About
395
Publications
244,462
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
29,276
Citations
Introduction
Maurizio Mencuccini is currently ICREA Research Professor and works at CREAF (Centre for ecology and Forestry Applications) in Barcelona, Spain. He previously was at the School of GeoSciences, The University of Edinburgh, UK. Maurizio does research in Ecology, Botany and Forestry. Their current project is 'Tree Hydraulic Functioning.'
Current institution
Publications
Publications (395)
As drought-induced mortality increases globally in forest biomes, it becomes necessary for foresters to have access to reliable predictors of species vulnerability to drought and mortality risk under different climatic scenarios. On the one hand, there exist several “operational” indicators of drought resistance, which are based on observations, ex...
Water storage capacity and capacitance in trees regulate hydration levels, providing water reserves during drought. However, the effects of varying traits, tissue fractions and of different water pools on the allometry of branch‐/sample‐level properties have not been systematically investigated. We analyse the relationships between branch size and...
Tree-microbe interactions are essential for forest ecosystem functioning. Most plant–microbe research has focused on the rhizosphere, while composition of microbial communities in the phyllosphere remains underexplored. Here, we use 16S rRNA gene sequencing to explore differences between beech and Scots pine phyllospheric microbiomes at the Europea...
As the single link between leaves and the rest of the plant, petioles must develop conductive tissues according to the water influx and sugar outflow of the leaf lamina. A scaling relationship between leaf area and anatomical traits of xylem and phloem is expected to improve the efficiency of these tissues. However, the different constraints compro...
Water potential’ is the biophysically relevant measure of water status in vegetation relating to stomatal, canopy and hydraulic conductance, as well as mortality thresholds; yet, this cannot be directly related to measured and modelled fluxes of water at plot‐ to landscape‐scale without understanding its relationship with ‘water content’. The capac...
As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carb...
Forest ecosystems face increasing drought exposure due to climate change, necessitating accurate measurements of vegetation water content to assess drought stress and tree mortality risks. While Frequency Domain Reflectometry offers a viable method for monitoring stem water content by measuring dielectric permittivity, challenges arise from uncerta...
Plant functional traits hold the potential to greatly improve the understanding and prediction of climate impacts on ecosystems and carbon cycle feedback to climate change. Traits are commonly used to place species along a global conservative-acquisitive trade-off, yet how and if functional traits and conservative-acquisitive trade-offs scale up to...
Plant water uptake from the soil is a crucial element of the global hydrological cycle and essential for vegetation drought resilience. Yet, knowledge of how the distribution of water uptake depth (WUD) varies across species, climates, and seasons is scarce relative to our knowledge of aboveground plant functions. With a global literature review, w...
Metrics to quantify regulation of plant water status at the daily as opposed to the seasonal scale do not presently exist. This gap is significant since plants are hypothesised to regulate their water potential not only with respect to slowly changing soil drought but also with respect to faster changes in air vapour pressure deficit (VPD), a varia...
The sapwood area supporting a given leaf area (vH) reflects a coordinated coupling between carbon uptake, water transport and loss at a whole plant level. Worldwide variation in vH reflects diverse plants strategies adapt to prevailing environments, and impact the evolution of global carbon and water cycles. Why such a variation has not been convin...
Traits do not evolve in isolation but often as part of integrated trait syndromes, yet the relative contributions of environmental effects and evolutionary history on traits and their correlations are not easily resolved.
In the present study, we develop a methodological framework to elucidate eco‐evolutionary patterns in functional trait syndromes...
Human activities have greatly increased the reactive nitrogen in the biosphere, thus profoundly altering global nitrogen cycling. The large increase in nitrogen deposition over the past few decades has led to eutrophication in natural ecosystems, with negative effects on forest health and biodiversity. Recent studies, however, have reported oligotr...
Species’ drought resistance is determined by a combination of multiple traits and their plastic response. However, a clear understanding of how these traits are coordinated and modulate plant responses to drought is still lacking.
Here we used a water exclusion experiment on 20 Mediterranean woody species to evaluate a new framework to study plant...
Plant hydraulics is crucial for assessing the plants' capacity to extract and transport water from the soil up to their aerial organs. Along with their capacity to exchange water between plant compartments and regulate evaporation, hydraulic properties determine plant water relations, water status and susceptibility to pathogen attacks. Consequentl...
Climate change is rapidly altering weather patterns, resulting in shifts in climatic zones. The survival of trees in specific locations depends on their functional traits. Local populations exhibit trait adaptations that ensure their survival and accomplishment of growth and reproduction processes during the growing season. Studying these traits of...
Coping with water stress depends on maintaining cellular function and hydraulic conductance. Yet measurements of vulnerability to drought and salinity do not often focus on capacitance in branch organs that buffer hydraulic function during water stress. The relationships between branch water relations, stem hydraulic vulnerability and stem anatomy...
