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Abstract—Unmanned aerial vehicle (UAV) systems have gained
widespread recognition due to their versatility and autonomy.
Their deployment for disaster mitigation and management op-
erations is seen as one of their most important applications
over the past decade. In such UAV networks, routing plays a
crucial role in determining network performance parameters
such as network lifetime, data transmission latency, and packet
delivery ratio. This paper presents a novel routing mechanism -
Multi-Objective Markov Decision Based Routing (MOBMDP) for
UAV networks carrying out search-based operations. MOBMDP
models routing decisions in a Markov Decision Process (MDP)
framework and uses Q-learning to take decisions. It compares
routing paths using three metrics, viz., Remaining Energy of
the Minimum Energy Node (REMEN), Power Distance ratio
(PD), and Expected Delay (ED). Amongst these metrics, PD is a
novel metric proposed by this work. PD simultaneously optimizes
the energy efficiency and energy distribution in the network.
Further, MOBMDP uses a novel reinforcement learning inspired
method to estimate transmission delay in a given path. Intensive
simulation studies compare MOBMDP to four state-of-the-art
routing protocols. Results show a significant improvement in
network lifetime, packet delivery ratio, energy efficiency, average
data transmission delay, and error in delay estimation.

Index Terms—UAV, search and rescue, placement algorithm,
routing protocol, network lifetime, network coverage, transmis-
sion delay estimation, energy efficiency

I. INTRODUCTION

THE evolution of wireless networks [1] and technology
has brought about a fundamental shift in how systems

are perceived and designed [2]. With a more flexible system
at hand, new protocols for wireless networks have been
developed to communicate effectively [3], [4], [5]. One of
the most important domains in evolving wireless systems
is Unmanned Aerial Vehicles (UAVs) [6]. Initially, UAV
systems were deployed in military domains for carrying out
border surveillance [7], search-and-destroy missions [8], and
reconnaissance operations [9]. However, their versatility and
autonomy have led to the deployment of UAV systems in
various civilian applications, to name a few: a) safety-related
missions [10], b) smart agriculture [11], c) traffic management
[12], d) environmental monitoring [13], e) flying cellular
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base stations [14], [15], f ) vehicular networks [16], [17],
among others. In particular, Search-based Operations (SO)
[18] constitute a key application of UAV networks. These
include but are not restricted to: a) disaster management [19],
b) search and rescue [20], c) reconnaissance missions [21],
and, d) environmental surveillance [22]. In such operations,
UAV networks are capable of providing a bird’s eye view of
the area of interest that enables controllers/operators to take
appropriate actions. For sensitive missions such as search and
rescue, a UAV network can be very efficiently assist in locating
and rescuing multiple victims at once.

Usually, UAV systems deployed for SO consist of multiple
UAVs working in coordination with one another. In general,
multi-UAV systems are preferred over single UAVs due to
low hardware complexity, reduced area scanning time, and
reduced mission failure probability [23], [24]. Yet, the need
for data communication and exchange among these UAVs
necessitates the development and employment of efficient
routing protocols that need to account for various challenges
that are more pronounced in UAV networks compared to other
ad-hoc networks. To list of a few of these challenges:

• Difficulty in locating nodes at all times due to high
mobility in a three-dimensional environment

• Constrained power supply leading to limited lifetime
• Payload restrictions
• Lower node density compared to other ad-hoc networks
Keeping in mind the sensitivity of SOs, routing protocols

must be designed to minimize transmission delay and maxi-
mize the network lifetime. This ensures that the entire area
is inspected and important data is promptly transmitted to
Ground Control Stations (GCSs).

This paper presents a novel routing algorithm - Multi-
Objective Markov Decision Process-based routing (MOB-
MDP) to achieve such efficient transmission. Note that this
work exploits UAV clusters such as described in Section III.

Under MOBMDP, the multi-UAV system is modeled as an
MDP where the “agent” is a data packet, the “states” are
the different Cluster Heads (CHs) that the packet may be
transmitted to, the “action” is the transmission of a data packet
from one CH to another and the “decision” is the decision
of choosing the destination node of transmission. MOBMDP
“rewards” MDP states (or, in this case, UAV CHs) based on
three metrics, viz., Remaining Energy of the Minimum Energy
Node (REMEN), Power Distance ratio (PD), and Expected
Delay (ED). These rewards are awarded to the states using the
concept of Q-learning. Decisions are then taken by maximizing
the cumulative reward (also called “Q-value”) of the allowed
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actions in a state. To this end, the fundamental contributions
of this paper are elaborated as follows:

1) The design and implementation of a novel reinforcement
learning (RL) inspired method to predict transmission
delay. When compared to the state-of-the-art work [25]
that predicts transmission delay, the proposed method
reduces the prediction error by a factor of 10.

2) The proposal of an original and novel routing metric -
Power Distance ratio (PD) to simultaneously optimize
the energy distribution/efficiency of the decisions taken
by the UAV network. This opposes existing routing
protocols, which optimize either one of these two metrics.

3) A novel MDP and Q-learning based routing protocol-
MOBMDP, designed specifically for multi-UAV systems
that support search operations (SO).

