About
102
Publications
22,833
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
8,740
Citations
Introduction
Current institution
Publications
Publications (102)
We present the first measurement of cosmic-ray fluxes of Li 6 and Li 7 isotopes in the rigidity range from 1.9 to 25 GV. The measurements are based on 9.7 × 10 5 Li 6 and 1.04 × 10 6 Li 7 nuclei collected by the Alpha Magnetic Spectrometer on the International Space Station from May 2011 to October 2023. We observe that over the entire rigidity ran...
Since its launch, the Alpha Magnetic Spectrometer-02 (AMS-02) has delivered outstanding quality measurements of the spectra of cosmic-ray (CR) species, e ± , p ¯ , and nuclei (H–Si, S, Fe), which have resulted in a number of breakthroughs. Besides elemental spectra, AMS-02 also measures the spectra of light isotopes albeit within a smaller rigidity...
We report the properties of precision time structures of cosmic nuclei He, Li, Be, B, C, N, and O fluxes over an 11-year solar cycle from May 2011 to November 2022 in the rigidity range from 1.92 to 60.3 GV. The nuclei fluxes show similar but not identical time variations with amplitudes decreasing with increasing rigidity. In particular, below 3.6...
We present results over an 11-year Solar cycle of cosmic antiprotons based on 1.1 × 10 6 events in the rigidity range from 1.00 to 41.9 GV. The p ¯ fluxes exhibit distinct properties. The magnitude of the p ¯ flux temporal variation is significantly smaller than those of p , e − , and e + . A hysteresis between the p ¯ fluxes and the p fluxes is ob...
Since its launch, the Alpha Magnetic Spectrometer-02 (AMS-02) has delivered outstanding quality measurements of the spectra of cosmic-ray (CR) species, $e^{\pm}$, $\bar{p}$, and nuclei (H-Si, S, Fe), which have resulted in a number of breakthroughs. Besides elemental spectra, AMS-02 also measures the spectra of light isotopes albeit within a smalle...
Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station of the deuteron ( D ) flux are presented. The measurements are based on 21 × 10 6 D nuclei in the rigidity range from 1.9 to 21 GV collected from May 2011 to April 2021. We observe that over the entire rigidity range the D flux exhibits nearly identic...
The accurate knowledge of cosmic ion fluxes is essential for fundamental physics, deep space missions, and exploration activities in the solar system. In the HelMod-4 model the Parker transport equation is solved using a Monte Carlo approach to evaluate the solar modulation effect on local interstellar spectra of Galactic Cosmic Rays (GCRs). This w...
We present the precision measurements of 11 years of daily cosmic positron fluxes in the rigidity range from 1.00 to 41.9 GV based on 3.4×106 positrons collected with the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. The positron fluxes show distinctly different time variations from the electron fluxes at short and long...
We report the properties of primary cosmic-ray sulfur (S) in the rigidity range 2.15 GV to 3.0 TV based on 0.38×106 sulfur nuclei collected by the Alpha Magnetic Spectrometer experiment (AMS). We observed that above 90 GV the rigidity dependence of the S flux is identical to the rigidity dependence of Ne-Mg-Si fluxes, which is different from the ri...
We present the precision measurements of 11 years of daily cosmic electron fluxes in the rigidity interval from 1.00 to 41.9 GV based on 2.0×108 electrons collected with the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. The electron fluxes exhibit variations on multiple timescales. Recurrent electron flux variations with...
Since its launch, the Alpha Magnetic Spectrometer-02 (AMS-02) has delivered outstanding quality measurements of the spectra of cosmic-ray (CR) species, p ¯ , e ± , and nuclei (H–Si, Fe), which resulted in a number of breakthroughs. The most recent AMS-02 result is the measurement of the spectra of CR sodium and aluminum up to ∼2 TV. Given their low...
We present the precision measurement of 2824 daily helium fluxes in cosmic rays from May 20, 2011 to October 29, 2019 in the rigidity interval from 1.71 to 100 GV based on 7.6×10^{8} helium nuclei collected with the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. The helium flux and the helium to proton flux ratio exhibit...
Since its launch, the Alpha Magnetic Spectrometer-02 (AMS-02) has delivered outstanding quality measurements of the spectra of cosmic-ray (CR) species, $\bar{p}$, $e^{\pm}$, and nuclei (H-Si, Fe), which resulted in a number of breakthroughs. The most recent AMS-02 result is the measurement of the spectra of CR sodium and aluminum up to $\sim$2 TV....
