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ABSTRACT 
       Most vehicles accident were caused by instability 
vehicle motion. The instability just occurs cause four former 
integration controls (Feed-forward control, H∞ control, 
Nonlinear Predictive control, Robust control) can not adapt 
to driving condition (vehicle, drivers character and 
environment), which always change their structure and 
parameter at high speed. This obstacle results the controlled 
variable of stability such as  Yaw-Rate (YR) , Vehicle Side 
Slip (VSS) , Roll Angle (RA) cannot fulfill control targets, 
instability vehicle direction and then cause accident. 
.       This paper propose a new integration control design 
exploits combined Multi Dimension Fuzzy C-Mean 
Clustering (MDFC) and Adaptive Back-propagation Control 
(ABC). ABC consist of NN-Plant and NN-Controller. 
Architecture NN-Plant results from genetically optimized 
hybrid fuzzy neural network (gHFNN) while NN-Controller 
from multi-layer neural network (MLN) with single hidden 
layer. Instead of three former vehicle dynamics model like 
decoupling of linear to nonlinear plant, two dimension to 
three dimension plant and ESP-4WS-AS plant, which are 
imprecise to build a driving condition model, will be 
proposed a “Three in one dynamics system (TODS)” plant, 
which can represents the best model of interaction among 
vehicle dynamics, driver characters and environment. The 
solving methodology are arrange like follow, First step vary 
2.187.000 TODS real time data’s is realized by test drive a 
vehicle equipped with electronics stability program(ESP), 
four wheel steering (4 WS) and active suspension (AS), 
which covers 6 dimensions vector (YR from yaw-rate 
sensor, VSS from lateral acceleration sensor, RA from body 
level sensor, TDYC  from ESP actuator, δr from rear steering 
actuator, MAS from suspension actuator). Data’s inputs to 
MDFC to cluster 810 centers. Second step is the training 
process to update the optimized architecture and parameters 
of NN-Plant uses all centers based on genetic algorithm 
(GA), LSE and BP. Third step is the training process to 
update optimized NN-Controller's architecture and 
parameters uses input reference and desired input of updated 
NN-Plant based on constructive back propagation (CBP). 
Fourth step is validating and testing of ABC use all data’s of 
TODS. 

        An experiment and simulation is completely setup to 
prove the performance of Hybrid MDFC-ABC integrated 
control, when is compared with four former integrated 
control method to control TODS. The simulation result in 
the form of rank shows that topmost sequence performance 
is Hybrid MDFC-ABC, then robust control, H-infinite 
control, NLPC, No-integration control  and feed-forward 
control. 
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1.  Introduction 
 