4) Intensive simulations conducted to show that MOBMDP
notably outperforms four state-of-the-art routing algo-
rithms in terms of network lifetime, packet delivery ratio
(PDR) and energy efficiency while maintaining similar
performance in terms of data transmission delay.

5) This proposed work uses Network lifetime as one of
the performance measures. A higher network lifetime
contributes to an increase in the number of successful
transmissions. The network lifetime analysis was not
presented in competing Q-learning-based algorithms.

6) Extensive scalability analysis conducted showed a stable
packet delivery ratio with minimal increase in delay as
network size increased.

The remaining of the paper is organized as follows. Section
II presents a brief overview of related routing algorithms,
followed by a description of the system model considered
in Section III. Section IV presents the details underlying the
proposed MOBMDP protocol, while Section V presents an
extensive comparison of MOBMDP against four state-of-the-
art protocols. Finally, Section VI concludes the paper.

II. RELATED WORKS

UAV networks require different routing protocols as com-
pared to other networks due to certain constraints imposed
on individual nodes. Conventional routing protocols such as
Optimized Link State Routing (OLSR) [26] and Ad-hoc On-
Demand Distance Vector Routing (AODV) [27] have been
modified to suit the requirements of UAV networks. In [28],
an enhanced OLSR protocol is used, which takes into account
mobility and delay prediction. It uses a self-adjusting Kalman
filter model to identify multi-point relay (MPR) nodes. The
routing table of OLSR is calculated by the Dijkstra algorithm
to minimize the number of hops, and a cross-layer delay
prediction model is used to establish low delay routing paths.
Another modification of OLSR is Predictive OLSR (P-OLSR)
[29] which takes advantage of the GPS information available
on-board. Both simulation and real-world experiments show
that P-OLSR shows better performance than OLSR. Another
example of predictive routing is [25], which considers antici-
pated locations of UAVs for path selection. The path is selected
using Dijkstra’s shortest path algorithm. Results show that this
algorithm shows superior delay performance when compared
with conventional routing algorithms.

An example of AODV modification is seen in [30], which
utilizes a combination of AODV, Langrangian interpolation,
and artificial bee colony algorithm. The protocol is divided into
three algorithms - the first algorithm computes the distance
between each node, the second uses artificial bee colony
algorithm to discover the position of all the nodes, and the
third algorithm uses Langrangian interpolation to verify nodes
in the network to pass on the information. Another example of
modified AODV is [31], where the authors use a combination
of AODV and greedy peripheral stateless routing protocol. The
routing process is divided into two stages - the greedy routing
stage and the flooding path-finding stage. Further, particle
swarm optimization (PSO) is used to solve the sub-optimal
choice problem of greedy forwarding.

Apart from modifications, several different protocols have
been developed which perform much better than the traditional
routing protocols. Specifically, for post-disaster operations,
Arafat et al. [32] propose a location-aided delay-tolerant
protocol. The protocol first establishes contact between search
and ferry UAVs using the GPS location shared via messages.
This is followed by location-aware single-copy data packet
forwarding, and finally, data is forwarded from the search
UAV to the base station by the shortest link available. In
[33], Gankhuyag et al. propose a robust and reliable predictive
routing strategy. Their hybrid scheme uses unicasting and
geocasting routing using location and trajectory information.
Robustness is ensured by predicting the intermediate node
toward the predicted location, enabling a longer transmission
range and keeping track of the changing topology. Addition-
ally, reliability is achieved by reducing path re-establishment
and service disruption time along with successful packet
transmission. In GeoUAVs [34], Bousbaa et al. propose a
protocol in which information is only transmitted to a specific
group of UAVs. A source UAV sends geocast packets to
all UAVs in its transmission region, and then these packets
are further transmitted in the direction determined by the
algorithm. Mukherjee et al. [35] propose a multi-armed bandit
(MAB) based routing protocol, where path selection is based
on the residual node energy for a better distribution of tasks
among the nodes. The protocol outperforms the shortest path
algorithm in terms of network lifetime.

The existing routing algorithms for other networks may not
be suitable for FANETs due to the dynamic nature of the
network. Therefore, it is crucial to choose a routing algorithm
that can learn to act optimally. Q-learning is a model-free
reinforcement learning algorithm that enables agents to learn
and act optimally in a controlled Markovian environment [42].
Many works in literature have employed Q-learning to make
routing decisions. J. Liu et al. [39] proposed a new routing
algorithm for FANETs that utilizes Q-learning. The algorithm
dynamically adjusts the Q-learning parameters, such as the
learning rate and discount rate, to account for the unstable
nature of the network. Each link is assigned a different learning
rate and discount rate. However, this work does not analyze
their protocol for network lifetime nor optimize it. Network
lifetime is an important parameter to be optimized for SO
application. L. Antonio et al. [40] devised a routing algorithm
that factors in the channel condition to calculate the Q-learning
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TABLE I: Related Works

Protocol Type Simulation Parameters Simulation
Tool

Compared
With

Results

OLSR PMD
[28]

Topological • Number of nodes
• Packet Delivery Ratio (PDR)

NS-3, MAT-
LAB

DSDV,
OLSR

• Lower end-to-end delay
• Higher PDR

P-OLSR [29] Topological • Link-quality aging
• Speed-weighted ETX Metric
• Throughput
• Average Outage Time

