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Flow graphs: interweaving dynamics and structure

R. Lambiotte1, R. Sinatra2,3, J.-C. Delvenne4,5, T.S. Evans6, M. Barahona1 and V. Latora2,3
1 Institute for Mathematical Sciences, Imperial College London, 53 Prince’s Gate, SW7 2PG London, UK
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The behavior of complex systems is determined not only by the topological organization of their
interconnections but also by the dynamical processes taking place among their constituents. A
faithful modeling of the dynamics is essential because different dynamical processes may be affected
very differently by network topology. A full characterization of such systems thus requires a formal-
ization that encompasses both aspects simultaneously, rather than relying only on the topological
adjacency matrix. To achieve this, we introduce the concept of flow graphs, namely weighted net-
works where dynamical flows are embedded into the link weights. Flow graphs provide an integrated
representation of the structure and dynamics of the system, which can then be analyzed with stan-
dard tools from network theory. Conversely, a structural network feature of our choice can also be
used as the basis for the construction of a flow graph that will then encompass a dynamics biased by
such a feature. We illustrate the ideas by focusing on the mathematical properties of generic linear
processes on complex networks that can be represented as biased random walks and also explore
their dual consensus dynamics.

PACS numbers: 89.75.-k, 89.75.Fb, 89.90.+n

Introduction. The last decade has witnessed an ex-
plosion in the number of metrics for the characterization
of complex networks [1, 2]. Most of these quantities rely
on the analysis of topological properties and are, in a
sense, combinatorial as they count certain motifs, e.g.
edges, triangles, shortest paths, etc. Since this kind of
measures do not account for patterns of flow on the net-
work, flow-based metrics have also been proposed [3–8]
and shown to provide radically new insight, especially
in directed networks. However, these metrics usually
have the limitation to be defined for discrete-time, un-
biased random walks, which might not represent a good
description for the process taking place on the graph un-
der scrutiny. Among the systems where unbiased ran-
dom walks are not realistic, let us mention the Internet
and traffic networks, where a bias is necessary to account
for local search strategies and navigation rules [9–13].
Whenever complex inter-dependences between network
sub-units are generated by patterns of flow [8], e.g. in-
formation in social networks or passengers in airline net-
works, neglecting or mis-interpreting the dynamics tak-
ing place on the graph leads to an incomplete and some-
times misleading characterization of the system.

The main purpose of this work is to develop a math-
ematical framework that allows to analyze the structure
of complex networks also from a dynamical point of view.
To do so, we focus on a broad range of linear processes,
namely biased random walks and consensus dynamics.
We show how to define an alternative representation of
the graph, called flow graph, which naturally embeds
flows in the weight of the links and on which dynami-
cal processes become unbiased. In this way, to the same
topological graph one can associate many different flow

graphs, each specific of the different dynamics under con-
sideration. This emphasizes the idea that the same orig-
inal graph may exhibit different patterns of flow depend-
ing on the underlying dynamics, and that the choice of a
metric as well as the extraction of pertinent information
from a network should be made according to the nature
of the dynamical process actually taking place on it.
In the following, we focus on undirected networks G,

which are described by their N×N symmetric adjacency
matrix A, where N is the number of nodes. By definition,
Aij is the topological weight of the edge going from j to
i. The strength si =

∑

j Aij of node i is the total weight
of the links connected to it. If the network is unweighted,
si is simply the degree of node i. W =

∑

ij Aij/2 is the
total weight in the network. Whereas the adjacency ma-
trix reflects the underlying topology, nothing so far deter-
mines the dynamical processes operating on the system
[3]. Here, we consider a broad class of linear processes
defined by the equation:

xi;t+1 =
∑

j

Bijxj;t (1)

where the evolution of a quantity xi, associated to node i,
is driven by Bij , a matrix related to the adjacency matrix
Aij . In particular, in the following we will focus on two
subclasses of (1), namely random walks and consensus

problems.

