Mausam Mausam

Mausam Mausam
  • PhD
  • Professor at Indian Institute of Technology Delhi

About

147
Publications
19,126
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,191
Citations
Current institution
Indian Institute of Technology Delhi
Current position
  • Professor

Publications

Publications (147)
Preprint
Full-text available
Materials discovery and development are critical for addressing global challenges. Yet, the exponential growth in materials science literature comprising vast amounts of textual data has created significant bottlenecks in knowledge extraction, synthesis, and scientific reasoning. Large Language Models (LLMs) offer unprecedented opportunities to acc...
Preprint
Full-text available
Medical task-oriented dialogue systems can assist doctors by collecting patient medical history, aiding in diagnosis, or guiding treatment selection, thereby reducing doctor burnout and expanding access to medical services. However, doctor-patient dialogue datasets are not readily available, primarily due to privacy regulations. Moreover, existing...
Preprint
High-quality and high-coverage rule sets are imperative to the success of Neuro-Symbolic Knowledge Graph Completion (NS-KGC) models, because they form the basis of all symbolic inferences. Recent literature builds neural models for generating rule sets, however, preliminary experiments show that they struggle with maintaining high coverage. In this...
Preprint
Full-text available
Recently, very large language models (LLMs) have shown exceptional performance on several English NLP tasks with just in-context learning (ICL), but their utility in other languages is still underexplored. We investigate their effectiveness for NLP tasks in low-resource languages (LRLs), especially in the setting of zero-labelled cross-lingual tran...
Preprint
Full-text available
Real-world KBQA applications require models that are (1) robust -- e.g., can differentiate between answerable and unanswerable questions, and (2) low-resource -- do not require large training data. Towards this goal, we propose the novel task of few-shot transfer for KBQA with unanswerable questions. We present FUn-FuSIC that extends the state-of-t...
Preprint
Full-text available
Large language models (LLM) based end-to-end task-oriented dialog (TOD) systems built using few-shot (in-context) learning perform better than supervised models only when the train data is limited. This is due to the inherent ability of LLMs to learn any task with just a few demonstrations. As the number of train dialogs increases, supervised SoTA...
Preprint
Full-text available
In the e-commerce domain, the accurate extraction of attribute-value pairs from product listings (e.g., Brand: Apple) is crucial for enhancing search and recommendation systems. The automation of this extraction process is challenging due to the vast diversity of product categories and their respective attributes, compounded by the lack of extensiv...
Article
Our goal is to enable a robot to learn how to sequence its actions to perform high-level tasks specified as natural language instructions, given successful demonstrations from a human partner. Our novel neuro-symbolic solution GOALNET builds an iterative two-step approach that interleaves (i) inferring next subgoal predicate implied by the language...
Article
Full-text available
The discovery of new materials has a documented history of propelling human progress for centuries and more. The behaviour of a material is a function of its composition, structure, and properties, which further depend on its processing and testing conditions. Recent developments in deep learning and natural language processing have enabled informa...
Article
Full-text available
Information extraction and textual comprehension from materials literature are vital for developing an exhaustive knowledge base that enables accelerated materials discovery. Language models have demonstrated their capability to answer domain-specific...
Preprint
Full-text available
Information extraction and textual comprehension from materials literature are vital for developing an exhaustive knowledge base that enables accelerated materials discovery. Language models have demonstrated their capability to answer domain-specific questions and retrieve information from knowledge bases. However, there are no benchmark datasets...
Chapter
Recently there has been a lot of focus on developing deep learning models for symbolic reasoning tasks. One such task involves solving combinatorial problems, which can be viewed as instances of a constraint satisfaction problem, albeit with unknown constraints. The task of the neural model is then to discover the unknown constraints using the trai...
Preprint
Task-oriented dialog (TOD) agents often ground their responses on external knowledge bases (KBs). These KBs can be dynamic and may be updated frequently. Existing approaches for learning TOD agents assume the KB snapshot contemporary to each individual dialog is available during training. However, in real-world scenarios, only the latest KB snapsho...