       One of the important parameter in vehicle design is 
stability of vehicle direction, which is according to the 
driver’s desire (Output Target). From 1500 accident 877 
accident( 65%) because of driver factor 301 accident( 22%) 
because of environmental factor and 182 accident( 13%) 
because of vehicle factor.[2]  Implicitly can be concluded, 
that the accident can be happened because of vehicle 
cannot adapt the character of driver and environment. 
Stability output vector which is also referred as Vehicle 
State generally consist of 6 variables[3]. Vehicle state, 
which related major to stability are Yaw-Rate (YR) , 
Vehicle Side Slip ( VSS) or can be represented with Lateral 
Velocity (Vy) , Rolling Angle (RA). Vehicle state, Which 
minor relate to stability are Pitching Angle (PA) , Axial 
Velocity (Vz ) and Longitudinal  Velocity (Vx). Vehicle 
dynamics is very complex because it’s unknown structure 
and its uncertainty parameter, so that cause the result of 
integrated control will still has Sum-Error and Error-
Square. Currently there are 3 important stability control 
subsystem that is Electronics Stability Program 
(ESP/DYC)[12] Active Steering like 4-WS[19]or 
ESAS[7]and Active Suspension ( AS)[15]. Both of them 
are not integrated or integrated as controlling vehicle 
stability. 
      Four integrated method which have been used and also 
introduced by former researcher. Kozuya Kitajima has 
designed and simulated two integrated control first is Feed-
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forward integration method [11], which coordinate activity 
of decoupling result of 3 stability control system in serial 
process depended priority scale. Its output vector is VSS, YR 
and RA and its control vector are Wheel torque (TVDC), 
Rolling torque (MAS) and Rear steering angle(δr). 
Performance of Feed-forward lower than which without 
integration (figure22)because works alternately and a 
assumption that other sensor of control system act as 
disturbance input. Second integration method is H∞ control 
[11]which its target to yield a integrated control by 
minimizing value of H∞ gain. Optimizing will be done for 
the transfer function of DYC-4WS-AS decoupling result to 
disturbance Input. Control vector are TVDC, MAS, δr based on 
output measurement, which passing loops gain. Output 
vector are VSS, YR, RA. Performance H∞ integrated control 
is better than both feed-forward and which without 
integration at a certain frequency area. Its weakness is that in 
determination of appropriate loop gain at low frequency area 
where trouble emerges to influence ability of robust 
performance. If we decide imprecise high frequency area, 
where indefinite model structure and uncertainty parameter 
are happened will influence its robust stabilization. Result of 
control vector output of vehicle is still big, if setting of 
balance area which controls him in external area of its robust 
design. 
      Third Integration method was introduced by 
ShiniChirnto through application of Nonlinear Predictive 
Control (NLPC) [9] for ESP and 4WS. State variable is 
X=(X1-X2). Its state variable will follow goals trajectory of 
S1 of partition of trajectory state S = (S 1 , S2), with error 
tracking state (e = X1 - S1). Control vector are chosen to be 
four wheel torque (Ti) and rear steering gain (ξi). The 
approach of integration control this is to get a desired control 
vector by optimizing of tracking error function (Performance 
Index) to control vector. Weakness of NLPC is difficulty in 
modeling of vehicle dynamics plant, because it contains un-
modeled structure at certain frequency. This mistake will 
result imprecise prediction so that its performance not be 
perfectly.  
       Fourth Integration method was developed by M. 
Lakehal Ayat is referred as robust control[8]  and used to 
integrate  ESP and AS. Its decoupling process is based on 
model 2-D ( Vx , Vy , YR) to 3-D ( PA , RA , Vz ). Weakness 
of robust integration which applied in here are that the 
performance of tracking to only be good at low Vx until 100 
km / hour , noise sensitivity is good to all frequency whereas 
disturbance rejection is only good at low frequency until 
middle. The uppermost weakness is that sensitivity to the 
change of nonlinearity plant at high frequency so that its 
control performance is not accurate. Robust performance is 
better compared to the three others. 
       In general weakness of the four former integration 
control systems can be explain like follow, first difficulty to 
identify dynamics of driving condition itself which always 
change its structure and parameter over time such as vehicle 
(unknown vehicle dynamics function) , environment 
(unpredictable wheel-ground) and driver (drivers character), 
which in this research is referred as Tree in One Dynamics 

System (TODS). Second, this TODS certainly cannot be 
reckoned by former integrated control system. (figure1). 
        Therefore, this paper introduce an integration control 
based on Artificial Intelligent which combine fuzzy 
clustering and Adaptive Back-propagation Control (ABC) 
[4]. ABC can be realized by simulation of Model Reference 
Neural Network (MRNNC).  MRNNC consists of Neural 
Network Plant (NNP) and of Neural Network Controller 
(NNC) The following strategy scheme will be provided, 
first identify TODS by driving test to get 2.187.000 data 
sets as input of Advanced Neural Fuzzy such as Multi 
Dimension Fuzzy C-Means Clustering (MDFC) [5]. 
Clustering process is took place to get 810 convergence 
centers. Data’s to MDFC result from real time test drive 
according to the variation of level driver ability and 
condition of environment (wheel-ground, maneuver etc) 
like seen at figure 4. Centers are used to train NNP. To 
train NNC use reference data input and desired output such 
as the input of updated NNP while its output is the same 
value with reference data. Architecture of NNP is build 
from an advance architecture of genetically optimized 
hybrid fuzzy neural network (gHFNN), which construct 
from combined FNN and PNN [6]. Optimized architecture 
of gHFNN designed by genetic algorithms (Gas) Learning 
to update parameter of FNN as a premise part of rule-base 
structure of gHFNN use standard back propagation (BP) 
and to update parameter of PNN as a consequent part of 
rule-base structure of gHFNN use standard least square 
method (LSE). NNC results from multi layer network with 
a single hidden layer (MLN) [13] Learning for MLN to get 
the optimum number of hidden layers node and parameter 
use constructive back propagation (CBP)..  
       Performance of MDFC-ABC integration control results 
smaller yaw rate error (ΔYR <3o/sec), Vehicle Side Slip 
error smaller (ΔVSS < 5o) , Phase Plane (VSS To YR Phase 
=> 0) , Roll Angle error and its rate smaller (ΔRA < 1,5o , 
d(RA) / dt => 0), after passing simulation test then four 
former integration control  method  ( Feed-forward , H∞ , 
NLPC , Robust ). 
       This paper will be arranged with the following 
sequence. First session is introduction to review about kind 
of handling problems for which vehicle were equipped by 
former integration control, our proposed solution and how 
to validate the result of experiment and simulation. In 
second chapter will be explained methodology such as the 
different approach between former modeling method and 
identification TODS by MDFC-NNP, how to designed 
genetically optimized architecture of ABC/MRNNC and its 
parameter learning process. Third session review the 
simulation and discussion. Finally fourth session  is the 
conclusion.  
 