Flow graphs for general random walks. We start
our discussion with dynamical processes aiming at mod-
eling the diffusion of some quantity or information on
G. The simplest process we can consider is a discrete-
time, unbiased random walk (URW) where, at each step,
a walker located at a node j follows one of the links of
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j with a probability proportional to its weight. In this
case, the expected density of walkers at node i, denoted
by pi, evolves according to the rate equation

pi;t+1 =
∑

j

Tijpj;t, (2)

where T is the transition matrix whose entry Tij repre-
sents the probability to jump from j to i

Tij = Aij/sj . (3)

In order to preserve the total number of walkers, Tij satis-
fies the condition to be column normalized, i.e.

∑

i Tij =
1. Consequently,

∑

i pi;t = 1 is verified for every t. The
dynamical process (2) with transition matrix (3) is known
to converge to the equilibrium solution p∗i = si/2W if the
graph is connected and non-bipartite, i.e. if the dynamics
is ergodic [14].
Biased random walks. There exist infinitely many

other ways to define a random walk and thus to model
diffusion on the same graph G. An interesting class of
processes are biased random walks (BRWs), defined as
follows [15]. Let each node i be given a definite positive
attribute αi. Then a walker located at node j decides to
jump onto one of its neighbors, say i, with a probability
proportional to αiAij . Hence, the probability to jump
from j to i is given by

T
(α)
ij =

αiAij
∑

k αkAkj

. (4)

This is equivalent to saying that the motion of a walker
is biased according to the values of α associated to the
nodes. The attribute αi can be either a topological prop-
erty of node i, such as its strength si or its betweenness
centrality, or, more in general, can represent an arbitrary
function of an intrinsic node property, as for instance the
reputation of a person in a social network. For differ-
ent α, BRWs correspond to distinct diffusive processes
characterized by different spectral properties for (4).
Let us show that it is always possible to interpret the

BRW defined by (4) as an URW on an opportunely de-

fined flow graph G
′

[37]. This observation has important
implications, as it makes possible to use theoretical re-
sults known for URWs for the analysis of BRWs. In addi-
tion to this, as we will develop below, this representation
supplies an alternative, advantageous way to highlight
dynamical characteristics of the system. Let us define
the non-negative and symmetric matrix

A
′

ij = αiAijαj . (5)

This is the adjacency matrix of the flow graph G
′

, whose
edges are the same as in G but with different weights (see
Fig. 1). It is straightforward to show that an URW on

G
′

, described by the equation p
′

i;t+1 =
∑

j T
′

ijp
′

j;t with

T
′

ij = A
′

ij/s
′

j, coincides with a BRW on G driven by the

FIG. 1: Visual representation of an unweighted graph G (a)

and of its flow graphs G
′

defined for BRWs with attributes
αi = si (b) and αi = s

−2

i (c), and a continuous-time random
walk with t = 2, ri = si (d). The width of the links is propor-
tional to their weight, and the surface of the nodes to their
strength. The strength leader, i.e. the node with the highest
strength, is darkened if it exists. In order to make the graphs
comparable, we renormalize the weights in order to ensure

that W = W
′

. These examples clearly show that different
dynamics lead to different patterns and that important nodes
for one dynamics might be less important for other dynamics.

transition matrix (4), since T
(α)
ij ≡ T

′

ij . Thus the equilib-
rium solution of the BRW on the original graph is given
by

p∗
′

j =
s
′

j

2W ′
=

∑

i αiAijαj
∑

i,j αiAijαj

, (6)

in agreement with [15]. This result also shows that A
′

ij

is proportional to the flow of probability from j to i at
equilibrium [5].
In order to illustrate these concepts, let us focus on

a class of BRWs where αi has a power-law dependence
on the strength, αi = sγi . This functional dependence
has been proposed by several authors in order to model
local routing strategies [9, 10, 15]. By changing the ex-
ponent γ, one tunes the dependence of the bias on the
strength. When γ = 0, the standard URW is recovered,
while biases toward high (low) strengths are introduced
when γ > 0 (γ < 0). From (6), one finds

p∗
′

j =

∑

i s
γ
iAijs

γ
j

∑

i,j s
γ
iAijs

γ
j

, (7)

which emphasizes that the equilibrium density of walk-
ers at j now depends on the strength of j and of its
neighbors for any γ 6= 0. In the heterogeneous mean-
field approximation where the adjacency matrix is factor-
ized Aij ≈ sisj/2W , one recovers the known expression

p∗
′

j = sγ+1
j /(N〈sγ+1

j 〉) [5, 9, 10].
Another interesting class of BRWs is one where bias is

performed towards high eigenvector centrality node [15–
20], αi = vi, where v is the dominant eigenvector of A
[21], namely