Linux Con-
tainers, iperf,
EMANE

OLSR • Average outage time improved by 85%
• Higher PDR due to lower channel fluctu-

ations

Rovira-Sugranes
et al. [25]

Topological • End-to-end delay
• Hop distance

- Dijkstra’s
Shortest Path

• Lower delay, especially with larger net-
work size

• Increased network lifetime
Bhardwaj et al.
[30]

Hybrid • Jitter
• Throughput
• PDR

- AODV • Improved accuracy and throughput
• Jitters reduced, improving effectiveness by

31%
PSO-GLFR [31] Hybrid • Network Bandwidth

• Hop Count
• Energy Consumption per packet

OMNET++ GFR, AODV • Lower latency, packet loss and delay
• Increased energy efficiency

LADTR [32] Geographical
with Store-and-
Carry-Forward

• UAV Speed
• Traffic
• Network Bandwidth
• PDR

NS-3 AODV,
GPSR, Spray
and Wait,
Epidemic

• Higher PDR
• Lower delay
• Lower routing overhead

RARP [33] Hybrid • Data Transmission Rate
• Node energy
• Network Size
• Hop Count

C++ AODV • Higher data transmission success
• Increased path lifetime and route setup

time
• Hop counts increase over 60 nodes in

network
GeoUAVs [34] Geographical • PDR

• End-to-end delay
• Throughput

NS-3 AntHocNet,
BeeAdHoc

• Lower end-to-end delay
• Increased throughput

MAB [35] - • Node processing power
• Residual energy
• Task List

- Shortest Path
Selection

• Increased network lifetime

Bhardwaj et al.
[36]

Hybrid • Node mobility
• Node energy consumption
• Network lifetime
• Transmission delay
• Signal reception strength

NS-2 AODV,
GPSR, DTN

• Higher PDR
• Lower end-to-end delay
• Lower routing overhead

BICSF [37] Swarm
Intelligence
Based

• Number of UAVs
• Cluster binding time
• Network energy consumption
• Cluster lifetime

MATLAB Cluster
oriented
protocols
like ACO
and GWO

• Increased energy efficiency
• Higher PDR

E-AntHocNEt
[38]

Swarm
Intelligence
Based

• Quality of service
• Speed
• Network energy consumption
• Cluster lifetime

NS-2 AntHocNet,
DSR, M-
DART and
TORA

• Increased energy efficiency
• Higher PDR

QMR [39] Q-learning Based • Learning Rate
• Discount Factor

WSNet QGeo • Low delay
• Low energy consumption
• Higher packet arrival ratio

Q-FANET [40] Q-learning Based • Learning Rate
• Discount Factor
• Q-Value

WSNet QGeo, Q-
Noise+, and
QMR

• Lower delay
• Lower jitter
• Minor increase in packet arrival ratio

QTAR [41] Q-learning Based • Path Loss
• SINR Threshold
• CBR rate

MATLAB GPSR and
QGeo

• Better packet delivery ratio
• Lower delay
• Less energy consumption

parameters. Moreover, the proposed algorithm considers a few
episodes to update the parameters instead of relying solely on
recent ones. Another work proposed by M. Y. Arafat et al. [41]
uses an adaptive Q-learning algorithm in which the learning
rate and reward factor are adjusted dynamically based on the
network topology. There are various Q-Learning based routing
protocols are proposed for FANETs. [43] [44]

Another category of routing algorithms incorporates bio-
inspired algorithms. Bhardwaj et al. [36] use two bio-inspired
algorithms for cluster-based UAV networks. The Chaotic Al-
gae algorithm is used for cluster formation, which conserves
energy levels at each node. For inter-cluster routing, the
Dragonfly algorithm is used for the election of the CH. This

algorithm is also useful in supporting the transmission between
the clusters in terms of routing and selecting the next optimal
node. Bio-Inspired Clustering Scheme for FANETs [37] is
a hybrid mechanism of Glowwarm Swarm Optimization and
Krill Herd. It consists of three phases - energy-aware cluster
formation and cluster head election, UAV motion aware cluster
management, and cluster maintenance. H. Wu et al. [45] pro-
posed a cooperative clustering scheme for UAVs that offloads
and exploits diversity gain to improve coverage. Khan et al.
[38] present a novel routing protocol that uses a modified ant
colony optimization algorithm. This algorithm introduced an
energy stabilizing parameter, which leads to improved energy
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efficiency and overall network performance. The protocols and
their details are summarized in Table 1.

III. NETWORK MODEL

This work considers a cluster-based UAV system, consisting
of a Ground Control Station (GCS), Cluster Head/Member
(CH/CM) nodes, each having a role as defined below.

A. Nodes

1) Ground Control Station (GCS): This is the base station,
which receives data packets from all other nodes. It does
not have any power or computational constraints with no
mobility. Based on the information received about the location
of survivors or damage incurred, appropriate action is taken
here.

2) Cluster Head (CH): These are the core nodes of the
network, i.e., they receive the packets from the cluster mem-
bers and forward them towards the GCS. These UAVs have
low mobility (quasi-static), and enhanced computational power
and energy characteristics. This work uses EFTA [46] to place
these nodes.