 
2.  Former Vehicle Dynamics Model 
 
     The former control integration method formulate the 
vehicle dynamics in determined system, it means to  be 
assumed that all pre-viewable disturbance such as 
cornering stiffness, damper constant, spring stiffness etc. 
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don’t change over time. There are 3 scheme to develop a 
stability vehicle model, first by decoupling of 2-dimension 
system and 3-dimension system and use a robust integration 
control, second by decoupling of linear and nonlinear model 
and then for integration control apply a nonlinear predictive 
control (NLPC), third by decoupling of ESP, 4WS and AS to 
get vehicle stability model and use for integration control 
feed-forward or H∞ control system. (figure 1). 
          

                
 

Figure 1 : Three Schemes of Former Vehicle Modeling 
 

Decoupling produce a state space function with state 
variable (vehicle state), X = YR, VSS, RA and control 
variable U =TVDC , δr , MAS are shown in figure 2.  The form 
of state space is symbolized like below  
 

                             UCXBXA
o

... +=                            (1) 
 
                                   XIY .=  
 
    

 
 
Figure 2 : Vehicle State and Control Variable of  Subsystem 

(DYC, 4WS, AS) 
 

or  can be completely wrote in form of linear matrix [11] 
 

 
                                                                                           (2) 
 
Where , the constant parameters are : 
 

M     =  unsprung mass 
Ms    = sprung mass  
Cάr  = cornering stiffnes rear wheel 
Cάf  = cornering stiffnest front wheel 
L     = wheel base 
Kus  = understeer index 
a     = distance center of weight to front axle 
b     = distance center of weight to rear axle 
Vx   = longitudinal velocity 
h    = distance center of weight to ground 
Ixx  = inertia moment of rolling 
Ixz  = inertia moment of yaw-roll  
Izz  = inertia moment of yawing  
Kp  = rolling damper constant 
Kθ  = rolling stiffnes constant 
Tf  = distance between left to right  wheel 
Rw = radius of wheel 

 
Previously three modeling scheme (decoupling 1, 2, 3) will 
be imprecise, especially in high frequency, when the 
vehicle structure (number of state space equation) and its 
parameter (matrix constant) start to change. Another side 
the direction of vehicle moving should not only be 
depended on vehicle but also driver character and 
environment. 
 
To solve this weakness, this paper propose a new solution, 
in modeling approach by identification of TODS using 
combined MDFC-NNP.(figure 3).  
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3.  Solving Methodology 
 
     MDFC-ABC integrated control design process to control 
TODS (figure 9) is realized by following algorithm, is 
illustrated by figure 3. The explanation of every step are also 
written clearly to make the experiment briefly. 
 