Since its launch, the Alpha Magnetic Spectrometer–02 (AMS-02) has delivered outstanding quality measurements of the spectra of cosmic-ray (CR) species ( p ¯ , e ± ) and nuclei (H–O, Ne, Mg, Si, Fe), which resulted in a number of breakthroughs. The most recent AMS-02 result is the measurement of the spectrum of CR fluorine up to ∼2 TV. Given its ver...
We present the precision measurement of the daily proton fluxes in cosmic rays from May 20, 2011 to October 29, 2019 (a total of 2824 days or 114 Bartels rotations) in the rigidity interval from 1 to 100 GV based on 5.5×109 protons collected with the Alpha Magnetic Spectrometer aboard the International Space Station. The proton fluxes exhibit varia...
DOI:https://doi.org/10.1103/PhysRevLett.127.159901
We report the properties of sodium (Na) and aluminum (Al) cosmic rays in the rigidity range 2.15 GV to 3.0 TV based on 0.46 million sodium and 0.51 million aluminum nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. We found that Na and Al, together with nitrogen (N), belong to a distinct cosmic ray g...
Since its launch, the Alpha Magnetic Spectrometer-02 (AMS-02) has delivered outstanding quality measurements of the spectra of cosmic-ray (CR) species, $\bar{p}$, $e^{\pm}$, and nuclei (H-O, Ne, Mg, Si, Fe), which resulted in a number of breakthroughs. The most recent AMS-02 result is the measurement of the spectrum of CR fluorine up to $\sim$2 TV....
Since its launch, the Alpha Magnetic Spectrometer-02 (AMS-02) has delivered outstanding quality measurements of the spectra of cosmic-ray (CR) species ( p ¯ , e ±, and nuclei, 1H-8O, 10Ne, 12Mg, 14Si) which resulted in a number of breakthroughs. One of the latest long-awaited surprises is the spectrum of 26Fe just published by AMS-02. Because of th...
Evaluation of cosmic ray trajectories and penetration inside the Earth environment is mandatory for estimation of flux by on-orbit detectors as well as of radiation damage on electronics devices and biological tissues, like those of astronauts onboard the International Space Station. We studied the impact of the external magnetic field on the calcu...
Precise knowledge of the charge and rigidity dependence of the secondary cosmic ray fluxes and the secondary-to-primary flux ratios is essential in the understanding of cosmic ray propagation. We report the properties of heavy secondary cosmic ray fluorine F in the rigidity R range 2.15 GV to 2.9 TV based on 0.29 million events collected by the Alp...
Since its launch, the Alpha Magnetic Spectrometer - 02 (AMS-02) has delivered outstanding quality measurements of the spectra of cosmic-ray (CR) species, $\bar{p}$, $e^{\pm}$, and nuclei, $_1$H-$_8$O, $_{10}$Ne, $_{12}$Mg, $_{14}$Si, which resulted in a number of breakthroughs. One of the latest long awaited surprises is the spectrum of $_{26}$Fe j...
We report the observation of new properties of primary iron (Fe) cosmic rays in the rigidity range 2.65 GV to 3.0 TV with 0.62×106 iron nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. Above 80.5 GV the rigidity dependence of the cosmic ray Fe flux is identical to the rigidity dependence of the prim...
Composition and spectra of Galactic cosmic rays (CRs) are vital for studies of high-energy processes in a variety of environments and on different scales, for interpretation of γ-ray and microwave observations, for disentangling possible signatures of new phenomena, and for understanding of our local Galactic neighborhood. Since its launch, AMS-02...
The Alpha Magnetic Spectrometer (AMS) is a precision particle physics detector on the International Space Station (ISS) conducting a unique, long-duration mission of fundamental physics research in space. The physics objectives include the precise studies of the origin of dark matter, antimatter, and cosmic rays as well as the exploration of new ph...
(Abridged) The direct precise measurements of spectra of cosmic rays (CR) species in the wide energy range form a basis for propagation models, for interpretation of gamma-ray and microwave observations, and for disentangling possible signatures of new phenomena. Composition and spectra of CR species are vital for studies of galactic nucleosynthesi...
