Maurizio Santoro

Maurizio Santoro
GAMMA Remote Sensing Research and Consulting AG · n/a

Ph.D.

About

209
Publications
48,090
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,633
Citations
Introduction
Working on applications of SAR remote sensing data. Current project activities: 1) Mapping of forest growing stock and biomass 2) Mapping of inland water bodies
Additional affiliations
January 2006 - present
GAMMA Remote Sensing Research and Consulting AG
GAMMA Remote Sensing Research and Consulting AG
Position
  • Senior Researcher
January 2002 - December 2005
Friedrich-Schiller-Universität Jena
Description
  • Pursued Ph.D., Post-doc within SIBERIA-II Project.
April 1998 - December 2001
Chalmers University of Technology
Description
  • Pursue of Licentiate of Engineering

Publications

Publications (209)
Article
The 2015/16 El Niño brought severe drought and record-breaking temperatures in the tropics. Here, using satellite-based L-band microwave vegetation optical depth, we mapped changes of above-ground biomass (AGB) during the drought and in subsequent years up to 2019. Over more than 60% of drought-affected intact forests, AGB reduced during the drough...
Article
The backscattered power recorded by a spaceborne scatterometer operating at C-band is sensitive to land surface parameters and is operationally used by some global remote sensing services, e.g., to estimate soil moisture. The estimation of forest variables, in particular above-ground biomass (AGB), from scatterometer data instead was seldom explore...
Article
Full-text available
Deforestation arising from oil palm expansion in the tropics poses threats to forest ecosystem services. Using high-resolution satellite maps, we show that oil palm expansion into forests in Indonesia and Malaysia during 2001–2015 caused a forest biomass loss of 50.2 ± 21.9 TgC yr−1. Large-scale plantations dominated the expansion area. But the enc...
Article
Full-text available
Over the past decade, several global maps of above-ground biomass (AGB) have been produced, but they exhibit significant differences that reduce their value for climate and carbon cycle modelling, and also for national estimates of forest carbon stocks and their changes. The number of such maps is anticipated to increase because of new satellite mi...
Article
Estimation of carbon stocks in forests and tracking their dynamics over time requires repeated and spatially dense observations. Sweden is one of the major forested countries on Earth with a carbon pool of approximately 1 PgC. Statistics on forest resources are regularly quantified by data collected at field inventory plots by the Swedish National...
Article
Full-text available
For monitoring and reporting forest carbon stocks and fluxes, many countries in the tropics and subtropics rely on default values of forest aboveground biomass (AGB) from the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas (GHG) Inventories. Default IPCC forest AGB values originated from 2006, and are relativ...
Article
Full-text available
Forest structure is a useful proxy for carbon stocks, ecosystem function and species diversity, but it is not well characterised globally. However, Earth observing sensors, operating in various modes, can provide information on different components of forests enabling improved understanding of their structure and variations thereof. The Ice, Cloud...
Article
Full-text available
Forest age can determine the capacity of a forest to uptake carbon from the atmosphere. However, a lack of global diagnostics that reflect the forest stage and associated disturbance regimes hampers the quantification of age-related differences in forest carbon dynamics. This study provides a new global distribution of forest age circa 2010, estima...
Article
Full-text available
The responses of forest carbon dynamics to fluctuations in environmental conditions at a global scale remain elusive. Despite the understanding that favourable environmental conditions promote forest growth, these responses have been challenging to observe across different ecosystems and climate gradients. Based on a global annual time series of ab...
Article
Full-text available
As a key component of the Earth system, roots play a key role in linking Earth's lithosphere, hydrosphere, biosphere and atmosphere. Here we combine 10 307 field measurements of forest root biomass worldwide with global observations of forest structure, climatic conditions, topography, land management and soil characteristics to derive a spatially...
Article
Full-text available
While products generated at global levels provide easy access to information on forest growing stock volume (GSV), their use at regional to national levels is limited by temporal frequency, spatial resolution, or unknown local errors that may be overcome through locally calibrated products. This study assessed the need, and utility, of developing l...
Article
Full-text available
African forests suffer from severe fragmentation that further causes forest degradation near forest edges. The impact of fires used for slash-and-burn on forest edge effects remains unclear. Here, using high-resolution satellite-based forest-cover and biomass datasets, we find that edge effects extend a median distance and an interquartile range of...
Article
Full-text available
Since the collapse of the Soviet Union and transition to a new forest inventory system, Russia has reported almost no change in growing stock (+ 1.8%) and biomass (+ 0.6%). Yet remote sensing products indicate increased vegetation productivity, tree cover and above-ground biomass. Here, we challenge these statistics with a combination of recent Nat...
Preprint
Full-text available
Forest age can determine the capacity of a forest to uptake carbon from the atmosphere. Yet, a lack of global diagnostics that reflect the forest stage and associated disturbance regimes hampers the quantification of age-related differences in forest carbon dynamics. In this study, we provide a new global distribution of forest age circa 2010, esti...