Evolutionary radiations of woody taxa within arid environments were made possible by multiple trait innovations including deep roots and embolism‐resistant xylem, but little is known about how these traits have coevolved across the phylogeny of woody plants or how they jointly influence the distribution of species.
We synthesized global trait and v...
Atmospheric conditions are expected to become warmer and drier in the future, but little is known about how evaporative demand influences forest structure and function independently from soil moisture availability, and how fast‐response variables (such as canopy water potential and stomatal conductance) may mediate longer‐term changes in forest str...
Predicting drought-induced mortality (DIM) of woody plants remains a key research challenge under climate change. Here, we integrate information on the edaphoclimatic niches, phylogeny and hydraulic traits of species to model the hydraulic risk of woody plants globally. We combine these models with species distribution records to estimate the hydra...
LLianas (woody vines) are important components of tropical forests and are known to compete with host trees for resources, decrease tree growth and increase tree mortality. Given the observed increases in liana abundance in some forests and their impacts on forest function, an integrated understanding of carbon dynamics of lianas and liana-infested...
Functional traits offer a promising avenue to improve predictions of species range shifts under climate change, which will entail warmer and often drier conditions. Although the conceptual foundation linking traits with plant performance and range shifts appears solid, the predictive ability of individual traits remains generally low. In this revie...
Frequent observations of higher mortality in larger trees than in smaller ones during droughts have sparked an increasing interest in size‐dependent drought‐induced mortality. However, the underlying physiological mechanisms are not well understood, with height‐associated hydraulic constraints often being implied as the potential mechanism driving...
Future increases in drought severity and frequency are predicted to have substantial impacts on plant function and survival. However, there is considerable uncertainty concerning what drought adjustment is and whether plants can adjust to sustained drought. This review focuses on woody plants and synthesises the evidence for drought adjustment in a...
The size-related xylem adjustments required to maintain a constant leaf-specific sapwood conductance (KLEAF) with increasing height (H) are still under discussion. Alternative hypotheses are that: (i) the conduit hydraulic diameter (Dh) at any position in the stem and/or (ii) the number of sapwood rings at stem base (NSWr) increase with H. In addit...
Regional-level applications of dynamic vegetation models are challenging because they need to accommodate the variation in plant functional diversity, which requires moving away from broadly defined functional types. Different approaches have been adopted in the last years to incorporate a trait-based perspective into modeling exercises. A common p...
Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-i...
Although a substantial body of evidence suggests that large and old trees have reduced metabolic levels, the search for the causes behind this observation has proved elusive. The strong coupling between age and size, commonly encountered in the field, precludes the isolation of the potential causes. We used standard propagation techniques (grafting...
As Earth's climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimila...
Temperature rise and more severe and frequent droughts will alter forest transpiration, thereby affecting the global water cycle. Yet, tree responses to increased atmospheric vapour pressure deficit (VPD) and reduced soil water content (SWC) are not fully understood due to long‐term tree adjustments to local environmental conditions that modify tra...
A reliable assessment of forest carbon sequestration depends on our understanding of wood ecophysiology. Within a forest, trees exhibit different timings and rates of growth during wood formation. However, their relationships with wood anatomical traits remain partially unresolved. This study evaluated the intra-annual individual variability in gro...
Background: Plasticity in response to environmental drivers can help trees cope with droughts. However, our understanding of the importance of plasticity and physiological adjustments in trees under global change is limited. Methods: We used the International Tree-Ring Data Bank (ITRDB) to examine 20th century growth responses in conifer trees duri...
Water potential is the principal driving force for the movement of water through soils and plants, and directly influences plant physiological responses. The relationships between water potential and water content in plants and soil have long been of interest, and there is increasing focus on understanding how these fundamental measures of water ar...
Transpiration is a key process driving energy, water and thus carbon dynamics. Global transpiration products are fundamental for understanding and predicting vegetation processes. However, validation of these transpiration products is limited, mainly due to lack of suitable data sets. We propose a method to use SAPFLUXNET, the first quality‐control...
Introduction:
Plant species composition in forest ecosystems can alter soil greenhouse gas (GHG) budgets by affecting soil properties and microbial communities. However, little attention has been paid to the forest types characterized by understory vegetation, especially in boreal forests where understory species contribute significantly to carbon...
Here we provide the ‘Global Spectrum of Plant Form and Function Dataset’, containing species mean values for six vascular plant traits. Together, these traits –plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass – define the primary axes of variation in plant form...
Alterations in plant litter inputs into the soil are expected to significantly affect soil greenhouse gas (GHG) emissions. However, the influence on boreal forest soils is not clear, given the large amount of accumulated soil organic matter that may buffer the impacts from the input of fresh litter. In this study, we conducted a litter manipulation...