Preprint
Full-text available
The performance on Large Language Models (LLMs) on existing reasoning benchmarks has shot up considerably over the past years. In response, we present JEEBench, a considerably more challenging benchmark dataset for evaluating the problem solving abilities of LLMs. We curate 450 challenging pre-engineering mathematics, physics and chemistry problems...
Preprint
Full-text available
While Knowledge Graph Completion (KGC) on static facts is a matured field, Temporal Knowledge Graph Completion (TKGC), that incorporates validity time into static facts is still in its nascent stage. The KGC methods fall into multiple categories including embedding-based, rule-based, GNN-based, pretrained Language Model based approaches. However, s...
Article
Robots assisting us in environments such as factories or homes must learn to make use of objects as tools to perform tasks, for instance, using a tray to carry objects. We consider the problem of learning common sense knowledge of when a tool may be useful and how its use may be composed with other tools to accomplish a high-level task instructed b...
Preprint
Full-text available
When answering natural language questions over knowledge bases (KBs), incompleteness in the KB can naturally lead to many questions being unanswerable. While answerability has been explored in other QA settings, it has not been studied for QA over knowledge bases (KBQA). We first identify various forms of KB incompleteness that can result in a ques...
Article
Full-text available
A large amount of materials science knowledge is generated and stored as text published in peer-reviewed scientific literature. While recent developments in natural language processing, such as Bidirectional Encoder Representations from Transformers (BERT) models, provide promising information extraction tools, these models may yield suboptimal res...
Preprint
Full-text available
Automated completion of open knowledge bases (KBs), which are constructed from triples of the form (subject phrase, relation phrase, object phrase) obtained via open information extraction (IE) from text, is useful for discovering novel facts that may not directly be present in the text. However, research in open knowledge base completion (KBC) has...
Preprint
Full-text available
Proper noun compounds, e.g., "Covid vaccine", convey information in a succinct manner (a "Covid vaccine" is a "vaccine that immunizes against the Covid disease"). These are commonly used in short-form domains, such as news headlines, but are largely ignored in information-seeking applications. To address this limitation, we release a new manually a...
Preprint
Full-text available
There is a recent focus on designing architectures that have an Integer Linear Programming (ILP) layer within a neural model (referred to as Neural ILP in this paper). Neural ILP architectures are suitable for pure reasoning tasks that require data-driven constraint learning or for tasks requiring both perception (neural) and reasoning (ILP). A rec...
Preprint
Full-text available
A crucial component in the curation of KB for a scientific domain is information extraction from tables in the domain's published articles -- tables carry important information (often numeric), which must be adequately extracted for a comprehensive machine understanding of an article. Existing table extractors assume prior knowledge of table struct...
Preprint
Full-text available
Robots assisting us in environments such as factories or homes must learn to make use of objects as tools to perform tasks, for instance using a tray to carry objects. We consider the problem of learning commonsense knowledge of when a tool may be useful and how its use may be composed with other tools to accomplish a high-level task instructed by...
Preprint
Full-text available
Our goal is to enable a robot to learn how to sequence its actions to perform tasks specified as natural language instructions, given successful demonstrations from a human partner. The ability to plan high-level tasks can be factored as (i) inferring specific goal predicates that characterize the task implied by a language instruction for a given...
Preprint
This paper studies a novel reviewer-paper matching approach that was recently deployed in the 35th AAAI Conference on Artificial Intelligence (AAAI 2021), and has since been adopted by other conferences including AAAI 2022 and ICML 2022. This approach has three main elements: (1) collecting and processing input data to identify problematic matches...
Preprint
Full-text available
Recently many neural models have been proposed to solve combinatorial puzzles by implicitly learning underlying constraints using their solved instances, such as sudoku or graph coloring (GCP). One drawback of the proposed architectures, which are often based on Graph Neural Networks (GNN), is that they cannot generalize across the size of the outp...