Preprint
Full-text available
As a key component of the Earth system, root plays the key role in linking Earth's lithosphere, hydrosphere, biosphere, and atmosphere. Here we combine 10307 field measurements of forest root biomass worldwide with global observations of forest structure, climatic conditions, topography, land management and soil characteristics to derive a spatiall...
Article
Full-text available
Ice marginal lakes are a dynamic component of terrestrial meltwater storage at the margin of the Greenland Ice Sheet. Despite their significance to the sea level budget, local flood hazards and bigeochemical fluxes, there is a lack of Greenland-wide research into ice marginal lakes. Here, a detailed multi-sensor inventory of Greenland’s ice margina...
Article
Much attention is paid to the estimation of forest biomass-related variables (stem volume and above-ground biomass) with synthetic aperture radar (SAR) backscatter images because of the increasing number of sensors in space providing global and repeated coverage and the sensitivity of the backscattered intensity to forest properties. One of the mos...
Article
Full-text available
The terrestrial forest carbon pool is poorly quantified, in particular in regions with low forest inventory capacity. By combining multiple satellite observations of synthetic aperture radar (SAR) backscatter around the year 2010, we generated a global, spatially explicit dataset of above-ground live biomass (AGB; dry mass) stored in forests with a...
Article
Full-text available
The turnover time of terrestrial ecosystem carbon is an emergent ecosystem property that quantifies the strength of land surface on the global carbon cycle–climate feedback. However, observation- and modeling-based estimates of carbon turnover and its response to climate are still characterized by large uncertainties. In this study, by assessing th...
Article
Full-text available
Spaceborne remote sensing can track ecosystems changes thanks to continuous and systematic coverage at short revisit intervals. Active remote sensing from synthetic aperture radar (SAR) sensors allows day and night imaging as they are not affected by cloud cover and solar illumination and can capture unique information about its targets. However, S...
Preprint
Full-text available
The terrestrial forest carbon pool is poorly quantified, in particular in regions with low forest inventory capacity. By combining multiple satellite observations of synthetic aperture radar (SAR) backscatter around the year 2010, we generated a global, spatially explicit dataset of above-ground forest biomass (dry mass, AGB) with a spatial resolut...
Article
Full-text available
Field surveys are often a primary source of aboveground biomass (AGB) data, but plot-based estimates of parameters related to AGB are often not sufficiently precise, particularly not in tropical countries. Remotely sensed data may complement field data and thus help to increase the precision of estimates and circumvent some of the problems with mis...
Article
Full-text available
The present study evaluates the L band Vegetation Optical Depth (L-VOD) derived from the Soil Moisture and Ocean Salinity (SMOS) satellite to monitor Above Ground Biomass (AGB) at a global scale. Although SMOS L-VOD has been shown to be a good proxy for AGB in Africa and Tropics, little is known about this relationship at large scale. In this study...
Article
Full-text available
Field surveys are often a primary source of aboveground biomass (AGB) data, but plot-based estimates of parameters related to AGB are often not sufficiently precise, particularly not in tropical countries. Remotely sensed data may complement field data and thus help to increase the precision of estimates and circumvent some of the problems with mis...
Article
Gaps in our current understanding and quantification of biomass carbon stocks, particularly in tropics, lead to large uncertainty in future projections of the terrestrial carbon balance. We use the recently published GlobBiomass data set of forest above‐ground biomass (AGB) density for the year 2010, obtained from multiple remote sensing and in sit...
Article
Full-text available
Integrated high-resolution maps of carbon stocks and biodiversity that identify areas of potential co-benefits for climate change mitigation and biodiversity conservation can help facilitate the implementation of global climate and biodiversity commitments at local levels. However, the multi-dimensional nature of biodiversity presents a major chall...
Preprint
Full-text available
Abstract. The turnover time of terrestrial carbon (τ) controls the global carbon cycle – climate feedback and, yet, is poorly simulated by the current Earth System Models (ESMs). In this study, by assessing apparent carbon turnover time as the ratio between carbon stocks and fluxes, we provide a new, updated ensemble of diagnostic terrestrial carbo...
Preprint
Full-text available
(150 words limits) Root plays a key role in plant growth and functioning. Here we combine 10307 field measurements of forest root biomass worldwide with global observations of forest structure, climatic conditions, topography, land management and soil characteristics to derive a spatially-explicit global high-resolution (~ 1km) root biomass dataset...
Article
Approaches exploiting the complementary information on forest above-ground biomass (AGB) contained in multi-temporal and multi-frequency radar backscatter have hardly been explored in the tropics. Having available a multi-seasonal stack of air- and spaceborne X-, C-, L-, and P-band imagery for forest sites in Lope and Mondah, Gabon, we analyzed the...
Article
Full-text available
The planned launch of a spaceborne P-band radar mission and the availability of C- and L-band data from several spaceborne missions suggest investigating the complementarity of C-, L-, and P-band backscatter with respect to the retrieval of forest above-ground biomass. Existing studies on the retrieval of biomass with multi-frequency backscatter re...
Article
Full-text available
