
Mauro CostagliUniversità degli Studi di Genova | UNIGE · Dipartimento di Neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili (DINOGMI)
Mauro Costagli
M.Engineering | PhD.Neuroscience
About
61
Publications
7,228
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
969
Citations
Citations since 2017
Introduction
Additional affiliations
February 2011 - present
Publications
Publications (61)
This contribution presents a magnetic resonance imaging (MRI) acquisition technique named Tissue Border Enhancement (TBE), whose purpose is to produce images with enhanced visualization of borders between two tissues of interest without any post-processing.
The technique is based on an inversion recovery sequence that employs an appropriate inversi...
How does our brain detect changes in a natural scene? While changes by increments of specific visual attributes, such as contrast
or motion coherence, can be signaled by an increase in neuronal activity in early visual areas, like the primary visual cortex
(V1) or the human middle temporal complex (hMT+), respectively, the mechanisms for signaling...
Cells in the animal early visual cortex are sensitive to contour orientations and form repeated structures known as orientation columns. At the behavioral level, there exist 2 well-known global biases in orientation perception (oblique effect and radial bias) in both animals and humans. However, their neural bases are still under debate. To unveil...
In functional magnetic resonance imaging (fMRI), even subvoxel motion dramatically corrupts the blood oxygenation level-dependent (BOLD) signal, invalidating the assumption that intensity variation in time is primarily due to neuronal activity. Thus, correction of the subject's head movements is a fundamental step to be performed prior to data anal...
Purpose:
To evaluate the anatomy of the substantia nigra (SN) in healthy subjects by performing 7-T magnetic resonance (MR) imaging of the SN, and to prospectively define the accuracy of 7-T MR imaging in distinguishing Parkinson disease (PD) patients from healthy subjects on an individual basis.
Materials and methods:
The 7-T MR imaging protoco...
Quantitative Susceptibility Mapping (QSM) is an MRI-based technique allowing the non-invasive quantification of iron content and myelination in the brain. The RIN – Neuroimaging Network established an optimized and harmonized protocol for QSM across ten sites with 3T MRI systems from three different vendors to enable multicentric studies. The asses...
Quantitative Susceptibility Mapping (QSM) can measure iron concentration increase in the primary motor cortex (M1) of patients with Amyotrophic Lateral Sclerosis (ALS). However, such alteration is confined to only specific regions interested by upper motor neuron pathology; therefore, mean QSM values in the entire M1 have limited diagnostic accurac...
Background and purpose:
Double inversion recovery (DIR) imaging is used in multiple sclerosis (MS) clinical protocols to improve the detection of cortical and juxtacortical gray matter lesions by nulling confounding signals originating from the cerebrospinal fluid and white matter. Achieving a high isotropic spatial resolution, to depict the neoco...
Idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD) is a prodromal stage of α-synucleinopathies, such as Parkinson's disease (PD), which are characterized by the loss of dopaminergic neurons in substantia nigra, associated with abnormal iron load. The assessment of presymptomatic biomarkers predicting the onset of neurodegenerative d...
Background
Patterns of initiation and propagation of disease in Amyotrophic Lateral Sclerosis (ALS) are still partly unknown. Single or multiple foci of neurodegeneration followed by disease diffusion to contiguous or connected regions have been proposed as mechanisms underlying symptom occurrence. Here, we investigated cortical patterns of upper m...
Background:
In the quest for in vivo diagnostic biomarkers to discriminate Parkinson's Disease (PD) from Progressive Supranuclear Palsy (PSP) and Multiple System Atrophy (MSA, mainly p phenotype), many advanced MRI techniques have been studied. Morphometric indexes, such as the Magnetic Resonance Parkinsonism Index (MRPI), demonstrated high diagno...
The non-invasive quantification of iron stores via Quantitative Susceptibility Mapping (QSM) could play an important role in the diagnosis and the differential diagnosis of atypical Parkinsonisms. However, the susceptibility (χ) values measured via QSM depend on echo time (TE). This effect relates to the microstructural organization within the voxe...