Regional-level applications of dynamic vegetation models are challenging because they need to accommodate the variation in plant functional diversity, which requires moving away from broadly-defined functional types. Different approaches have been adopted in the last years to incorporate a trait-based perspective into modeling exercises. A common p...
Understanding how we can increase the resilience of forest systems to future extreme drought events is increasingly important as these events become more frequent and intense. Diversifying production forests using intimate mixtures of trees with complementary functional traits is considered as one promising silvicultural approach that may increase...
The ecosystem pressure-volume curve (EPV) is the relationship between vegetation water content and a representative value of water potential applied on a ground-area basis. The EPV attempts to reconcile our detailed and physically rigorous understanding of small-scale field-measurable processes to the spatial scale applicable to ecosystem and clima...
Background and aims:
Upscaling carbon allocation requires knowledge of the variability at the scales at which data are collected and applied. Trees exhibit different growth rates and timings of wood formation. However, the factors explaining these differences remain undetermined, making samplings and estimations of the growth dynamics a complicate...
Plasticity in response to environmental drivers can help trees cope with droughts. However, our understanding of the importance of plasticity and physiological adjustments in trees under global change is limited. We examine 20th century growth responses in Gymnosperm trees during (resistance) and following (resilience) years of severe soil and atmo...
We aim to identify the importance of vapour pressure deficit (VPD), soil water content (SWC) and photosynthetic photon flux density (PPFD) as drivers of tree canopy conductance, which is a key source of uncertainty for modelling vegetation responses under climate change. We use sap flow time series of 1858 trees in 122 sites from the SAPFLUXNET glo...
Safeguarding Earth’s tree diversity is a conservation priority due to the importance of trees for biodiversity and ecosystem functions and services such as carbon sequestration. Here, we improve the foundation for effective conservation of global tree diversity by analyzing a recently developed database of tree species covering 46,752 species. We q...
Observations of woody plant mortality in coastal ecosystems are globally widespread, but the overarching processes and underlying mechanisms are poorly understood. This knowledge deficiency, combined with rapidly changing water levels, storm surges, atmospheric CO2, and vapor pressure deficit, creates large predictive uncertainty regarding how coas...
Forest succession is an important process regulating the carbon and nitrogen budgets in forest ecosystems. However, little is known about how and extent by which vegetation succession predictably affects soil CO2, CH4, and N2O fluxes, especially in boreal forest. Here, a field study was conducted along a secondary forest succession trajectory from...
Drought-associated woody-plant mortality has been increasing in most regions with multi-decadal records and is projected to increase in the future, impacting terrestrial climate forcing, biodiversity and resource availability. The mechanisms underlying such mortality, however, are debated, owing to complex interactions between the drivers and the p...
Plant canopies intercept, process and potentially assimilate atmospheric nitrogen (N) additions, but the forest‐scale effects of canopy processes on N cycling and plant nutrition are not clear. Substantial method artefacts and scaling issues exist in previous experimental studies which measure relevant N fluxes either at (a) natural abundance, (b)...
Tree species display a wide variety of water use strategies, growth rates and capacity to tolerate drought. However, if we want to forecast species capacity to cope with increasing aridity and drought, we need to identify which measurable traits confer resilience to drought across species. Here, we use a global tree ring network (65 species; 1931 s...
Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-tempor...
Soil–leaf hydraulic conductance determines canopy–atmosphere coupling in vegetation models, but it is typically derived from ex‐situ measurements of stem segments and soil samples. Using a novel approach, we derive robust in‐situ estimates for whole‐tree conductance (ktree), ‘functional’ soil conductance (ksoil), and ‘system’ conductance (ksystem,...
Tropical tree species span a range of life‐history strategies within a fast–slow continuum. The position of a species within this continuum is thought to reflect a negative relationship between growth and storage, with fast‐growing species allocating more carbon to growth and slow‐growing species investing more in storage. For tropical species, the...
Many studies quantify short-term drought impact on tree growth relative to pre-drought growth averages. However, fewer studies examine the extent to which droughts of differing severity differentially impact tree growth or shape stand dynamics. Focusing on three droughts in high and low density stands of Pinus sylvestris in Scotland, we calculated...
A major foundation of trait‐based ecology is that traits have an impact on individual performance. However, trait–growth relationships have not been extensively assessed in trees, especially outside tropical ecosystems. In addition, measuring traits directly related to physiological processes remains difficult and the differences between inter‐ and...
Future climate change predictions for tropical forests highlight increased frequency and intensity of extreme drought events. However, it remains unclear whether large and small trees have differential strategies to tolerate drought due to the different niches they occupy. The future of tropical forests is ultimately dependent on the capacity of sm...
Droughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time...