The simultaneous availability of observations from space by remote sensing platforms operating at multiple frequencies in the microwave domain suggests investigating their complementarity in thematic mapping and retrieval of biophysical parameters. In particular, there is an interest to understand whether the wealth of short wavelength Synthetic Ap...
Article
Full-text available
The amount and spatial distribution of forest aboveground biomass (AGB) were estimated using a range of regionally developed methods using Earth Observation data for Poland, Sweden and regions in Indonesia (Kalimantan), Mexico (Central Mexico and Yucatan peninsula), and South Africa (Eastern provinces) for the year 2010. These regions are represent...
Article
Interferometric synthetic aperture radar (InSAR) coherence datasets from the 3-days phase of the European Remote Sensing Satellite (ERS-1) mission during the winter months of 1992 have been analyzed to assess the capability to retrieve forest stem volume in boreal forests. For three test sites in Sweden and Finland, coherence decreased for increasi...
Article
Full-text available
Estimation of forest biomass with synthetic aperture radar (SAR) and interferometric SAR (InSAR) observables has been surveyed in 186 peer-reviewed papers to identify major research pathways in terms of data used and retrieval models. Research evaluated primarily (i) L-band observations of SAR backscatter; and, (ii) single-image or multi-polarized...
Article
Full-text available
The use of dynamic global vegetation models (DGVMs) to estimate CO2 emissions from land-use and land-cover change (LULCC) offers a new window to account for spatial and temporal details of emissions and for ecosystem processes affected by LULCC. One drawback of LULCC emissions from DGVMs, however, is lack of observation constraint. Here, we propose...
Article
The use of dynamic global vegetation models (DGVMs) to estimate CO2 emissions from land-use and land-cover change (LULCC) offers a new window to account for spatial and temporal details of emissions, and for ecosystem processes affected by LULCC. One drawback of DGVMs however is their large uncertainty. Here, we propose a new method of using satell...
Article
Full-text available
Accurate maps of surface water extent are of paramount importance for water management, satellite data processing and climate modeling. Several maps of water bodies based on remote sensing data have been released during the last decade. Nonetheless, none has a truly (90 ∘ N/90 ∘ S) global coverage while being thoroughly validated. This paper descri...
Article
Full-text available
First results using the new Sentinel-1 SAR look very promising but the special interferometric wide-swath data acquired in the TOPS mode makes InSAR processing more challenging than for normal stripmap mode data. The steep azimuth spectra ramp in each burst results in very stringent co-registration requirements. Combining the data of the individual...
Conference Paper
Full-text available
In Forest DRAGON 3, synergy of Earth Observation products to derive information of decadal trends of forest in northeast China was investigated. Following up the results of Forest-DRAGON 1 and 2, Growing Stock Volume (GSV) products from different years were investigated to derive information on vegetational in northeast China. The BIOMASAR maps of...
Article
Full-text available
Vegetation carbon turnover processes in forest ecosystems and their dominant drivers are far from being understood at a broader scale. Many of these turnover processes act on long timescales and include a lateral dimension and thus can hardly be investigated by plot-level studies alone. Making use of remote sensing-based products of net primary pro...
Conference Paper
Full-text available
Multi-scale approaches for mapping aboveground biomass globally are evaluated that exploit the multi-temporal archive of low-resolution (1 km) ENVISAT ASAR C-band observations and ca. 30 m resolution ALOS PALSAR L-band and Landsat mosaics. The BIOMASAR algorithm, which was initially developed for ENVISAT ASAR C-band data and boreal forest [1], is d...
Technical Report
Full-text available
The aim of this report is to illustrate by means of a series of case studies the implementation of mapping and assessment of forest ecosystem services in different contexts and geographical levels. Methodological aspects, data issues, approaches, limitations, gaps and further steps for improvement are analysed for providing good practices and decis...
Conference Paper
Full-text available
First results using the new Sentinel-1 SAR look very promising, but the special interferometrie wide-swath (IWS) data acquired in the FOPS mode makes InSAR processing challenging. Fhe steep azimuth spectra ramp in each burst results in very stringent co-registration requirements. Combining the data of the individual bursts and sub-swaths into consi...
Conference Paper
Full-text available
C-band observations of the SAR backscatter from the Envisat ASAR (2005–2012) and Sentinel-1 (2014-ongoing) instruments are reviewed to understand their suitability to detect of open water bodies. The temporal variability (TV) and the minimum backscatter (MB) of ASAR backscatter were fed to a simple algorithm based on thresholds to obtain an indicat...
Article
This paper presents and assesses spatially explicit estimates of forest growing stock volume (GSV) of the northern hemisphere (north of 10°N) from hyper-temporal observations of Envisat Advanced Synthetic Aperture Radar (ASAR) backscattered intensity using the BIOMASAR algorithm. Approximately 70,000 ASAR images at a pixel size of 0.01° were used t...
Article
Full-text available
This paper evaluates the opportunity provided by global interferometric radar datasets for monitoring deforestation, degradation and forest regrowth in tropical and semi-arid environments. The paper describes an easy to implement method for detecting forest spatial changes and estimating their magnitude. The datasets were acquired within space-born...