Preprint
Full-text available
Distantly supervised relation extraction (DS-RE) is generally framed as a multi-instance multi-label (MI-ML) task, where the optimal aggregation of information from multiple instances is of key importance. Intra-bag attention (Lin et al., 2016) is an example of a popularly used aggregation scheme for this framework. Apart from this scheme, however,...
Preprint
Full-text available
An overwhelmingly large amount of knowledge in the materials domain is generated and stored as text published in peer-reviewed scientific literature. Recent developments in natural language processing, such as bidirectional encoder representations from transformers (BERT) models, provide promising tools to extract information from these texts. Howe...
Preprint
End-to-End task-oriented dialogue systems generate responses based on dialog history and an accompanying knowledge base (KB). Inferring those KB entities that are most relevant for an utterance is crucial for response generation. Existing state of the art scales to large KBs by softly filtering over irrelevant KB information. In this paper, we prop...
Preprint
We propose a novel problem within end-to-end learning of task-oriented dialogs (TOD), in which the dialog system mimics a troubleshooting agent who helps a user by diagnosing their problem (e.g., car not starting). Such dialogs are grounded in domain-specific flowcharts, which the agent is supposed to follow during the conversation. Our task expose...
Preprint
Full-text available
Neural models and symbolic algorithms have recently been combined for tasks requiring both perception and reasoning. Neural models ground perceptual input into a conceptual vocabulary, on which a classical reasoning algorithm is applied to generate output. A key limitation is that such neural-to-symbolic models can only be trained end-to-end for ta...
Article
Neural planners for RDDL MDPs produce deep reactive policies in an offline fashion. These scale well with large domains, but are sample inefficient and time-consuming to train from scratch for each new problem. To mitigate this, recent work has studied neural transfer learning, so that a generic planner trained on other problems of the same domain...
Article
Topological value iteration (TVI) is an effective algorithm for solving Markov decision processes (MDPs) optimally, which 1) divides an MDP into strongly-connected components, and 2) solves these components sequentially. Yet, TVI’s usefulness tends to degrade if an MDP has large components, because the cost of the division process isn’t offset by g...
Preprint
Full-text available
Robots assisting us in factories or homes must learn to make use of objects as tools to perform tasks, e.g., a tray for carrying objects. We consider the problem of learning commonsense knowledge of when a tool may be useful and how its use may be composed with other tools to accomplish a high-level task instructed by a human. We introduce TANGO, a...
Article
Full-text available
Task-oriented dialog (TOD) systems often need to formulate knowledge base (KB) queries corresponding to the user intent and use the query results to generate system responses. Existing approaches require dialog datasets to explicitly annotate these KB queries—these annotations can be time consuming, and expensive. In response, we define the novel p...
Preprint
Full-text available
Knowledge Graph Completion (KGC) predicts missing facts in an incomplete Knowledge Graph. Almost all of existing KGC research is applicable to only one KG at a time, and in one language only. However, different language speakers may maintain separate KGs in their language and no individual KG is expected to be complete. Moreover, common entities or...
Preprint
Pre-trained language models (LMs) like BERT have shown to store factual knowledge about the world. This knowledge can be used to augment the information present in Knowledge Bases, which tend to be incomplete. However, prior attempts at using BERT for task of Knowledge Base Completion (KBC) resulted in performance worse than embedding based techniq...
Preprint
Full-text available
Distant supervision (DS) is a well established technique for creating large-scale datasets for relation extraction (RE) without using human annotations. However, research in DS-RE has been mostly limited to the English language. Constraining RE to a single language inhibits utilization of large amounts of data in other languages which could allow e...
Preprint
Full-text available
A recent state-of-the-art neural open information extraction (OpenIE) system generates extractions iteratively, requiring repeated encoding of partial outputs. This comes at a significant computational cost. On the other hand, sequence labeling approaches for OpenIE are much faster, but worse in extraction quality. In this paper, we bridge this tra...