3) Cluster Member (CM): These are highly mobile nodes
and are allotted a certain area for scanning. On capturing
important information (such as the location of survivors), CMs
pass this information to the CH. In case multiple CHs are
available to a CM, the best one is selected as explained in
Section IV. In this paper, CMs are placed randomly in the
area of scanning.

B. Placement of Nodes: EFTA

An efficient method for node placement is essential to
maximize the coverage and minimize the power requirement
[47]. This work uses an Energy-efficient, Fault Tolerant and
Area-optimized placement scheme (EFTA) [46] to place the
CHs. EFTA uses the Multi-Objective Cuckoo Search Algo-
rithm (MO-CSA) [48] to determine the placement of nodes
while maximizing area coverage and fault tolerance and si-
multaneously minimizing power consumption. The reader is
specifically refered to Eq. (2) on Page-3 of [46] for the area
maximization problem definition’s details, Eq. (4) on Page-3
of [46] for the Nodal Power Consumption (NPC) optimization
problem and Eq. (6) on Page-6 of [46] for the Fault Tolerance
Index (FTI) optimization problem. The placement algorithm
can be found on Page-4, Section IV-D (Problem Formulation)
of [46].
The optimization problem solved in CH placement is:

Maximize {Area, FTI } and Minimize {NPC }
such that

Every CH has at least one transmission path

available to send information to the GCS

(1)

where FTI refers to the Fault Tolerance Index, NPC refers
to the total Nodal Power Consumption, and Area is the area
covered by the CHs. FTI is calculated using the average
number of connections per CH. A general representation of
the network layout is given in Fig. 1. As shown, the GCS is

Fig. 1: Sample Network Layout

located at one corner of the rectangular area. The UAVs with
a purple background are CHs. The CMs are spread throughout
the rectangular area. The red dotted circle represents the
communication range of each CH. Note that the network
setup phase for this system model has been summarized in
Algorithm 1.

C. Flow of Information

CMs scan their respective areas and pass on important
information to the CHs. CHs then process the information
received and forward it to the GCS on their selected optimal
routing path.

IV. MOBMDP : ROUTING MECHANISM

The routing mechanism proposed by this work consists of
two parts - CM to CH routing, and Inter-CH routing. They
are explained below:

1) CM to CH Routing: This deals with the selection of the
optimum CH for a CM at a given location. The following
equation is used for optimal CH selection:

Maximize
log10(Ei × 106)

Di
(2)

where Ei and Di are the residual energy of CHi and
distance of the CM from CHi respectively. Clearly, the
value in Eq. (2) is directly proportional to a given CH’s
residual energy and inversely proportional to its distance
from a given CM. Hence, a given CM chooses the CH
with the best balance of residual energy and distance to
maximize both the lifetime and efficiency of the network
to avoid overwhelming and draining farther CHs with
higher residual energy. If the CH is excessively loaded

Algorithm 1. Network Setup Phase

1: Place GCS at (1, 1)
2: Place CH according to EFTA solution
3: Initialise CH nodes: QSj

Si
= τSj

Si
= 0, χj

i =
dj
i

c , ηi = CHint,i

and ψj
i =

ηj

dj
i

4: Assign CM search cells in grid
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TABLE II: Notation Summary: MOBMDP

Symbol Parameter Represented
CHi CH in network with index i
η Remaining energy of minimum energy node (REMEN)
ηji CHi’s Path REMEN for path through CHj

ηi Nodal REMEN of CHi

Ei Residual Energy of CHi

Di Distance of CM from CHi

ζi,j Expected Delay of Connection between CHi and CHj

ti,j Delay observed in most recent transmission
between CHi and CHj

χj
i CHi’s Expected Path Delay for path through CHj

χi CHi’s Expected Path Delay for optimal path to GCS
ψj
i CHi’s Power Distance (PD) Ratio for path through CHj

St, St+1 Current and next states of agent
P [Sj |Si] State transition probability from state Si to Sj
a(i) Set of allowed actions in state i

τ
Sj

Si
Total Expected Return (TER) of changing state Si to Sj

γ Discount factor
π Policy

Q
Sj

Si
Q-value of changing state Si to Sj

l Learning Rate
R0 UAV CH communication range

CHint,i Initial Power of CHi

dji Distance travelled by packet from CHi to GCS
using CHj as forwarding node

α Delay weighted constant
c Speed of light

by forwarding requests from many CMs then the residual
energy of the CH will reduce; hence, reducing its suitabil-
ity for data forwarding in subsequent data transmissions.
Thus, CH selection for a CM is about balancing the trade-
off between residual energy and distance.

2) Inter-CH Routing: This deals with the flow of data to
the GCS through the CHs in the network. For this phase
of routing, a novel Multi-Objective Markov Decision
Process (MOBMDP) based proactive routing algorithm
is proposed. MOBMDP uses Q-learning to evaluate paths
on the basis of three parameters - Expected Delay of the
path (ED), Remaining Energy of the Minimum Energy
Node (REMEN) in the path, and a Power Distance ratio
(PD). Section IV-A discusses these parameters in detail.
The notations used in this work are summarized in Table
II.