Physiological and biochemical traits hold great promise for demographic research as potential proxies (biomarkers) of various biotic and environmental variables that determine individual fitness and ultimately demographic rates. Integrating such biomarkers into demographic models can thus provide insights into drivers of population dynamics or incr...
Minimum water potential (Ψmin) is a key variable for characterizing dehydration tolerance and hydraulic safety margins (HSMs) in plants. Ψmin is usually estimated as the absolute minimum tissue Ψ experienced by a species, but this is problematic because sample extremes are affected by sample size and the underlying probability distribution.
We comp...
It is easy to measure annual growth of a tree stem. It is hard to measure its daily growth. The reason for this difficulty is the microscopic scale and the need to separate processes that simultaneously result in reversible and irreversible stem expansion. Here we present a model that separates reversible from irreversible cell expansion. Our model...
Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological, energy, and carbon budgets at the land–atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observatio...
The mangrove Avicennia marina adjusts internal salt concentrations by foliar salt secretion. Deliquescence of accumulated salt causes leaf wetting that may provide a water source for salt‐secreting plants in arid coastal wetlands where high nocturnal humidity can usually support deliquescence whereas rainfall events are rare. We tested the hypothes...
Tree water use is central to plant function and ecosystem fluxes. However, it is still unknown how organ‐level water‐relations traits are coordinated to determine whole‐tree water‐use strategies in response to drought, and whether this coordination depends on climate.
Here we used a global sap flow database (SAPFLUXNET) to study the response of wat...
Understanding how plants acclimate to drought is crucial for predicting future vulnerability, yet seasonal acclimation of traits that improve drought tolerance in trees remains poorly resolved. We hypothesized that dry season acclimation of leaf and stem traits influencing shoot water storage and hydraulic capacitance would mitigate the drought‐ass...
Non-structural carbohydrates (NSC) are major substrates for plant metabolism and have been implicated in mediating drought-induced tree mortality. Despite their significance, NSC dynamics in tropical forests remain little studied. We present leaf and branch NSC data for 82 Amazon canopy tree species in six sites spanning a broad precipitation gradi...
This article is a Commentary on Venturas et al., 230: 1896–1910.
Understanding the impacts of extreme drought on forest productivity requires a comprehensive assessment of tree and forest resilience. However, current approaches to quantifying resilience limit our understanding of forest response dynamics, recovery trajectories and drought legacies by constraining the temporal scale and resolution of assessment....
Understanding how water use and drought stress in woody plants change in relation to compositional, structural and environmental variability of mixed forests is key to understand their functioning and dynamics. Observational and experimental studies have so far shown a complex array of water use and drought stress responses to species mixing, but p...
Under the same environmental conditions, southern and northern populations of temperate and boreal ecosystems exhibit different growth performance. However, which growth trait drives this difference is still unresolved. This study aimed to disentangle the effect of duration and rate of growth on shoot extension of five black spruce [Picea mariana (...
Canopy wetness is a common condition that influences photosynthesis, the leaching or uptake of solutes, the water status and energy balance of canopies, and the interpretation of eddy covariance and remote sensing data. While often treated as a binary variable, ‘wet’ or ‘dry’, forest canopies are often partially wet, requiring the use of a continuo...
Both historical and contemporary environmental conditions determine present biodiversity patterns, but their relative importance is not well understood. One way to disentangle their relative effects is to assess how different dimensions of beta-diversity relate to past climatic changes, i.e., taxonomic, phylogenetic and functional compositional dis...
Plant traits are increasingly being used to improve prediction of plant function, including plant demography. However, the capability of plant traits to predict demographic rates remains uncertain, particularly in the context of trees experiencing a changing climate.
Here we present data combining 17 plant traits associated with plant structure, me...
Nowadays, evergreen sclerophyllous and winter-deciduous malacophyllous oaks with different paleogeographical origins coexist under Mediterranean-type climates, such as the mixed forests of the evergreen Quercus ilex subsp. rotundifolia and the winter-deciduous Quercus faginea. Both Mediterranean oaks constitute two examples of contrasting leaf habi...
Whether tropical trees acclimate to long‐term drought stress remains unclear. This uncertainty is amplified if drought stress is accompanied by changes in other drivers such as the increases in canopy light exposure that might be induced by tree mortality or other disturbances.
Photosynthetic capacity, leaf respiration, non‐structural carbohydrate...
Plant transpiration links physiological responses of vegetation to water supply and demand with hydrological,energy and carbon budgets at the land-atmosphere interface. However, despite being the main land evaporative flux at the global scale, transpiration and its response to environmental drivers are currently not well constrained by observations...
Hydraulic properties control plant responses to climate and are likely to be under strong selective pressure, but their macro‐evolutionary history remains poorly characterised. To fill this gap, we compiled a global dataset of hydraulic traits describing xylem conductivity (Ks), xylem resistance to embolism (P50), sapwood allocation relative to lea...