We report the observation of new properties of primary cosmic rays, neon (Ne), magnesium (Mg), and silicon (Si), measured in the rigidity range 2.15 GV to 3.0 TV with 1.8×106 Ne, 2.2×106 Mg, and 1.6×106 Si nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. The Ne and Mg spectra have identical rigidity...
This paper presents the results of neutron flux measurements at two irradiation facilities of the TRIGA Mark II reactor at ENEA Casaccia Research Center, Italy. The goal of these measurements is to provide a complete characterization of neutron irradiation facilities for accurate and precise dose evaluation in radiation damage tests and, more gener...
Local interstellar spectra (LIS) of secondary cosmic-ray (CR) nuclei, lithium, beryllium, boron, and partially secondary nitrogen, are derived in the rigidity range from 10 MV to ~200 TV using the most recent experimental results combined with state-of-the-art models for CR propagation in the Galaxy and in the heliosphere. The lithium spectrum appe...
This paper presents the results of neutron flux measurements at two irradiation facilities of the TRIGA Mark II reactor at ENEA Casaccia Research Center, Italy. The goal of these measurements is to provide a complete characterization of neutron irradiation facilities for accurate and precise dose evaluation in radiation damage tests and, more gener...
Triple junction (InGaP/GaAs/Ge) and single junction (SJ) solar cells were irradiated with electrons, protons and neutrons. The degradation of remaining factors was analyzed as function of the induced Displacement Damage Dose (DDD) calculated by means of the SR-NIEL (Screened Relativistic Non Ionizing\ Energy Loss) approach. In particular, the aim o...
Local interstellar spectra (LIS) of secondary cosmic ray (CR) nuclei, lithium, beryllium, boron, and partially secondary nitrogen, are derived in the rigidity range from 10 MV to ~200 TV using the most recent experimental results combined with the state-of-the-art models for CR propagation in the Galaxy and in the heliosphere. The lithium spectrum...
Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station of He3 and He4 fluxes are presented. The measurements are based on 100 million He4 nuclei in the rigidity range from 2.1 to 21 GV and 18 million He3 from 1.9 to 15 GV collected from May 2011 to November 2017. We observed that the He3 and He4 fluxes ex...
Precision results on cosmic-ray electrons are presented in the energy range from 0.5 GeV to 1.4 TeV based on 28.1×106 electrons collected by the Alpha Magnetic Spectrometer on the International Space Station. In the entire energy range the electron and positron spectra have distinctly different magnitudes and energy dependences. The electron flux e...
Precision measurements of cosmic ray positrons are presented up to 1 TeV based on 1.9 million positrons collected by the Alpha Magnetic Spectrometer on the International Space Station. The positron flux exhibits complex energy dependence. Its distinctive properties are (a) a significant excess starting from 25.2±1.8 GeV compared to the lower-energy...
Precision measurements of cosmic ray positrons are presented up to 1 TeV based on 1.9 million positrons collected by the Alpha Magnetic Spectrometer on the International Space Station. The positron flux exhibits complex energy dependence. Its distinctive properties are (a) a significant excess starting from 25.2±1.8 GeV compared to the lower-energy...
Space solar cell radiation hardness is of fundamental importance in view of the future missions towards harsh radiation environment (like the Jupiter missions) and for the new spacecraft using Electrical Propulsion. In this paper we report the radiation data for triple junction (TJ) solar cells and related component cells. Triple junction solar cel...
The investigation of the degradation effects on triple-junction (TJ) solar cells, operating in space environment, is of primary importance in view of future space missions towards harsh radiation orbits (e.g. MEO with high particle irradiation intensity) and for the new spacecraft based on electrical propulsion. In the present work, we report the e...
We present high-statistics, precision measurements of the detailed time and energy dependence of the primary cosmic-ray electron flux and positron flux over 79 Bartels rotations from May 2011 to May 2017 in the energy range from 1 to 50 GeV. For the first time, the charge-sign dependent modulation during solar maximum has been investigated in detai...
We present the precision measurement from May 2011 to May 2017 (79 Bartels rotations) of the proton fluxes at rigidities from 1 to 60 GV and the helium fluxes from 1.9 to 60 GV based on a total of 1×109 events collected with the Alpha Magnetic Spectrometer aboard the International Space Station. This measurement is in solar cycle 24, which has the...
A precision measurement of the nitrogen flux with rigidity (momentum per unit charge) from 2.2 GV to 3.3 TV based on 2.2×106 events is presented. The detailed rigidity dependence of the nitrogen flux spectral index is presented for the first time. The spectral index rapidly hardens at high rigidities and becomes identical to the spectral indices of...