A. Parameters Used by Routing Mechanism

This section describes the parameters used in this work and
their calculation. They are explained below:

1) Remaining Energy of the Minimum Energy Node in
Optimum Path (REMEN): Due to energy constraints in UAV
networks, energy consumption is an essential factor while
deciding the routing path. For a network to work efficiently
and maximize its lifetime, it is crucial to ensure that it
consumes energy uniformly over all its nodes. Therefore, as a
measure of energy distribution, this work proposes the usage
of two parameters :

1) Path REMEN : This is the remaining energy of the
minimum energy node in a specific path starting at a CH
and ending at the GCS. For a path starting at CHi and
using CHj as its forwarding node, it is denoted by ηji .

2) Nodal REMEN : This is the remaining energy of the
minimum energy node in the current optimal routing
path of a CH to the GCS in the network. For CHi, this
parameter is denoted by ηi.

The method of calculating Nodal and Path REMEN has
been illustrated with an example below. Note that this example
uses Fig. 1 as a reference. As the GCS is considered to
have infinite energy, the REMEN value of nodes forwarding
packets directly to the GCS is their residual energy. Hence,
the nodal REMEN of CH1, CH2 and CH3 are their residual
energies. Now, consider CH4, which is in the range of both
CH2 and CH1 but not the GCS. Therefore, CH4 has two
paths to the GCS available, namely, through CH1 and CH2.
Before assigning a nodal REMEN value to CH4, its optimal
forwarding node must be determined. However, determining
the optimal forwarding node of a CH requires the REMEN
value of the paths available to it. In the case of CH4, there
are two paths available, and so, two Path REMEN values
need to be calculated for the paths through CH1 (denoted
by η14) and CH2 (denoted by η24). Consider the routing path
through CH1. Its corresponding Path REMEN is calculated by
comparing the residual energy of CH4 with the REMEN value
of CH1. η14 is assigned the lower of the two above values, i.e.,
η14 = min(E4, η1). η24 is calculated in a similar manner. As
explained in section IV-C, these values are used to determine
the optimal forwarding node, and CH4’s Nodal REMEN value
is assigned accordingly. In other words, if CH1 is chosen as the
optimal forwarding node for CH4, η4 = η14 . Similarly, if CH2
is chosen as the optimal forwarding node for CH4, η4 = η24 .
The remaining CHs calculate their Path and Nodal REMEN
values in a similar fashion. For inter-CH communication, every
CH transmits information to its neighboring CH. Based on that
information, every CH calculates its Path REMEN and Nodal
REMEN. The details about the periodic exchange are described
in section IV-B.

As REMEN values are maximized, paths with low energy
nodes are avoided, and there is uniform energy consumption,
allowing a greater network lifetime.

2) Expected Delay of Path (ED): ED is an estimate of the
real-time delay expected in a transmission and is periodically
updated along a given path. For time-sensitive applications
such as SO, minimizing end-to-end delay is extremely impor-
tant. This is the motivation behind using ED as one of the
routing parameters.

Consider two CHs in a given network - CHi and CHj ,
where CHi and CHj are neighbours, such that CHj is closer
to the GCS than CHi. The ED of a path starting at CHi

and ending at the GCS using CHj as the forwarding node is
denoted by χj

i . It is calculated using two parameters:
1) ED of the path from CHj to the GCS (denoted by χj)
2) Predicted delay of a transmission between CHi and CHj

(denoted by ζi,j)
χj is available to CHi as it is periodically transmitted

by CHj to all of its neighbours. Further, ζi,j is updated
periodically using three parameters - a weighted constant
α, the current value of ζi,j and the actual delay observed
in the most recent transmission between CHi and CHj .
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Mathematically, the following equation is used to update ζi,j :

ζi,j ← α× ζi,j + (1− α)× ti,j (3)

where α ϵ (0,1) is a weighted constant and ti,j is the actual
delay observed in the most recent transmission between CHi

and CHj .
Further, the ED of a path from CHi to the GCS using

CHj as the forwarding node is calculated using the following
equation:

χj
i = ζi,j + χj (4)

Note that χj is the expected path delay from CHj to the GCS
along CHj’s last calculated optimal path.

Refer to Fig. 2 for an example of the proposed method
to calculate expected path delay. Since CH1 and CH2 are
neighbours of the GCS, they will send any information di-
rected to them to the GCS directly. Therefore, χ1 = ζ1,0 and
χ2 = ζ2,0. CH3, however, has two available forwarding nodes
: CH1 and CH2. Hence, using Eq. (4), the following path
delays are calculated through the available paths :

1) Through CH1 : χ1
3 = χ1 + ζ3,1

2) Through CH2 : χ2
3 = χ2 + ζ3,2

χ1
3 and χ2

3 are then used to determine the optimal forwarding
node for CH3 as explained in section IV-C. Finally, χ3 is
assigned the value χ1

3 or χ2
3 depending on whether CH1 or

CH2 is determined to be the optimal forwarding node for CH3
at a given point of time. The expected path delays of CH4 and
CH5 are calculated in a similar fashion.