∑

j Aijvj = λ1vi and λ1 is the largest eigen-
value. This bias leads to the maximal-entropy random
walk defined by

pi;t+1 =
∑

j

viAij

λ1vj
pj;t, (8)

which is known to be maximally dispersing on the graph
[16], in the sense that the entropy rate is optimal. By
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defining a flow graph whose adjacency matrix has the
form A

′

ij = viAijvj , an URW on A
′

exhibits a stationary
probability distribution which is also the solution of (8),
i.e. p∗i = v2i /Z, with Z =

∑

i v
2
i .

Continuous-time random walks. When modeling diffu-
sion, a broad range of processes opens up if walkers can
perform their jumps asynchronously. A natural way to
implement this situation is to switch from a discrete-time
to a continuous-time perspective [22], which finds many
applications in biological and physical systems. Passage
to continuity can be done in many ways, each leading to
a different stochastic process. In the following, we re-
strict the scope to Markovian processes where the wait-
ing times between two jumps are Poisson distributed.
Without loss of generality, we also assume that walkers
jump in an unbiased way, while keeping in mind that any
BRW can be seen as an unbiased process on the associ-
ated flow graph. The time-interval between two jumps
is determined by the so-called waiting time distribution
ψ(i; t) = rie

−rit. The rate ri at which walkers jump may
in general be non-identical and depends on the node i
where the walker is located. Different sets of {ri} gen-
erate different stochastic processes, though the sequence
of nodes visited i0, i1, ...., iτ , where iτ is the node visited
after τ jumps,does not depend on the {ri}. For different
choices of {ri}, what changes is only the times at which
the jumps are performed and the time intervals spent on
the nodes.
Such continuous-time random walks are driven by the

rate equation

ṗi =
∑

j

(

Aij

sj
rj − riδij

)

pj ≡ −
∑

j

Lijpj (9)

whose stationary solution p∗i = si/(Zri), with Z =
∑

i si/ri, can be intuitively understood as the proba-
bility to arrive at a node times the characteristic time
≈ 1/ri spent on it. Standard choices for the jump-
ing rates include the uniform rate ri = 1 ∀i, and the
strength-proportional rate ri = si ∀i, for which one
recovers the standard forms of the Laplacian operator
Lij = δij −Aij/sj and Lij = siδij −Aij respectively [5].
This continuous-time random walk can also be viewed

as a discrete-time URW, i.e. p
′

i;t =
∑

j T
′

ijp
′

j;0, on a flow
graph defined by the adjacency matrix

A
′

ij(t) =
(

e−tL
)

ij
Zp∗j =

(

e−tL
)

ij

sj
rj
. (10)

The definition (10) follows from the solution of equation
(9) which gives pi(t) =

∑

j

(

e−tL
)

ij
pj(0). In fact, one

can interpret the probability distribution of a continuous
time-random walk at time t as the result of one step
random walk driven by the transition matrix T

′

ij(t) =

A′

ij(t)/s
′

j . As previously, A
′

ij(t) is the flow of probability

from j to i at stationarity. One easily verifies that A
′

ij(t)

is symmetric due to detailed balance, i.e.
∑

j T
′

ijp
′
∗

j =
∑

i Tijp
′
∗

i at equilibrium, and that
∑

j A
′

ij(t) =
si
ri

at all

times. The associated flow graph naturally summarizes
how random walkers probe the network over a certain
time scale and provides a representation of the system
over this scale [5].