Preprint
Our goal is to answer real-world tourism questions that seek Points-of-Interest (POI) recommendations. Such questions express various kinds of spatial and non-spatial constraints, necessitating a combination of textual and spatial reasoning. In response, we develop the first joint spatio-textual reasoning model, which combines geo-spatial knowledge...
Preprint
Full-text available
Recent research has proposed neural architectures for solving combinatorial problems in structured output spaces. In many such problems, there may exist multiple solutions for a given input, e.g. a partially filled Sudoku puzzle may have many completions satisfying all constraints. Further, we are often interested in finding {\em any one} of the po...
Preprint
Full-text available
A robot working in a physical environment (like home or factory) needs to learn to use various available tools for accomplishing different tasks, for instance, a mop for cleaning and a tray for carrying objects. The number of possible tools is large and it may not be feasible to demonstrate usage of each individual tool during training. Can a robot...
Preprint
Full-text available
While traditional systems for Open Information Extraction were statistical and rule-based, recently neural models have been introduced for the task. Our work builds upon CopyAttention, a sequence generation OpenIE model (Cui et. al., 2018). Our analysis reveals that CopyAttention produces a constant number of extractions per sentence, and its extra...
Preprint
Full-text available
Knowledge Base Completion has been a very active area recently, where multiplicative models have generally outperformed additive and other deep learning methods -- like GNN, CNN, path-based models. Several recent KBC papers propose architectural changes, new training methods, or even a new problem reformulation. They evaluate their methods on stand...
Preprint
Full-text available
Temporal knowledge bases associate relational (s,r,o) triples with a set of times (or a single time instant) when the relation is valid. While time-agnostic KB completion (KBC) has witnessed significant research, temporal KB completion (TKBC) is in its early days. In this paper, we consider predicting missing entities (link prediction) and missing...
Preprint
Two common types of tasks on Knowledge Bases have been studied -- single link prediction (Knowledge Base Completion) and path query answering. However, our analysis of user queries on a real-world knowledge base reveals that a significant fraction of queries specify paths using regular expressions(regex). Such regex queries cannot be handled by any...
Preprint
Full-text available
Pooling-based recurrent neural architectures consistently outperform their counterparts without pooling. However, the reasons for their enhanced performance are largely unexamined. In this work, we examine three commonly used pooling techniques (mean-pooling, max-pooling, and attention), and propose max-attention, a novel variant that effectively c...
Preprint
Task-oriented dialog (TOD) systems converse with users to accomplish a specific task. This task requires the system to query a knowledge base (KB) and use the retrieved results to fulfil user needs. Predicting the KB queries is crucial and can lead to severe under-performance if made incorrectly. KB queries are usually annotated in real-world datas...
Preprint
State-of-the-art models for multi-hop question answering typically augment large-scale language models like BERT with additional, intuitively useful capabilities such as named entity recognition, graph-based reasoning, and question decomposition. However, does their strong performance on popular multi-hop datasets really justify this added design c...
Preprint
A Relational Markov Decision Process (RMDP) is a first-order representation to express all instances of a single probabilistic planning domain with possibly unbounded number of objects. Early work in RMDPs outputs generalized (instance-independent) first-order policies or value functions as a means to solve all instances of a domain at once. Unfort...
Article
Full-text available
We present the novel task of understanding multi-sentence entity-seeking questions (MSEQs), that is, the questions that may be expressed in multiple sentences, and that expect one or more entities as an answer. We formulate the problem of understanding MSEQs as a semantic labeling task over an open representation that makes minimal assumptions abou...
Preprint
Full-text available
Real world question answering can be significantly more complex than what most existing QA datasets reflect. Questions posed by users on websites, such as online travel forums, may consist of multiple sentences and not everything mentioned in a question may be relevant for finding its answer. Such questions typically have a huge candidate answer sp...