Voluntary and involuntary patient motion is a major problem for data quality in clinical routine of Magnetic Resonance Imaging (MRI). It has been thoroughly investigated and, yet it still remains unresolved. In quantitative MRI, motion artifacts impair the entire temporal evolution of the magnetization and cause errors in parameter estimation. Here...
Interest in the studying of functional connections in the brain has grown considerably in the last decades, as many studies have pointed out that alterations in the interaction among brain areas can play a role as markers of neurological diseases. Most studies in this field treat the brain network as a system of connections stationary in time, but...
Functional Quantitative Susceptibility Mapping (fQSM) allows for the quantitative measurement of time-varying magnetic susceptibility across cortical and subcortical brain structures with a potentially higher spatial specificity than conventional fMRI. While the usefulness of fQSM with General Linear Model and “On/Off” paradigms has been assessed,...
Ultra-high-field (UHF) magnetic resonance (MR) scanners, that is, equipment operating at static magnetic field of 7 tesla (7 T) and above, enable the acquisition of data with greatly improved signal-to-noise ratio with respect to conventional MR systems (e.g., scanners operating at 1.5 T and 3 T). The change in tissue relaxation times at UHF offers...
The mechanisms coordinating action and perception over time are poorly understood. The sensory cortex needs to prepare for upcoming changes contingent on action, and this requires temporally precise communication that takes into account the variable delays between sensory and motor processing. Several theorists¹,² have proposed synchronization of t...
Interest in the studying of functional connections in the brain has grown considerably in the last decades, as many studies have pointed out that these interactions can play a role as markers of neurological diseases. Most studies in this field treat the brain network as a system of connections stationary in time, but dynamic features of brain conn...
Action and perception need to be coordinated continuously over time, and neural oscillations may be instrumental in achieving such synchronization. Here we demonstrate that behavioral visual discrimination and the BOLD activity of V1 oscillates rhythmically in the theta range (around 5 Hz), synchronized to motor action (button press). The oscillati...
Ultra-high field imaging of the substantia nigra in REM sleep behavior disorder: preliminary data from a three years clinical and radiological follow-up Imaging a campo ultra-alto della sostanza nera nel disturbo comportamentale del sonno REM: dati preliminari da un follow-up clinico-radiologico di tre anni
Purpose
To obtain three‐dimensional (3D), quantitative and motion‐robust imaging with magnetic resonance fingerprinting (MRF).
Methods
Our acquisition is based on a 3D spiral projection k‐space scheme. We compared different orderings of trajectory interleaves in terms of rigid motion‐correction robustness. In all tested orderings, we considered th...
Background and purpose:
Conventional MR imaging has limitations in detecting focal cortical dysplasia. We assessed the added value of 7T in patients with histologically proved focal cortical dysplasia to highlight correlations between neuropathology and ultra-high-field imaging.
Materials and methods:
Between 2013 and 2019, we performed a standa...
Background and purpose:
Differential diagnosis between Parkinson's disease (PD) and Atypical Parkinsonisms, mainly Progressive Supranuclear Palsy (PSP) and Multiple System Atrophy (MSA), remains challenging. The low sensitivity of macroscopic findings at imaging might limit early diagnosis. The availability of iron-sensitive MR techniques and high...
Introduction:
The goal of European Ultrahigh-Field Imaging Network in Neurodegenerative Diseases (EUFIND) is to identify opportunities and challenges of 7 Tesla (7T) MRI for clinical and research applications in neurodegeneration. EUFIND comprises 22 European and one US site, including over 50 MRI and dementia experts as well as neuroscientists....
The decline of voluntary bulbar functions such as speech and swallowing are among the clinical manifestations of amyotrophic lateral sclerosis (ALS) influencing a worst prognosis. Differential diagnosis between the contribution of upper motor neuron (UMN) and lower motor neuron degeneration to the bulbar impairment is often hard. Thinning and T2* h...