         
 

figure 3: Flow Chart Design of  MDFC-ABC 
 

4.  Clustering TODS by MDFC 
 
       To realize the Identification process we have developed 
a prototype car, which was equipped by ESP, 4 WS and AS 
(fig 6). For communication of input-output each ESP-ECU, 
4WS-ECU and AS-ECU[10]  were applied a network 
transceiver under SAE J1939[20] with 0-8 bytes data field 
length, 1 Mbps max. bit rate, max. bus length > 40 m and  
max. number node >16 (fig 5). Scheme of plant 
identification is shown figure 4.   
 

              
 

Figure 4: Combined MDFC-NNP as proposed model  
(TODS) 

 
Figure 5: ESP,4WS and AS ECUs provided by network 

transceiver 
 

 
 

Figure 6: TODS Prototype Vehicle equipped by  
ESP,4WS & AS 

           
 
           Entry data for MDFC will be explored by variation of 
driver level and environment condition. As representative 
of environment are the variation of maneuvers and wheel-
ground friction. (Figure 7 & table 1). The popular 
maneuver are used, standard of J-Turning, Skyhook, S-
Turning which are varied to kind level of wheel–ground 
friction. For classifying the drivers level require 10 
housewife’s for beginners, 10 taxi drivers  for intermediates 
and 10 racers are chosen  for masters. PCI card was used to 
transfer data from network for collecting input (sensors) 
and output (actuators) of each ECU’s. Yaw rate sensor, 
lateral-longitudinal acceleration sensor, body level sensor 
are processed to get vehicle state such as YR, VSS, RA. 
Actuators signal like ESP hydraulic PWM, rear steering 
drive motor voltage, orifice stepper motor voltage for 
suspension damper are measured and processed as control 
variable TVDC , δr and MAS.  
 

                      
 

Figure 7:  Variation  to generate the data of TODS  
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Therefore to vary the data of TODS, hence the driver level 
and environment are used as guidance to list the condition of 
vehicle operation. Every driving condition (Ci1 or Ci2 or Ci3) 
is conducted by 10 different drivers who have the same 
level. Each driver should do maneuver 9 times every 
condition.. 
 

Table 1 :  Setup for Variation of Driving Condition 
 

 
 
        Data set will be recorded every 0,1 m displacement of 
vehicle moving from starting until end the maneuver by 
wheel speed sensors. If distance of turning 90 m then a trip 
results 900 recorded data’s. It means 27x10x9x900 = 
2.187.000 sampling took place. Decide the number of 
candidate center are based on the critical operation of the 
driving occurs to each condition (Cij) assumed  30 point. 
Finally we have 27x30 =  810 centers. Input data entry to 
MDFC are  Xj = {YRj , VSSj , RAj , TVDC(j) , δrj , MAS(j).}    ( j 
= 1 : 2.187.000) are shown in figure 8. 
 

           
 

Figure 8: Variance of a driver does 3 turning  in gravel,  
which are recorded every  0,1 m vehicle moving. 

 
 
MDFC outputs the 810 significant centers after 
computational calculation based on the formula 3up to 5 
  
Cost function for MDFC is described as follow:  
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To calculate the position of center is formulated [5] 
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To fulfill element of matrix U we use a formula:  
 

            

∑ =

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

m

k

m

kj

ij

ij

d
d

U

1

)1/(2

1
                                  (5) 

Algorithm to find a convergence centers, then it should 
flow like below: 
 
Step 1 
Fulfill initial condition value matrix weight U by a small 
random number [0:1]. 
 
Step 2: 
Calculate all center positions Ci  ( i =1..810) by using 
formula 4 
 
Step 3: 
Use formula 3 to calculate Cost Function J, stop calculation 
if the value of cost function lower than given threshold if 
higher than given threshold goes to step 4. 
 
Step 4  
Find new matrix U using formula 5 and then back to step 3.  
 
If there are two or more center have the same position, 
repeat vary TODS, although we have never been met this 
obstacle. 
 
After matrix U convergence we get 810 centers, which 
already to be inputted for training NNP. 
 