Article
Full-text available
The workshop program of the Association for the Advancement of Artificial Intelligence’s 33rd Conference on Artificial Intelligence (AAAI-19) was held in Honolulu, Hawaii, on Sunday and Monday, January 27–28, 2019. There were fifteen workshops in the program: Affective Content Analysis: Modeling Affect-in-Action, Agile Robotics for Industrial Autom...
Preprint
Neural planners for RDDL MDPs produce deep reactive policies in an offline fashion. These scale well with large domains, but are sample inefficient and time-consuming to train from scratch for each new problem. To mitigate this, recent work has studied neural transfer learning, so that a generic planner trained on other problems of the same domain...
Article
Full-text available
We present the novel task of understanding multi-sentence entity-seeking questions (MSEQs) i.e, questions that may be expressed in multiple sentences, and that expect one or more entities as an answer. We formulate the problem of understanding MSEQs as a semantic labeling task over an open representation that makes minimal assumptions about schema...
Preprint
Domain-independent probabilistic planners input an MDP description in a factored representation language such as PPDDL or RDDL, and exploit the specifics of the representation for faster planning. Traditional algorithms operate on each problem instance independently, and good methods for transferring experience from policies of other instances of a...
Conference Paper
Full-text available
While crowdsourcing enables data collection at scale, ensuring high-quality data remains a challenge. In particular, effective task design underlies nearly every reported crowdsourcing success, yet remains difficult to accomplish. Task design is hard because it involves a costly iterative process: identifying the kind of work output one wants, conv...
Conference Paper
Full-text available
We develop CALM, a coordination analyzer that improves upon the conjuncts identified from dependency parses. It uses a language model based scoring and several linguistic constraints to search over hierarchical conjunct boundaries (for nested coordination). By splitting a conjunctive sentence around these conjuncts, CALM outputs several simple sent...
Preprint
Full-text available
Several lifted inference algorithms for probabilistic graphical models first merge symmetric states into a single cluster (orbit) and then use these for downstream inference, via variations of orbital MCMC [Niepert, 2012]. These orbits are represented compactly using permutations over variables, and variable-value (VV) pairs, but these can miss sev...
Preprint
We observe that end-to-end memory networks (MN) trained for task-oriented dialogue, such as for recommending restaurants to a user, suffer from an out-of-vocabulary (OOV) problem -- the entities returned by the Knowledge Base (KB) may not be seen by the network at training time, making it impossible for it to use them in dialogue. We propose a Hier...
Article
Full-text available
We introduce the first system towards the novel task of answering complex multisentence recommendation questions in the tourism domain. Our solution uses a pipeline of two modules: question understanding and answering. For question understanding, we define an SQL-like query language that captures the semantic intent of a question; it supports opera...
Conference Paper
There is a vast body of theoretical research on lifted inference in probabilistic graphical models (PGMs). However, few demonstrations exist where lifting is applied in conjunction with top of the line applied algorithms. We pursue the applicability of lifted inference for computer vision (CV), with the insight that a globally optimal (MAP) labelin...
Article
Full-text available
Lifted inference algorithms commonly exploit symmetries in a probabilistic graphical model (PGM) for efficient inference. However, existing algorithms for Boolean-valued domains can identify only those pairs of states as symmetric, in which the number of ones and zeros match exactly (count symmetries). Moreover, algorithms for lifted inference in m...
Article
Full-text available
There is a vast body of theoretical research on lifted inference in probabilistic graphical models (PGMs). However, few demonstrations exist where lifting is applied in conjunction with top of the line applied algorithms. We pursue the applicability of lifted inference for computer vision (CV), with the insight that a globally optimal (MAP) labelin...
Article
Full-text available
While several matrix factorization (MF) and tensor factorization (TF) models have been proposed for knowledge base (KB) inference, they have rarely been compared across various datasets. Is there a single model that performs well across datasets? If not, what characteristics of a dataset determine the performance of MF and TF models? Is there a joi...
