these image-based methods under practical conditions. Thus, the optical monitoring of 

the unloading process enables a holistic and automatic approach of quality control for the entire fresh 

concrete quantity, conducted directly at the truck mixer. 

 

 

6. CONCLUSION 

 

This paper give an overview on the potentials of digital methods in concrete production and quality 

control, spanning from concrete raw materials up to the final concrete product. The methods presented 

in this paper are based on photogrammetric computer vision and deep-learning algorithms. During 

concrete production, the information obtained by these methods (e.g. grading curve, rheological 

properties of fresh concrete) can be used to make specific modifications to the concrete composition or 

to optimize the concrete properties by applying an additive concept during the mixing process. 

Concrete discharge and the quality control on the construction site can additionally be assessed by 

means of image-based methods. In this way, information can be provided for a digital control loop and 

a self-learning concrete composition development.  

In the opinion of the authors, these technical solutions will significantly reduce the possibility of 

human errors and will make it possible to ensure sustainable and high-quality concrete construction in 

the future. In addition, materials can be integrated into the concrete production process that were 

previously classified as unsuitable due to excessive material fluctuations (e.g. recycled aggregate). The 



methods presented in this paper provide tools that address this complex problem and provide a 

solution approach, so that complex eco-friendly concrete mixtures can be produced accurately, using 

recycled materials and meeting the highest quality standards.  
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