 
5.  Design Integrated Control 
 
    To design integrated control we exploits the adaptive 
back propagation control (ABC). ABC is developed from 
NNP to identify plant and NNC to control updated NNP 
based on reference value. Exactly NNC is the inverted of 
updated NNP. Because of complexity of TODS, we build 
NNP based on architecture of genetically optimized hybrid 
fuzzy neural network gHFNN.   NNC as control part of 
ABC results from adaptive multi layer neural network 
(MLN), which always enable to adapt the change of TODS 
every time.   
Fig 9 is the expression of ABC scheme with black arrows 
as the forward flow of control process and red arrow 
symbolize back propagation learning to update the new 
parameter ( joint weight or synapse) and optimization 
architecture by GAS . 
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   Yd  =   Reference variable                   Ya  =  ModeL output 

    Y    =  Real Plant output                     Ud  =  Reference control variable 

     e   =  Error                                          U  =  Real control variablel 

 
Figure 9:  Scheme of Adaptive Back propagation Control 

(ABC) 
 
5.1  Design Neural Network  Plant (NNP) 
 
NNP results from a optimized genetically hybrid fuzzy 
neural network (gHFNN).  Then gHFNN consist of fuzzy 
relation neural network (FR-NN) as supporting of formation 
of the premise part of the rule-based structure of the gHFNN 
and polynomial neural network (PNN) as the consequence 
part of the rule-based structure of the gHFNN.   
 
Step 1  FR-NN architecture optimization with GA 
(gFNN) 
 
In order to enhance the of the FR-NN we use GAs to adjust 
learning rate ( ή ), momentum coefficient ( ά ) and parameter 
of gauss membership function ( a , b , c ). It means we have 
5 items or 5 sub-chromosome, which should be structured in 
5 bit groups  
Fig.10 is shown how to arrange the bits and its normalization 
to optimized parameter values.  
 

 
 

Figure 10:  Mapping the gFNN optimized item  on a 
chromosome 

 
a) Learning rate (ή)   
The 4 bits of the 1st sub chromosome are assigned to the 
binary bits for the selection of the learning rate. The 4 bits 
are decoded into a decimal format. The decimal value 
obtained is normalized into [0.001-0.1] and rounded off. The 
normalized integer value is given as the learning rate.  
 
 
 

b) Momentum coefficient (ά) 
The 4 bits of the 2nd sub chromosome are assigned to the 
binary bits for the selection of the momentum coefficient. 
The 4 bits are decoded into a decimal format. The decimal 
value obtained is normalized into [0.1-1.0] and rounded off. 
The normalized integer value is given as the momentum 
coefficient.  
 
c) Gauss membership function parameters  ( a , b , c ) 
Each 8 bits of the 3rd, 4th and 5th sub chromosome are 
assigned to the binary bits for the selection of the 
membership parameter a, b, c. Each 8 bits are decoded into 
a decimal format. The 3 decimal values obtained are 
normalized into [0.1-5.0] and rounded off. The 3 
normalized integer values are given as a, b and c.  
 
Step 2  Update the output joint weight of  gFNN 
 
If n is the number of selected rules, A is the updated  gauss 
membership function,  X is input antecedent vector and Y 
is output vector W is the output weight, we can express if 
then rule like below [6] 
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     Finally Y can be found by inference system  
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Based this structure to update jointed weight can be 
formulated based on steepest gradient descend.          
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                                                                                           (7) 
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Step 3   PNN architecture optimization with GA  (gPNN) 
 
    Optimization of PNN architecture concerns the selection 
of the maximum number input variable (N), the polynomial 
order (T) and number of node in each layer (PNs). There are 
4 items which should be structured in 4 bit groups or sub-
chromosomes. Fig.11 is shown the bit arrangement of the 
sub-chromosome and its normalization to optimized 
parameter values. We divide the chromosome into 4 sub-
chromosomes as shown in the 1st sub-chromosome contains 
the max number of input variables goes to node, the 2nd sub-
chromosome involves the order of the polynomial of the 
node, and the 3rd sub-chromosome (remaining bits) contains 
total input variable (n) coming to node at 2nd layer of gPNN 
represents the number of rule are developed gFNN device. 
and 4th sub-chromosome is the number of node (W) in 2nd 
layer of gPNN.   
 
 

 
 

Figure 11:  Mapping the gPNN optimized item  on a 
chromosome 

 
We create a population of chromosome for a PN, where each 
chromosome is a binary vector of bits. All bits for each 
chromosome are initialized randomly. The output of the 
layer 5 in the premise structure of the gFNN, is treated as the 
1st layer of the consequence structure of gPNN, that is, x1=f1, 

x2=f2,….., xn=fm .   

