
2

 DELTA Newsletter

Designing a Graphical User Interface for DELTA: Some considerations

Mauro J. Cavalcanti

Departamento de Biologia Geral, Universidade Santa Ursula,
Rua Fernando Ferrari, 75, Botafogo, 22231-040, Rio de Janeiro, RJ, Brasil

E-mail: maurobio@omega.lncc.br

Since its introduction almost two decades ago, the DELTA system has gained increasing acceptance by taxonomists
all over the world, with several large databases in zoology, botany and virology already prepared plus many others
under development. While the DELTA format provides an excellent way of describing taxonomic data — up to point
of being adopted by the International Working Group on Taxonomic Databases for Plant Sciences (TDWG) as a
standard for data encoding and exchange —the programs that comprise the DELTA package still reflect its origins
in the mainframe world. Frequent criticisms have been the lack of an integrated, user-friendly interface for running
the programs, the lack of an adequate data entry/editing system, and the unavailability of DELTA on computer
platforms other than DOS/Windows PCs.

Over the last two years or so, I have been involved in developing user-friendly tools for DELTA — of which my DIANA
shells (available for MS-DOS and Windows) were the first products — and I have dwelled deeply on the issues of user
interface design, data models, search algorithms, data structures and the relevance of all this to the development of
reliable biological software. Perhaps more importantly, I have also undertaken several experiments with user
interfaces and data structures more adequate to the presentation and representation (sensu Diederich & Milton, 1993
— anyone seriously interested in developing GUI’s for biological software would be well advised to read that paper)
of biological data. Here I intend to present some of the preliminary, tentative conclusions I have reached in the course
of these experiments, in the hope of obtaining some useful feedback from DELTA users and developers.

A key issue: portability

I start from the principle that a Graphical User Interface (GUI) is the most desirable kind of environment for a computer
user, by making any system easier to grasp by the novice and faster to use by the more experienced user — the
phenomenal success of the Microsoft Windows operating environment is an indication that this is the direction to which
the software industry points.

GUI’s are available on the three main computer platforms in use today — PCs, Macs, and UNIX workstations. The
DELTA programs that take advantage of a GUI (ie. INTKEY and INTIMATE), however, are only available on DOS/
Windows PCs (or on other platforms under DOS emulation). So, perhaps more than offering an intelligent, editing tool
(more on this below), the DELTA system should be as portable as possible, not only because of the large number of
both PC and Mac users, but also to face the widespread (and increasing) availability of UNIX workstations. WWW
browsers like Mosaic and Netscape offer a relevant analogy here, since they are both available on the three main
platforms above mentioned.

However, developing a GUI-based program is not an easy task, even for experienced programmers — the difficulties
of writing such programs are often underestimated. However, there are now software tools that not only allow
simplification of the process of software development for each of the widely used GUI platforms: MS-Windows,
Macintosh, UNIX/XWindows, but also make the programs portable between them.

One of these tools is VIBRANT, a high-level, multi-platform user interface development library written in C by
Jonathan Kans (kans@ray.nlm.nih.gov), Information Engineering Branch, National Center for Biotechnology
Information, NLM, NIH, Bethesda, USA. It is distributed as part of the NCBI Software Development Toolkit. VIBRANT
acts as an intermediary between an application and the underlying windowing system toolkit. It is available for free
and comes with full source codes. With it, a GUI-based application can be written that runs without modification on
any of the mentioned platforms — you just have to re-compile them on the target machine, using the native C compiler.

3

 Number 12, April 1996

Commercial software libraries based on the C language also exist that perform similar functions, such as Zinc and
zApp, but these are usually very expensive and do not include source code.

Therefore, not only the DELTA programs themselves, but as a matter of fact, all DELTA “third-party add-ons” (like
Lander’s DMSWIN, Gouda’s TAXASOFT, or my own DIANA software shell for DELTA) should be greatly improved
if (re-)written using such tools, by benefiting from portability and, consequently, from a larger user base.

A user-friendly editing tool

Another request from many DELTA users is the availability of a user-friendly, specialized data editor, that should
release users from the cumbersome and error-prone creation and maintenance of DELTA datasets using an ordinary
text editor or word processor.

Early attempts to provide such a specialized DELTA editor were those of Pankhurst’s DEDIT and Gouda’s DDATA
(distributed as part of his TAXASOFT package). However, none of these editors are GUI-based, which may become
a major drawback to many users of modern operating systems and application programs. Worse, since MS-Windows
and other GUI environments have highly standard interfaces, with common control objects (dialog boxes, pulldown
menus, etc.), the authors of these editors will have to write entirely new applications when porting their programs to
such an environment.

My specialized “DELTA Coding System” (DELCODE) is a first attempt at providing a GUI-based highly interactive
environment for the editing of DELTA datasets. A DOS version is finished and a Windows version is well advanced.
However, it is not a production system, but rather a teaching tool (that is the way I am using it). It is the result of one
of the experiments I mentioned above, and is itself experimental. DELCODE does not intend to be a rival of the
undoubtedly powerful, Windows-based, DELTA editor currently under development by the DELTA team. Its primary
purpose is to test algorithms, data structures, and user interface ideas. It features pulldown menus, dialog boxes, and
full mouse support, but the DOS version is obviously not a full GUI-based application and detaches at several points
from the “classical” CUA/SAA (Berry, 1988) standards.