3) Power Distance Ratio (PD): While REMEN acts as a
good measure for energy distribution, its value does not reflect
the energy efficiency of a routing path. While maximizing
network lifetime is important, doing so can lead to the net-
work taking less efficient routes and thus, consuming more
energy per transmission. However, in SO, it is important to
balance maximizing network lifetime and minimizing energy
consumption per transmission. This work proposes a novel
Power Distance ratio (PD) metric to maintain this balance.
PD is defined as the ratio of REMEN to the total distance a
packet has to travel to reach the GCS from a given CH. For
CHi, it can be mathematically represented as:

ψj
i =

ηj

dji
(5)

where ψj
i and dji are the PD and distance associated with CHi

while using CHj as the forwarding node, and ηj is the Nodal
REMEN of the forwarding node CHj .

Since the PD of a path is directly proportional to its REMEN
and inversely proportional to the distance travelled by the
packet (and therefore, energy consumed in data transmission),
maximizing PD enables nodes to find the right balance be-
tween energy consumption and energy distribution.

B. Periodic Inter CH Data Exchange

The following information is periodically transmitted by
a CH to its neighbours for inter-CH communication. Note
that the periodic Inter-CH data exchange process has been
summarized in Algorithm 2.

1) Nodal REMEN of CH: As mentioned in Section IV-A1,
the Nodal REMEN of a CH is used by its neighbours to
determine their Path and Nodal REMENs. Once the optimal
real-time path for transmitting information from a CH to the
GCS is identified, the CH compares its residual energy to the
Nodal REMEN of its immediate forwarding node along its
optimal real-time path. The lower of the two is set as the
Nodal REMEN value of the CH itself. This updated REMEN
value is periodically transmitted from CHs to their neighbours.

2) Latest Receiving Time Stamp Values of CH: Consider
two nodes in the network, CHi and CHj . In an event-based
transmission, let CHi send a data packet to its forwarding
node CHj . Let the sending timestamp of the transmission
be saved by CHi in a variable T1. Once CHj receives the
data packet, it saves the receiving timestamp as T2. Hence, in
its periodic transmissions, CHj includes the latest receiving
timestamp values associated with each of its neighbours. When
CHi receives this periodic packet, it subtracts T1 from the
corresponding T2 value. The resulting value (T2−T1) is used
to calculate the expected delay of the connection between CHi

and CHj . This T2− T1 value represents the observed delay
of the most recent transmission of this connection (ti,j in Eq.
(3)).

3) ED of current optimal path: The expected delay in
information transfer to the GCS, χj , is stored by CHj and
is included in its periodic transmissions to its neighbours. χj

is used by CHi to calculate χj
i using Eq. (4).

4) Current Energy of CH: In addition to the above quan-
tities, CHj includes its current energy, Ej , in its periodic
transmissions. Ej is used by CMs in the vicinity of CHj to
choose their optimal forwarding CH using Eq. (2).

Complexity calculation of Periodic Inter-CH Communication:
The main calculations performed in the Periodic Inter-CH
Communication (Algorithm-2), which form an overhead for
this algorithm, are steps 10 to 15 of Algorithm-2. These
operations are performed for each of the neighbours of CHi.
The number of operations in these steps is constant; let that be
k. Let there be m neighbours for CHi. Thus, the number of
operations performed for CHi is m×k, where k is a constant.
Thus, the number of calculations for each CH in the network is
O(m). If there are n nodes in the whole network, the number
of calculations in Algorithm-2 will be O(mn).

C. Markov Decision Process (MDP)

As mentioned in [49], MDP is a formulation based on
decision theory and discrete time Markov Process Theory. The
decisions are taken on the basis of rewards and all the states are
“Markov”. For a state to be “Markov”, the following condition
needs to be satisfied:

P [St+1|St] = P [St+1|S1, S2, S3....St] (6)

where St denotes the current state of the agent and St+1

denotes the next state of the agent. In other words, the future
state is solely dependent on the current state. As routing
decisions are primarily based on the current state of the agent,
MDP is a good choice for routing protocols.
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Fig. 2: Path Delay Calculation in the Network

Algorithm 2. Periodic Inter-CH Communication

1: Let the time period of periodic data transmission be T .
Let the transmitting CH node be CHj .

2: CHj creates payload consisting of the its ηj , neighbouring
CH receiving timestamp values, χj and Ej .

3: Transmission:
4: T seconds from the previous periodic transmission, the

above payload is transmitted by CHj to all CMs and CHs
in its vicinity.

5: When a CM receives:
6: CM saves Ej . It uses this value to choose its optimal

routing node using Eq. (2).
7: When a CH receives:
8: Let the receiving CH be CHi.
9: if j ∈ a(i) then

10: 1. Update CHi’s χj with χj obtained from the peri-
odic packet

11: 2. Use receiving timestamp value corresponding to
CHj in the packet to calculate ti,j . Use ti,j to update
the value of ζi,j using Eq. (3)

12: 3. Update the value of Nodal REMEN of CHj (ηj)
13: 4. Update χj

i using Eq. (4)
14: 5. Update the value of τSj

Si
using Eq. (10)

15: 6. Update the value of QSj

Si
using Eq. (12)

16: end if

For the MDP considered in this work, the agent is a data
packet, states are the different CHs that the packet may be
transmitted to, and action is the transmission of a data packet
from one CH to another. The CM to CH selection is not a
part of this MDP, and this selection is carried out using Eq.
(2). Further details of the MDP are presented below:

1) State Space (SS): This is the set of possible states in an
MDP. For this work, the SS consists of all the CHs and the
GCS. It is mathematically represented as below:

St ϵ SS such that SS = {S0, S1, S2....Sk} (7)

Algorithm 3. Episodic Data Transfer from CH

1: Let CH i be the transmitting CH
2: if ((xtD − 1)2 + (ytD − 1)2 < R2

0) then
3: Send packet to GCS
4: else
5: Send packet to jth CH, where j is chosen such that:

Maximise QSj

Si
∀ j ∈ a(i)

6: end if

Fig. 3: Markov State Diagram

where k is the number of CHs, St is the current state, and
SS is the state space where S0 represents the GCS, and the
remaining values in SS represent the CHs in the network.
Figure 3 shows the Markov State Diagram for the network
layout given in Fig. 1. Since there are seven CHs in the
network, eight states are present in the ensuing MDP, where S0

corresponds to the GCS and the remaining states correspond
to the CHs as labelled in Fig. 1. Note that the GCS is the
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terminal state of this MDP.
2) Action Space (A): This is the set of actions that the MDP

environment allows in a given state. Here, there are two types
of possible actions - sending the data packet from one CH to
another and from a CH to the GCS. The set of allowed actions
are defined as follows:

j ϵ a(i) ∀ possible j iff

1. (xiD − x
j
D)2 + (yiD − y

j
D)2 < R2

0

2. (xiD − 1)2 + (yiD − 1)2 > (xjD − 1)2 + (yjD − 1)2

for i ϵ {S1, S2, S3....Sk}
and j ϵ {S0, S1, S2....Sk}

(8)

where a represents the action of sending a packet from CHi

to the jth state (CH or GCS), k is the number of CHs, xiD
and yiD are the x and y coordinates of CHi, R0 represents
the communication range of the CHs and (1,1) is the location
of the GCS. Note that condition 1 checks whether CHi is in
range of CHj and condition 2 checks whether CHj (receiving
CH) is closer to the GCS than CHi (transmitting CH). Figure
3 represents the set of allowed actions. The MDP starts once
the CM selects a CH. All other allowed actions are obtained
using Eq. (8).

3) State Transition Probability (P): This matrix stores the
probabilities of transitioning from one state to another. The
state transition probability is defined using PD, as defined
earlier. It is mathematically represented as follows:

P [Sj |Si] =
ψi
j∑a(i)n

k=a(i)1
ψi
k

such that j ϵ ai (9)

where a(i) is the set of allowed actions for CHi (or Si), n
is the number of allowed actions for CHi, ψi

j is the power
distance ratio associated with sending information from CHi

through CHj(as a forwarding node) and P [Sj |Si] is the state
probability associated with sending information from CHi to
the GCS through CHj . The state transition probabilities for
the allowed actions are shown in Fig. 3.

As it rates possible actions in a state on the basis of
their power distance ratio, this work uses state transition
probability to simultaneously optimize energy efficiency and
energy distribution in the network. Clearly, the state transition
probabilities of this MDP attempt to maximize the PD of the
available actions by giving additional weightage to actions
with high PD values.

4) Total Expected Return Function (TER): This function
is used to calculate the total expected return associated with
a transition from a given state to a new one. Most rein-
forcement learning algorithms use short-term reward functions
to generate information about how good a state transition
is without considering future transitions and rewards. These
“short-term reward” values are further used to calculate the
maximum total expected return of an action using the concept
of discounted rewards (long-term rewards). However, in this
work, TER directly generates the maximum total expected re-
turn associated with a state change, thereby making decisions
easier and reducing the complexity of the MDP compared to
a scenario where short-term rewards are used to calculate the

long-term rewards. The reason for using long-term rewards
only is to focus on arriving at an optimal path. Using short-
term rewards may help in choosing a node, which may reduce
the delay between two individual CHs but may lead to a non-
optimal routing path. TER can be mathematically represented
as below:

τ
Sj

Si
=

ηj

(log10(χ
j
i × 105))4

(10)

where τ
Sj

Si
is the maximum total expected return associated

with sending data from CHi to CHj (or Sj), ηj is the energy
of the minimum energy node along the optimum path through
CHj and χj

i is the expected time taken to send information
to the GCS from CHi along the optimal path through CHj .

Clearly, TER is directly proportional to the REMEN and
inversely proportional to the predicted path delay. Hence, using
TER, this work enables CHs to make decisions that improve
the energy distribution of the network while simultaneously
minimizing the delay associated with data transmissions.

5) MDP Policy (π): This refers to the rule followed by the
MDP to determine what action to take in each state. In this
work, the MDP follows a greedy policy that tries to maximize
the Q-value of the action taken at every stage. The policy can
be represented as below:

π(Si) s.t. Maximize QSj

Si
∀ Sj , Si ϵ SS, Sj ϵ a(i) (11)

where π(Si) is the policy followed by the MDP (i.e., the CH
chosen by it for the next hop), QSj

Si
is the Q-value associated

with changing state Si to Sj , a(i) is the allowed set of actions
from state Si, and Si and Sj are two states in SS. Note that
this policy is only used for CHs for whom the GCS is out of
range. If the GCS is in range of a CH, the CH will transmit
directly to the GCS (which is the terminal state of this MDP).
This policy has been summarized in Algorithm 3.