 
Each step of the genetic design of the 4 types of the 
parameters available within the PN is structured as follows: 
 
a) Maximum number of input variables coming to each node 
in the corresponding layer 
The first 3 bit of the given chromosome are assigned to the 
binary bits for the selection of the number of input variables 
The selected 3 bits are decoded into decimal. The above 
decimal value is converted into [1-8] and rounded off. N 
denotes the maximal number of input variables entering the 
corresponding node (PN). The normalized integer value is 
then treated as the number of input variables (or input nodes) 
coming to the corresponding node. 
 
b) Polynomial order of each node in each layer.  
The 3bits of the 2nd sub chromosome are assigned to the 
binary bits for the selection of the order of polynomial. The 
3bits are decoded into a decimal format. The decimal value 
obtained is normalized into [1 5] and rounded off. The 
normalized integer value is given as the polynomial order.  
 

c). Total number n of node in the 1st layer (input layer of 
gPNN) 
The remaining bits are assigned to the binary bits for the 
selection input variables. The remaining bits are divided by 
the value obtained such as number node in 1st layer. Each 
bit structure is decoded into decimal. The decimal value 
obtained is normalized into [4-50] and rounded off . n is the 
overall system’s input in the 1st layer. 
 
d) Total number W of nodes in 2nd layer or higher to be 
retained (selected) at the next generation of the gPNN.  
The remaining bits are assigned to the binary bits for the 
selection input variables. The remaining bits are divided by 
the value obtained such as number node in 1st layer. Each 
bit structure is decoded into decimal. The decimal value 
obtained is normalized into [1- 16] and rounded off. W is 
the overall system’s input in the 2nd layer. 
 
The normalized integer value is then taken as the selected 
input variables while constructing each node of the 
corresponding layer. Here, if the selected input variables 
are multiple duplicated, the multiple-duplicated input 
variables are treated as single input variable. 
 
Step 4 
The vector of polynomial ά = [ p , q ,r ,…) coefficients is 
derived by minimizing the mean squared error between yi 
and y. To evaluate the approximation and generalization 
capability of a PN produced by each chromosome, we use 
the following fitness function (FF) like below: 
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Where object function (OF) is 
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The structure of consequence part of gPNN is linear, then 
to update the polynomial coefficient use least square error 
(LSE) based on forward learning. 
 
 
5.2  Forward Learning (LSE)  

 
Input-output data is state by linear function as follow:                          

               jkjUk FX α*)(

−−

=      (k=1..3 , j=1..6)             (8) 
                                              
Then to update general parameter in epoch z for p-entry 
data will be formulated as follow [5] 
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where   Q is  ” forgetting factor ” matrix  λ    ( 0 : 1 ) 
To generate new populations of the next generation, we 
carries out selection, crossover, and mutation operation 
using genetic information and the fitness values. Until the 
last generation, this step carries out by repeating previously 
steps such as fig 3 
The termination condition builds a sound compromise 
between the high accuracy of the resulting model and its 
complexity as well as generalization abilities.  
    
 
Step 5 
 
Optimized Architecture of NNP 
 
Architecture of NNP is built gHFNN 1st  until  5th layer as 
supporting of formation of the premise part of the rule-based 
structure of the gHFNN, 5th until 7th as the consequence part 
of the rule-based structure of the gHFNN. The input of NNP 
are Xk=  [ TVDC , δr , MAS ]  and YL = [ YRa , VSSa , RAa ] 
as its output device . (figure 12) 
 
 
                

 
 

Figure 12: Architecture Adaptive Network of NNP 
(gHFNN) 

 
 
Design Neural Network Controller (NNC) 
 
Architecture of NNC 
 
We use a three-layer network structure (MLN) with (L=3) 
input neuron, (h) hidden layer node and (k=3) output neuron 
for each layer as illustrated in fig 13. The network output or 
control input is expressed as formula 10 and 11  [13] 

In output layer ( 3rd layer ) 

           kh

h

j
khk bYX += ∑

=

).( )2(
1

)3( α                         (10) 

 
And in hidden layer ( 2nd layer ) 
 

            ⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

=

3

1
)1()2( ).(.