Conference Paper
Full-text available
We design and release BONIE, the first open numerical relation extractor, for extracting Open IE tuples where one of the arguments is a number or a quantity-unit phrase. BONIE uses bootstrapping to learn the specific dependency patterns that express numerical relations in a sentence. BONIE’s novelty lies in task-specific customizations, such as inf...
Article
Managing micro-tasks on crowdsourcing marketplaces involves balancing conflicting objectives -- the quality of work, total cost incurred and time to completion. Previous agents have focused on cost-quality, or cost-time tradeoffs, limiting their real-world applicability. As a step towards this goal we present Octopus, the first AI agent that jointl...
Preprint
We present Octopus, an AI agent to jointly balance three conflicting task objectives on a micro-crowdsourcing marketplace - the quality of work, total cost incurred, and time to completion. Previous control agents have mostly focused on cost-quality, or cost-time tradeoffs, but not on directly controlling all three in concert. A naive formulation o...
Article
We present POAPS, a novel planning system for defining Partially Observable Markov Decision Processes (POMDPs) that abstracts away from POMDP details for the benefit of non-expert practitioners. POAPS includes an expressive adaptive programming language based on Lisp that has constructs for choice points that can be dynamically optimized. Non-exper...
Article
Distant supervision algorithms learn information extraction models given only large readily available databases and text collections. Most previous work has used heuristics for generating labeled data, for example assuming that facts not contained in the database are not mentioned in the text, and facts in the database must be mentioned at least on...
Article
Crowdsourcing, outsourcing of tasks to a crowd of unknown people (“workers”) in an open call, is rapidly rising in popularity. It is already being heavily used by numerous employers (“requesters”) for solving a wide variety of tasks, such as audio transcription, content screening, and labeling training data for machine learning. However, quality co...
Conference Paper
Chambers and Jurafsky (2009) demonstrated that event schemas can be automatically induced from text corpora. However, our analysis of their schemas identifies several weaknesses, e.g., some schemas lack a common topic and distinct roles are incorrectly mixed into a single actor. It is due in part to their pair-wise representation that treats subjec...
Article
To ensure quality results from crowdsourced tasks, requesters often aggregate worker responses and use one of a plethora of strategies to infer the correct answer from the set of noisy responses. However, all current models assume prior knowledge of all possible outcomes of the task. While not an unreasonable assumption for tasks that can be posite...
Article
Stochastic Shortest Path (SSP) MDPs is a problem class widely studied in AI, especially in probabilistic planning. They describe a wide range of scenarios but make the restrictive assumption that the goal is reachable from any state, i.e., that dead-end states do not exist. Because of this, SSPs are unable to model various scenarios that may have c...
Article
Markov Decision Processes (MDPs) describe a wide variety of planning scenarios ranging from military operations planning to controlling a Mars rover. However, todayʼs solution techniques scale poorly, limiting MDPsʼ practical applicability. In this work, we propose algorithms that automatically discover and exploit the hidden structure of factored...
Article
Tweets are the most up-to-date and inclusive stream of in- formation and commentary on current events, but they are also fragmented and noisy, motivating the need for systems that can extract, aggregate and categorize important events. Previous work on extracting structured representations of events has focused largely on newswire text; Twitter's u...
Article
Markov Decision Processes (MDPs) are widely popular in Artificial Intelligence for modeling sequential decision-making scenarios with probabilistic dynamics. They are the framework of choice when designing an intelligent agent that needs to act for long periods of time in an environment where its actions could have uncertain outcomes. MDPs are acti...
Article
In contrast to previous competitions, where the problems were goal-based, the 2011 International Probabilistic Planning Competition (IPPC-2011) emphasized finite-horizon reward maximization problems with large branching factors. These MDPs modeled more realistic planning scenarios and presented challenges to the previous state-of-the-art planners (...

Network

Cited By