Quantitative Susceptibility Mapping (QSM) provides a way of measuring iron concentration and myelination non-invasively and has the potential of becoming a tool of paramount importance in the study of a host of different pathologies. However, several experimental factors and the physical properties of magnetic susceptibility (χ) can impair the reli...
Functional Quantitative Susceptibility Mapping (fQSM) is a recently established method that, based on the same acquisition technique as conventional functional Magnetic Resonance Imaging, has two very appealing features: it is quantitative and it is considerably less affected by non-local effects than the Blood Oxygenation Level-Dependent (BOLD) si...
Purpose
To obtain T2* and T2‐weighted images as well as quantitative T2*, T2, and susceptibility maps with a novel, silent 3D imaging method, which combines zero‐echo‐time (ZTE) imaging with gradient‐ and spin‐echo BURST encoding.
Methods
After a segment of standard ZTE encoding with multiple 3D radial k‐space spokes, the direction of traversing k...
Background and purpose:
Amyotrophic lateral sclerosis is a neurodegenerative disease involving the upper and lower motor neurons. In amyotrophic lateral sclerosis, pathologic changes in the primary motor cortex include Betz cell depletion and the presence of reactive iron-loaded microglia, detectable on 7T MR images as atrophy and T2*-hypointensit...
Objective:
Signal drop-off occurs in echo-planar imaging in inferior brain areas due to field gradients from susceptibility differences between air and tissue. Tailored-RF pulses based on a hyperbolic secant (HS) have been shown to partially recover signal at 3 T, but have not been tested at higher fields.
Materials and methods:
The aim of this...
The aim of this work was to assess the impact of tissue structural orientation on quantitative susceptibility mapping (QSM) reliability, and to provide a criterion to identify voxels in which measures of magnetic susceptibility (χ) are most affected by spatial orientation effects. Four healthy volunteers underwent 7-T magnetic resonance imaging (MR...
Introduction:
Susceptibility-weighted imaging of the substantia nigra (SN) both at 7 and 3 Tesla (T) has shown high accuracy in distinguishing patients with Parkinson's disease (PD) and healthy subjects (HS). Patients with rapid eye movement (REM) behavior disorder (RBD) can develop synucleinopathies, and such risk is higher with dopamine transpor...
The increased signal-to-noise ratio (SNR) offered by functional Magnetic Resonance Imaging (fMRI) at 7T allows the acquisition of functional data at sub-millimetric spatial resolutions. However, simply reducing partial volume effects is not sufficient to precisely localize task-induced activation due to the indirect mechanisms that relate brain fun...
The purpose of the present study is to evaluate the temperature increase due to radio-frequency (RF) exposure in Magnetic Resonance (MR) examinations, by combining electromagnetic/thermal simulations and B1 maps.
Amyotrophic Lateral Sclerosis (ALS) is a progressive neurological disorder that entails degeneration of both upper and lower motor neurons. The primary motor cortex (M1) in patients with upper motor neuron (UMN) impairment is pronouncedly hypointense in Magnetic Resonance (MR) T2* contrast. In the present study, 3D gradient-recalled multi-echo sequ...
Purpose:
To predict local and global specific absorption rate (SAR) in individual subjects.
Materials and methods:
SAR was simulated for a head volume coil for two imaging sequences: axial T1-weighted "zero" time-of-echo (ZTE) sequence, sagittal T2-weighted fluid attenuated inversion recovery (FLAIR). Two head models (one adult, one child) were...
Objective:
To assess the diagnostic yield of 7T magnetic resonance imaging (MRI) in detecting and characterizing structural lesions in patients with intractable focal epilepsy and unrevealing conventional (1.5 or 3T) MRI.
Methods:
We conducted an observational clinical imaging study on 21 patients (17 adults and 4 children) with intractable foca...
Background and purpose:
Amyotrophic lateral sclerosis is a progressive motor neuron disorder that involves degeneration of both upper and lower motor neurons. In patients with amyotrophic lateral sclerosis, pathologic studies and ex vivo high-resolution MR imaging at ultra-high field strength revealed the co-localization of iron and activated micr...