L
hLhLLhh bYY αα                 (11) 

Where output vector in output layer (3rd layer) is expressed  
          [ ]ASrVDCk MTX ,,)3( δ=  
 
And input vector in 1st layer is 
 
           [ ]aaaL ASVSSYRY ,,)1( =  
 

                 
Figure 13 : Architecture Adaptive Network of NNC 

 
Hidden Layer Node Optimization  
 
In order to optimize the number of hidden layer node (h) 
and update the joint weight for every selected hidden layer 
node is developed the constructive back propagation 
algorithm [1]. is shown in fig 14.               
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Figure 14: Flow Chart of Integration Control 

 
Learning Process to update parameter NNC (MLN) 
 
       Learning process for NNC is selected use back-
propagation learning, off-board for every epoch to update 
new parameters. Learning at backward process uses Gauss-
Newton (GN). 
 
If )3(3)3(2)3(1 ,, XMXXT ASrVDC === δ  
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Non-linier function can be assumed as follow 
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Data 810 (p) in epoch z produce overall measure-error  
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Error vector per data, which its value are influenced by 
former parameter (αz-1) 
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so that its gradient  descent in epoch z can be formulated [5] 
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Where    J is Jacobean matrix of error vector, while the 
Hessian matrix of overall measure error  [5] to be: 
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Cause that the change of parameter based on Gauss-
Newton (GN) generally should be described as follow.   
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or    
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G M update new general parameter (epoch z )  can be 
found from the change of  general parameter and the effect 
of Learning Rate η as follow   
                                              
                           αηαα Δ+= − .1zz                            (19)                       
                                  
To find signal error each node in layer (fig 15) using Chain 
Rule Back propagation  for every data entry (p) as follow: 
          
               

    
 

Figure 15:  a Neuron of  NNC 
 

 Signal Error in layer 3(output), which has node k  ( 1…3 ) 
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          The change of weight, which joint node k in output 
layer to node h in hidden layer (2nd layer) is defined like 
bellow.    
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       Signal Error in 2nd  layer (hidden layer) has node  h  
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The weighted factor, which joint node h in hidden layer to 
node L in input layer can be calculated by formula bellow. 
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6.  Simulation 
 
       To realize the simulation of former integration control 
and ABC integration control which control TODS we were 
building two block scheme. First block consists of TODS 
as plant and former method (Feed-forward, H-infinite, 
NLPC, Robust) as controller (figure 16), and second block 
consists of The same character of TODS and ABC as 
controller.(figure17).        
 

 
Figure 16:  Block of  Former Integration Control and 

TODS plant 
 

Y = Reference (YRs , VSSs , RAs )           X = Vehicle State (YRa , VSSa , RAa 

) 

C = Control Vector (TVDC , δr , MAS )     D = Driver disturbance ( δf , TR , 

BP ) 

E = Environment disturbance ( Fdrag , Ωi , µi ) 

 
 

       

 
Figure 17:  Block of  MRNNC and TODS plant 

 
Y = Reference (YRs , VSSs , RAs )           X = Vehicle State (YRa , VSSa , RAa 

) 

C = Control Vector (TVDC , δr , MAS )    D = Driver disturbance ( δf , TR , 

BP ) 

E = Environment disturbance ( Fdrag , Ωi , µi ) 

 

6.1  Control Target 

        Reference variable, which should be input to neural 
network control are defined how to get desired vehicle state 
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value, which affect stability of vehicle and convenience of 
passenger [3] 
 
Error Yaw-Rate  (YR)                  
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                      (28)   

Error Vehicle Side Slip (VSS)             

00 =>−=Δ as VSSVSS                               (29)  

Error Rolling Angle (RA)                              

                    00 =>−=Δ as RARA                               (30)   

Data input and output for identification to be taken from 810 
centers, which are clustered by MDFC is presented fig 18.  
       The learning, validation and testing process of NNP is 
shown in figure 19, how to get convergence of error. The 
number of data is 810, number of epoch 30, and number of 
segment 20. After running GA to optimized the architecture 
of gHFNN results 32 rules , learning rate 0.08 , momentum 
0.6 , parameter of membership ( a = 0.85, b = 2, c = 2.2 ) and 
for PNN structure are  n = 32 , N = 4 , T = 2 , W = 16  and  
polynomial constants are [ 0.054  ;  -0.023  ;  0.123   ;  -1.2   
;   3.61  ;   0.167  ]. We design uniformly for selected PN 
node. 
 