Up to date, all DELTA editors implement what we might call a “form fill-in” interface (see Diederich and Milton, 1993),
with which the user enters data, usually from the keyboard, in specific fields on pre-built forms. This system is also
used by the Windows versions of some DELTA programs (namely, INTKEY4 and INTIMATE), to get information from
the user. However, as one of the DIANA users has quite rightly pointed out, character-by-taxon data matrices are the
logical way to manage taxonomic data (Coddington, pers. comm.). A matrix is convenient, already known to most
systematists, and is the accepted “metaphor” for comparative data on taxa. Visually, a user can chase homologies
across taxa, or taxa through morphological space. So, a GUI-based DELTA data entry/editing system should be able
to provide the user with some sort of matrix-oriented editor.

One such a matrix editor for taxonomic data already exists and might provide a relevant paradigm for further
development of a user-friendly, GUI-based, biological data entry and editing system. That is the editor of Maddison
& Maddison MacClade’s interactive character analysis program, available only for the Macintosh computer. A good
summary description of this editor (and of MacClade itself) — for those who do not have access to a Mac or do not
have a copy of MacClade — can be found in Maddison and Maddison (1989). Indeed, MacClade’s editor behaves
somewhat as an interactive “character designer”, which helps the user “to think about the biology behind the data”
(Maddison and Maddison, op. cit.). This is a very innovative and promising approach that should be pursued further
in the development of a GUI-based DELTA editor.

Another of my experiments with GUI software for DELTA was the development of a matrix-oriented editor for DELTA.
A crude prototype was implemented in Visual BASIC (that provides a rather limited spreadsheet-like custom control),
but it has not yet been developed further. Parts of it have been incorporated into the code of the LORIS browser
program for DELTA databases, currently under development.

4

 DELTA Newsletter

Reusable components

In recent years, the demands placed on software for management of taxonomic data have increased dramatically in
response to an ever-increasing concern that such data are the key to biodiversity conservation and sustainable use
of biological resources. As a result, the very few software-developers engaged in the field of biodiversity information
management (including the members of the DELTA development team) are being highly pressed to satisfy all user
needs in less time and with more efficiency. As with other fields of human activity, biodiversity data management is
also faced with a “software crisis” (Cox, 1986; Gibbs, 1994), and perhaps software engineering should also be enlisted
as a “crisis discipline”, along with conservation biology and cancer biology (Soulé, 1985).

Such a crisis in the development of biological software means that not only are better and portable software
development tools (as the VIBRANT interface library above mentioned, or the more expensive commercial ones)
needed, but also that a biodiversity information management package far more programmable by the end-user should
be developed. The access to preprogrammed subroutines would allow systematists with limited programming
experience to develop their own specialized programs for biodiversity data management (eg., in her/his own national
language). In the future, it might be more fruitful for DELTA developers to put their efforts in this general direction, rather
than trying to anticipate and meet (with scarce resources) the precise needs of the next generation of computer
taxonomists.

Along this line of thinking, I have developed DELTA Library, a general-purpose library of routines for reading text files
in DELTA format, designed to work with any language that supports Windows DLLs (Dynamic Link Libraries). They
allow a programmer using any language that supports DLL calling, such as Borland Pascal/Turbo Pascal for Windows,
C/C++, and Visual BASIC, to write an application that can access DELTA datasets without effort, with just one line of
code for each routine’s call. I have already been able to sucessfully integrate them with LORIS, an experimental
“DELTA database browser” I am currently writing in Visual BASIC for Windows, and these routines are also being used
as the back end of the Windows version of my DELCODE editor for DELTA.

Anyway, such libraries of pre-programmed routines would be only the first step towards actual “off-the-shelf” reusable
software components — best exemplified today by Visual BASIC’s custom controls (VBX’s) — that may be used to
build real applications in less time and with less effort (Udell, 1994). These and many other developments of the current
software industry are likely to yield most rewarding results in the design and implementation of reliable software to
successfuly face the data management issues posed by the the sheer diversity of the biota they are intended to help
preserve.

References

Berry, R.E. (1988). Common User Access - a consistent and usable human-computer interface for the SAA environments. IBM
Systems Journal 27: 281-300.

Cox, B.J. (1986). Object-Oriented Programming - An Evolutionary Approach. Addison- Wesley Publishing Company.

Diederich, J. and J. Milton. (1993). Expert workstations: a tools-based approach. In: Advances in Computer Methods for
Systematic Biology: Artificial Intelligence, Databases, Computer Vision, R. Fortuner (Ed.). The Johns Hopkins University Press,
Baltimore, Maryland, pp. 103-124.

Gibbs, W.W. (1994). Software’s chronic crisis. Scientific American 271: 72-81.

Maddison, W.P. and D.R. Maddison. (1989). Interactive analysis of phylogeny and character evolution using the computer
program MacClade. Folia Primatologica 53: 190-202.

Soulé, M.E. (1985). What is conservation biology? Bioscience 35: 727-734.

Udell, J. (1994). Componentware. Byte 19: 46-56.