This study aimed to assess the performance of a "Silent" zero time of echo (ZTE) sequence for T1-weighted brain imaging using a 7 T MRI system.
The Silent sequence was evaluated qualitatively by two neuroradiologists, as well as quantitatively in terms of tissue contrast, homogeneity, signal-to-noise ratio (SNR) and acoustic noise. It was compared...
Magnetic Resonance (MR) Imaging and Spectroscopy of the muscle is a valuable tool in the diagnosis and monitoring of Neuromuscular Disorders (NMD). New Ultra-High Field (UHF) 7 T MRI systems, with their enhanced Signal-to-Noise Ratio, may offer increased image quality in terms of spatial resolution and/or shorter scanning time compared to lower fie...
We present a feasibility study that has been carried out to determine the best power regulation strategy for the PET front-end electronics of the trimodal PET/MRI/EEG TRIMAGE scanner. Conventional power regulation strategies cannot be applied to PET/MRI because standard switching regulators stop working in presence of a high magnetic field. At the...
Local specific absorption rate (SAR) evaluation in ultra high field (UHF) magnetic resonance (MR) systems is a major concern. In fact, at UHF, radiofrequency (RF) field inhomogeneity generates hot-spots that could cause localized tissue heating. Unfortunately, local SAR measurements are not available in present MR systems; thus, electromagnetic sim...
High static magnetic field magnetic resonance imaging (MRI) is commonly used for preclinical studies in rodents. In this context, minimization of coil losses is mandatory to scan samples that are small compared to the radiofrequency wavelength in the medium. In this study we construct a radiofrequency (RF) birdcage probe with distributed capacitors...
PurposeWe herein present a spectroscopic technique for the detection of scalar-coupled metabolites based on stimulated echo acquisition mode (STEAM). The method is based on the time evolution of scalar-coupled metabolites at different mixing times and a constant echo time. The technique is optimized for targeting the metabolite glutamate at 7T.Meth...
The main visual pathway that conveys motion information to the middle temporal complex (hMT+) originates from the primary visual cortex (V1), which, in turn, receives spatial and temporal features of the perceived stimuli from the lateral geniculate nucleus (LGN). In addition, visual motion information reaches hMT+ directly from the thalamus, bypas...
Background and purpose:
Standard neuroimaging fails in defining the anatomy of the substantia nigra and has a marginal role in the diagnosis of Parkinson disease. Recently 7T MR target imaging of the substantia nigra has been useful in diagnosing Parkinson disease. We performed a comparative study to evaluate whether susceptibility-weighted angiog...
Background and purpose:
Polymicrogyria is a malformation of cortical development that is often identified in children with epilepsy or delayed development. We investigated in vivo the potential of 7T imaging in characterizing polymicrogyria to determine whether additional features could be identified.
Materials and methods:
Ten adult patients wi...
To study patient tolerability of brain imaging that employs an ultrahigh field (7 T) MR system METHODS: We examined 180 subjects that underwent brain MR examination at 7 T. A tolerability test consisting of two parts (during patient table motion and during the examination) was administered to all subjects in order to monitor their discomfort. The s...
We present an analytical method for the analysis of Radio Frequency (RF) volume coils for Magnetic Resonance Imaging (MRI), using a 2-D full wave solution with loading by multilayered cylinders. This allows the characterization of radio-frequency E, H, B1, B1(+) fields. Comparisons are provided with experimental data obtained at 7.0T. The procedure...
In this work, we will analyze the problem of source separation in the case of superpositions of different source images, which need to be extracted from a set of noisy observations. This problem occurs, for example, in the field of astrophysics, where the contributions of various Galactic and extra-Galactic components need to be separated from a se...
In this work, we will confront the problem of source separation in the field of astrophysics, where the contributions of various
Galactic and extra-Galactic components need to be separated from a set of observed noisy mixtures. Most of the previous work
on the problem perform blind source separation, assume noiseless models, and in the few cases wh...