    

 
 

Figure 18:  Preparing all  Cluster  to Training  NNP 
 

         Center data for  training NNP  Input = TVDC  (blue), δr(violet) , 
MAS(red). 

Output = YR (blue), RA(red), VSS(violet) 
 
 

    

 
 

Figure 19:  Training, Validation, Testing  Process for NNP 

Data for training NNC to be taken from the reference and 
desired input of update NNP with the same output value 
with the given  reference. (Figure 20) 
 
     

 
 

Figure 20: Preparing Data Reference for Training NNC 
 Reference data for training NNC  Input = ΔYR (blue),  ΔRA(red), 

ΔVSS(violet)  Output = TVDC (blue), δr(violet), MAS(red). 
 

Learning process of NNC will update the joint weight of 
optimized architecture specially the number of hidden layer 
node. (figure 21). The GA optimization results 48 hidden 
layer nodes, which the best generalization and don’t meet 
locally optimum point during training, lowest error during 
testing. 
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Figure 21: Training Process to Update  NNC Parameter 
 
 
7.  Integrated Control Performance 
 
        Simulation is conducted comprehensively to 4 former 
integration system and MDFC-ABC integration. Vehicle 
states output, which are measured to be compared to 
reference to get (ΔYR, ΔVSS, ΔRA). To make moderate for 
comparing among one integration system with other 
integration system, hence has been done by assessment of 
response value in the form of rank. List of rank is shown in 
table2.  As reference for becoming rank list, hence the got 
error have been divided in to several group in according to 
its rank   
        
Average of Error yaw rate (ΔYR)  
        
            ΔYR  <  3o/det                               Rank   1  
      3o/det  <  ΔYR  < 6o/det                       Rank   2 
      6o/det  <  ΔYR  < 10o/det                     Rank  3 
             ΔYR  >  10o/det                             Rank  4 
 
Error Vehicle Side Slip  (ΔVSS)  
     
              ΔVSS  <  5o                                Rank   1  
          5o <  ΔVSS  < 10o                           Rank  2 
          10o <  ΔVSS < 20o                          Rank  3 
           ΔVSS  >  20o/det                           Rank  4 
 
Average of Error Roll Angle (ΔRA)     
 
            ΔRA  <  1,5o                                Rank   1  
        1,5o <  ΔRA < 3,5o                          Rank   2 
        3,5o  <  ΔRA < 7,0o                         Rank   3 
              ΔRA  >  7,0o                              Rank  4 
 
Figure 19 is an example of error yaw rate response of TODS 
is controlled by all integration method. 
 
 

 
Figure 22: Error Yaw Rate Response (x 0,1 ) 

 
             Feedforward (dark blue)-H∞ optimal(ligh blue)-Robust(violet) 
                         NLPC(green)-AI (red)-Referensi (black) 
 

Table 2:  List of Simulation Result in the form of Rank 

 
 
8.  Simulation Result Discussion  
 
       According to total value in table 2 shows  Robust 
gets19, NLPC gets 38, H infinite gets 27, Feed-forward 
gets 45 and No integrated  gets  32. integration control by 
MDFC-ABC get 14 It means, that as low as total value as 
good as they yield their performance of integrated control 
is. 
   
    MDFC-ABC controls vehicle stability for all maneuver 
result the best performance ( lowest rank ), which other 
integrated control can not meet.   
  
        Sequence of Rank are then concluded as follow: 
 AI (MDFC-ABC) = excellent, Robust = very good ,  H∞ 
=good NLPC = adequate ,  Feed Forward = bad. 
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9.  Conclusion 
 

Based on simulation result, then it can be decided, that 
MDFC-ABC is the best choice for integrating of subsystem 
control of vehicle stability. 
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