A precision measurement of the nitrogen flux with rigidity (momentum per unit charge) from 2.2 GV to 3.3 TV based on 2.2×106 events is presented. The detailed rigidity dependence of the nitrogen flux spectral index is presented for the first time. The spectral index rapidly hardens at high rigidities and becomes identical to the spectral indices of...
We present high-statistics, precision measurements of the detailed time and energy dependence of the primary cosmic-ray electron flux and positron flux over 79 Bartels rotations from May 2011 to May 2017 in the energy range from 1 to 50 GeV. For the first time, the charge-sign dependent modulation during solar maximum has been investigated in detai...
Local interstellar spectra (LIS) of primary cosmic ray (CR) nuclei, such as helium, oxygen, and mostly primary carbon are derived for the rigidity range from 10 MV to ~200 TV using the most recent experimental results combined with the state-of-the-art models for CR propagation in the Galaxy and in the heliosphere. Two propagation packages, GALPROP...
Local interstellar spectra (LIS) of primary cosmic ray (CR) nuclei, such as helium, oxygen, and mostly primary carbon are derived for the rigidity range from 10 MV to ~200 TV using the most recent experimental results combined with the state-of-the-art models for CR propagation in the Galaxy and in the heliosphere. Two propagation packages, GALPROP...
The local interstellar spectrum (LIS) of cosmic-ray (CR) electrons for the energy range 1 MeV to 1 TeV is derived using the most recent experimental results combined with the state-of-the-art models for CR propagation in the Galaxy and in the heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that...
The local interstellar spectrum (LIS) of cosmic-ray (CR) electrons for the energy range 1 MeV to 1 TeV is derived using the most recent experimental results combined with the state-of-the-art models for CR propagation in the Galaxy and in the heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that...
We report on the observation of new properties of secondary cosmic rays Li, Be, and B measured in the rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total of 5.4×106 nuclei collected by AMS during the first five years of operation aboard the International Space Station. The Li and B fluxes have an identical rigidity dependence ab...
We report the observation of new properties of primary cosmic rays He, C, and O measured in the rigidity (momentum/charge) range 2 GV to 3 TV with 90×106 helium, 8.4×106 carbon, and 7.0×106 oxygen nuclei collected by the Alpha Magnetic Spectrometer (AMS) during the first five years of operation. Above 60 GV, these three spectra have identical rigid...
We report on the recent progress within the Geant4 electromagnetic physics subpackages. Several new interfaces and models recently introduced are already used in LHC applications and may be useful for any type of simulation. Significant developments were carried out to improve the user interface, develop models of single and multiple scattering, an...
The heliospheric modulation model HelMod solve the transport-equation for the Galactic Cosmic Rays propagation through the heliosphere down to Earth. It is based on a 2-D Monte Carlo approach, that includes a general description of the symmetric and antisymmetric parts of the diffusion tensor, thus, properly treating the particle drift effects as w...
The heliospheric modulation model HelMod solve the transport-equation for the Galactic Cosmic Rays propagation through the heliosphere down to Earth. It is based on a 2-D Monte Carlo approach, that includes a general description of the symmetric and antisymmetric parts of the diffusion tensor, thus, properly treating the particle drift effects as w...
Our back-tracing code (GeoMagSphere) reconstructs the cosmic ray trajectories inside the Earth’s magnetosphere. GeoMagSphere gets the incoming directions of particles entering the magnetopause and disentangles primary from secondary particles (produced in atmosphere) or even particles trapped inside the Earth’s magnetic field. The separation of the...
Space solar cells radiation hardness is of fundamental importance in view of the future missions towards harsh radiation environment (like e.g. missions to Jupiter) and for the new spacecraft using electrical propulsion. In this paper we report the radiation data for triple junction (TJ) solar cells and related component cells. Triple junction sola...
Local interstellar spectra (LIS) for protons, helium and antiprotons are built using the most recent experimental results combined with the state-of-the-art models for propagation in the Galaxy and heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that is run to reproduce direct measurements of co...
Local interstellar spectra (LIS) for protons, helium and antiprotons are built using the most recent experimental results combined with the state-of-the-art models for propagation in the Galaxy and heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that is run to reproduce direct measurements of co...