Consensus processes. Another kind of interesting
processes belonging to the class (1) is the so-called “dis-
tributed consensus”, for which nodes imitate their neigh-
bors such as to reach a uniform, coordinated behavior.
In its simplest form, consensus dynamics is implemented
by the so-called agreement algorithm [23]. Each node i
is endowed with a scalar value xi which evolves as

xi;t+1 =
1

si

∑

j

Aijxj;t. (11)

At each time step, the value on a node is updated by com-
puting a weighted average of the values on its neighbors.
If the graph is connected and non-bipartite, consensus is
asymptotically achieved and each node reaches the uni-
form value x∗ =

∑

i xi;0si/(2W ) given by a weighted av-
erage of the initial conditions. The agreement algorithm
(11) is different from an URW, e.g. it does not conserve
∑

i xi except if the graph is regular. Nonetheless, it has
the interesting property to be dual of the URW, as it is
driven by the transpose of (3) [3, 24]. Moreover, both
processes can be seen as two interchangeable facets of
the same dynamics, as their spectral properties are re-
lated by a trivial transformation, namely left and right
eigenvectors of (3) are related by vRα;i = siv

L
α;i, where

α ∈ [1, N ] is an index over the eigenvectors.
Similarly to the URW, (11) can be generalized either

by introducing a bias in the weighted average or by tun-
ing the rate at which nodes compute the average of their
neighbors’ values. The broad class of consensus dynam-
ics generated by this scheme includes for instance mod-
els from opinion dynamics [24] and linearized approach
to synchronization of different variants of the Kuramoto
model [25–28]. However, what is most important is that,
for any bias, the duality to the random walk (2) allows
to introduce a consensus as (11) on the associated flow
graph, analogous to (5).

Discussion. The behavior of complex systems is de-
termined by their structure and their dynamics [3]. A
purely structural analysis, where properties of the ad-
jacency matrix are considered without any insight on
underlying dynamical processes, provides only a partial
understanding of the system. In this paper, we have fo-
cused on a broad range of linear processes on networks.
Some examples where this kind of processes are used is
for modeling diffusion or synchronization, and they all ex-
hibit distinct dynamical properties. These properties are
summarized by their associated flow graph G

′

, where the
weight of a link is dictated by the patterns of dynamical
flow at equilibrium. The definition of G

′

has the advan-
tage of simultaneously representing the network topology
and its dynamics, and of properly emphasizing nodes and
edges which are important from a dynamical point of
view. As shown in Fig. 1, details of the underlying dy-
namics strongly affect the importance of nodes and their



4

associated ranking [18]. Standard network metrics can
be measured on the flow graph in order to uncover other
aspects of its dynamical organization [29], for instance to
measure centrality for BRWs [11].
An important context where our formalism proves use-

ful is community detection [13]. The modular structure
of a network is often uncovered by optimizing a quality
function for the partition P of the nodes into commu-
nities [30]. The widely-used modularity [31] measures if
links are more abundant within communities than would
be expected on the basis of chance. Because of its com-
binatorial nature, modularity is known to be insensitive
to important structural properties which may constraint
a flow taking place on the network [4]. Alternative qual-
ity functions have thus been developed based on the idea
that a flow of probability should be trapped for long times
in communities when the partition is good [4–6]. An in-
teresting quantity is the so-called stability R(t) [6] which
is defined as the probability for a random walker to be
in the same community initially and at time t, when the
system is at stationarity. Stability is in general differ-
ent from modularity, but they coincide when the random
walk is discrete-time and unbiased, the network undi-
rected and t = 1. The notion of flow graph naturally
reconciles combinatorial and flow-based approaches, as
the stability of a graph for any process is equal to the

modularity of its corresponding flow graph [5], and al-
lows for the detection of modules adapted to the system
under scrutiny. In systems where dynamical processes
are known to differ from URWs, the notion of flow graph
thus provides the means to apply standard combinato-
rial methods while still properly taking into account the
dynamical importance of nodes and links.

The equivalence between trajectories of a biased (or
continuous-time) random walker on G and those of an

URW on G
′

also has important practical implications, as
it allows to make use of well-known theoretical results to
analyze BRW processes, for instance their stationary so-
lution and conditions to convergence, mean first-passage
time [32, 33] or spectral properties [34]. This theoretical
framework might prove useful to address several prob-
lems related to BRWs, such as the search of local biases
αi optimizing in some way the performance of the system
[20], for instance by balancing load on the nodes and im-
proving search in routing systems [11, 35], or enhancing
the prediction of missing links in empirical data-sets [36].
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