Local interstellar spectra (LIS) for protons, helium and antiprotons are built using the most recent experimental results combined with the state-of-the-art models for propagation in the Galaxy and heliosphere. Two propagation packages, GALPROP and HelMod, are combined to provide a single framework that is run to reproduce direct measurements of co...
Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B/C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variati...
Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B/C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variati...
A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in
primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49 × 10^5
antiproton events and 2.42 × 10^9 proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the a...
The cosmic rays propagation inside the heliosphere is well described by a transport equation introduced by Parker in 1965. To solve this equation, several approaches were followed in the past. Recently, a Monte Carlo approach became widely used in force of its advantages with respect to other numerical methods. In this approach the transport equati...
Knowledge of the precise rigidity dependence of the helium flux is important in understanding the origin, acceleration, and propagation of cosmic rays. A precise measurement of the helium flux in primary cosmic rays with rigidity (momentum/charge) from 1.9 GV to 3 TV based on 50 million events is presented and compared to the proton flux. The detai...
Our backtracing code (Geomagsphere), for Cosmic Rays trajectory reconstruction in the Earth Magnetosphere, has been developed using the latest models of Internal (IGRF-11) and External (Tsyganenko 1996 and 2005) field components. Backtracing technique was applied to AMS-02 data to separate Primary Cosmic Rays Particles from Secondary particles. We...
The cosmic rays modulation inside the heliosphere is well described by a transport equation introduced by Parker in 1965. To solve this equation several approaches were followed in the past. Recently the Monte Carlo approach becomes widely used in force of his advantages with respect to other numerical methods. In the Monte Carlo approach, the tran...
A precise measurement of the proton flux in primary cosmic rays with rigidity (momentum/charge) from 1 GV to 1.8 TV is presented based on 300 million events. Knowledge of the rigidity dependence of the proton flux is important in understanding the origin, acceleration, and propagation of cosmic rays. We present the detailed variation with rigidity...
We present a measurement of the cosmic ray (e[superscript +] + e[superscript -]) flux in the range 0.5 GeV to 1 TeV based on the analysis of 10.6 million (e[superscript +] + e[superscript -]) events collected by AMS. The statistics and the resolution of AMS provide a precision measurement of the flux. The flux is smooth and reveals new and distinct...
Precision measurements by the Alpha Magnetic Spectrometer on the International Space Station of the primary cosmic-ray electron flux in the range 0.5 to 700 GeV and the positron flux in the range 0.5 to 500 GeV are presented. The electron flux and the positron flux each require a description beyond a single power-law spectrum. Both the electron flu...
A precision measurement by AMS of the positron fraction in primary cosmic rays in the energy range from 0.5 to 500 GeV based on 10.9 million positron and electron events is presented. This measurement extends the energy range of our previous observation and increases its precision. The new results show, for the first time, that above ∼200 GeV the p...
During solar events (such as flares or CME), energetic protons are accelerated in interplanetary medium. These particles are called briefly SEP (solar energetic particles). We estimated the SEP contribution to solar wind pressure. We used data collected by ACE and GOES, in particular during 4 periods, each one of 15 days. Each period is centered on...
Our codes to evaluate the solar modulation of Galactic Cosmic Rays (HelMod) and to trace the the charged particles inside the Earth magnetosphere (GeoMag) have been implemented as webmodels in the two websites, helmod.org and geomagsphere.org. HelMod model uses a 2D Monte Carlo approach to solves the Parker transport equation, obtaining a modulated...
We developed a backtracing code for Cosmic Rays trajectory reconstruction in the Earth Magnetosphere with last models of Internal (IGRF-11) and External (Tsyganenko 1996 and 2005) field components. Particles can be reconstructed, in case of allowed trajectory, as Primary Cosmic Rays if they reach the outer boundary (magnetopause) or, in case of for...
The investigation of solar cells degradation and the prediction of its
end-of-life performance is of primary importance in the preparation of a space
mission. In the present work, we investigate the reduction of solar-cells'
maximum power resulting from irradiations with electrons and protons. Both GaAs
single junction and GaInP/GaAs/Ge triple junc...
We used a backtracing code to reconstruct particle trajectory inside the
Earth Magnetosphere during the last solar active period (2011 and 2012) when
very high Solar Wind pressure values were measured. We compared our results on
AMS-02 proton and electron data with 2 different External Field models, namely
Tsyganenko 1996 (T96) and 2005 (T05), both...
Energetic (suprathermal) solar particles, accelerated in the interplanetary
medium, contribute to the solar wind pressure, in particular during high solar
activity periods. We estimated the effect of the increase of solar wind
pressure due to suprathermal particles on magnetospheric transmissivity of
galactic cosmic rays in the case of one recent s...
We implemented a website to deal with main effects on Cosmic Ray access to
the Earth, i.e. the Solar Modulation and the Geomagnetic Field effect. In
helmod.org the end user can easily access a web interface to results catalog of
the HelMod Monte Carlo Code. This Model uses a Monte Carlo Approach to solves
the Parker Transport Equation, obtaining a...
The Cosmic Rays propagation was studied in details using the HelMod-2D Monte
Carlo code, that includes a general description of the diffusion tensor, and
polar magnetic-field. The Numerical Approach used in this work is based on a
set of Stochastic Differential Equations fully equivalent to the well know
Parker Equation for the transport of Cosmic...
In the present work, an improved numerical solution for determining the
ratio,$\mathcal{R}^{\rm Mott}$, of the unscreened Mott differential cross
section (MDCS) with respect to Rutherford's formula is proposed for the
scattering of electrons and positrons on nuclei with $1\leq Z \leq 118$. It
accounts for incoming lepton energies between 1\,keV and...
A precision measurement by the Alpha Magnetic Spectrometer on the International Space Station of the positron fraction in primary cosmic rays in the energy range from 0.5 to 350 GeV based on 6.8×10^{6} positron and electron events is presented. The very accurate data show that the positron fraction is steadily increasing from 10 to ∼250 GeV, but, f...
The cosmic rays differential intensity inside the heliosphere, for energy
below 30 GeV/nuc, depends on solar activity and interplanetary magnetic field
polarity. This variation, termed solar modulation, is described using a 2-D
(radius and colatitude) Monte Carlo approach for solving the Parker transport
equation that includes diffusion, convection...
We implemented a 2D Monte Carlo model to simulate the solar modulation of galactic cosmic rays. The model is based on the Parker’s transport equation which contains diffusion, convection, particle drift and energy loss. Following the evolution in time of the solar activity, we are able to modulate a local interstellar spectrum (LIS), that we assume...
Silicon Photomultipliers (SiPM) represent a promising alternative to
classical photomultipliers, for instance, for the detection of photons in high
energy physics and medical physics. In the present work, electrical
characterizations of test devices - manufactured by ST Microelectronics - are
presented. SiPMs with an area of 3.5x3.5 micron^2 and a...
The treatment of the electron-nucleus interaction based on the Mott
differential cross section was extended to account for effects due to screened
Coulomb potentials, finite sizes and finite rest masses of nuclei for electrons
above 200 keV and up to ultra high energies. This treatment allows one to
determine both the total and differential cross s...
A propagation model of galactic cosmic protons through the Heliosphere was
implemented using a 2-D Monte Carlo approach to determine the differential
intensities of protons during the solar cycle 23. The model includes the
effects due to the variation of solar activity during the propagation of cosmic
rays from the boundary of the heliopause down t...
Galactic Cosmic Rays (GCR) entering the Heliosphere are affected by the
solar modulation, a combination of diffusion, convection, magnetic drift
and adiabatic energy loss usually seen as a decrease in the flux at low
energy (less than ~ 10 GeV). We have improved a quasi time-dependent 2D
Stochastic Simulation code describing this effects. We focuse...
The Alpha Magnetic Spectrometer is going to be launched in April 2011 from the Kennedy Space Center. It will be located by the Space Shuttle on the International Space Station and will have its same lifetime: 10 years or even more. The experiment will observe high energy gamma-ray photons from sev-eral Astrophysical sources. We consider here the AM...
Spectra of Galactic Cosmic Rays (GCRs) measured at the Earth are the
combination of several processes: sources production and acceleration,
propagation in the interstellar medium and propagation in the heliosphere.
Inside the solar cavity the flux of GCRs is reduced due to the solar
modulation, the interaction which they have with the interplanetar...
In the space environment, instruments onboard of spacecrafts can be affected
by displacement damage due to radiation. The differential scattering cross
section for screened nucleus--nucleus interactions - i.e., including the
effects due to screened Coulomb nuclear fields -, nuclear stopping powers and
non-ionization energy losses are treated from a...