This work uses the concept of Q-learning to compare and
periodically update the real-time Q-values of actions for a
given state. Q-learning was first proposed by Watkins and
Dayan in [42]. It was initially formulated as a means of en-
abling agents to learn their environments through the concepts
of “rewards” and “returns”. Within this work, however, agents
leverage Q-learning not only to learn their environment, but
also to continuously update their understanding of it and make
consistently better decisions. The Q-value function Q

Sj

Si
acts

a measure of how “good” a given action is at a given time. It
is refreshed for a given (Sj , Si) when the associated periodic
inter-CH data packet is received by CHi. The new Q-value
for that (Sj , Si) is calculated using the Q-learning update rule
given below. Since this work directly generates the maximum
total expected reward of an action, the update rule (which is
proved in Theorem 1) is mathematically represented as:

Q
Sj

Si
← (1− l)× τSj

Si
+ l ×QSj

Si

where l =
γ × P [Sj |Si]

1 + (γ × P [Sj |Si])

(12)

where l is the learning rate of the MDP (clearly, l ∈ [0, 1).
Further, τSj

Si
, P [Sj |Si] and QSi

Sj
are respectively the TER, state

transition probability and Q-values associated with a transition
from state Si to Sj . Additionally, γ is a weighted constant that
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represents the importance given to the current and expected
return of a given action from a given state. Therefore, this
MDP directs a given CH to periodically update its routing
information and send information through the node with the
highest Q-value amongst its neighbors. The neighbor with the
highest Q-value is chosen as an optimal forwarding node by
the given CH.

Theorem 1. Consider an MDP with state space SS and
action space A. Let it have a state-action function Q(s, a)
where s ∈ SS and a ∈ A. Consider a function TER that
stores the maximum total expected reward associated with a
state change. Hence, the Q-learning update equation can be
represented as below:

Q(s, a) = (l)×Q(s, a) + (1− l)× TER(s, a)

where l is the learning rate and l ∈ [0,1].

Proof: The optimal Bellman Equation for calculating the
Q-value of an action as mentioned in [42] is:

Q∗(s, a) = R(s, a) + γ
∑
s′

(P (s, a, s′)maxa′Q(s′, a′) (13)

where s and a are the current state and action taken in that
state respectively. Similarly, s′ and a′ represent the next state
and the next action taken respectively. R(s, a) is the return or
reward in that state, P (s, a, s′) is the probability of moving
from one state to another and Q(s, a) is the Q-value associated
with the quality of the action a.
The agent calculates Q-values associated with an action and
a starting state. However, changes in the environment may
cause this value to change over time. If Qw−1(s, a) denotes
the presently saved Q-value of the system and Q∗

w−1(s, a)
denotes the current optimal Q-value, then the Bellman error
[42] is represented as:

error = Q∗
w−1(s, a)−Qw−1(s, a) (14)

The aim of Q-learning is for the agent to adapt to this error
and constantly update its Q-values. This adaptation is made
using:

Qw(s, a) = Qw−1(s, a) + α ∗ error (15)

where w is the current iteration and α is the learning rate. On
substituting Eq. (14), this equation becomes :

Qw(s, a) = Qw−1(s, a)+α∗(Q∗
w−1(s, a)−Qw−1(s, a)) (16)

which, on rearranging and substituting Eq. (13), becomes :

Qw(s, a) = (1− α) ∗Qw−1(s, a)+

α ∗ {R(s, a) + γ
∑
s′

(P (s, a, s′)maxa′Q(s′, a′)} (17)

However, as mentioned in [42], the expression {R(s, a) +
γ
∑

s′ (P (s, a, s
′)maxa′Q(s′, a′)} represents the maximum

expected discounted reward of taking an action a in
state s. In other words, the expression {R(s, a) +
γ
∑

s′ (P (s, a, s
′)maxa′Q(s′, a′)} is essentially the maximum

expected return of the action a in state s. As TER(s,a)
represents the above quantity, Eq. (17) can be written as :

Qw(s, a) = (1− α) ∗Qw−1(s, a) + (α) ∗ TER(s, a) (18)

Fig. 4: Network Topology for the Cluster Heads

Let α ∈ [0,1] and consider a variable l = 1 − α. Therefore,
on substituting α = 1− l, Eq. (18) becomes :

Qw(s, a) = (l) ∗Qw−1(s, a) + (1− l) ∗ TER(s, a) (19)

thus proving the theorem. Note that as α ∈ [0,1], l ∈ [0,1] in
this equation too.

V. PERFORMANCE EVALUATION

This section presents the results of the proposed routing
algorithm MOBMDP. All the simulations were carried out
in MATLAB 2020b. The search area is modeled as a grid
with cells of dimension 100m x 100m. The routing scheme
proposed in this work is compared to four state-of-the-art
routing schemes - RARP (Robust and Reliable Routing Proto-
col) [33], P-OLSR (Predictive Optimised Link State Routing
Protocol) [29], PRED (Predictive Routing) [25] and MAB
(Multi-Armed Bandit-Based Routing Protocol) [35]. All the
simulations consider seven CHs (except for scalability analysis
described in the subsection V-G). and their placement in the
network is shown in Fig. 4. Further, non-deterministic delays
(which include access delay and other MAC layer related
delays) are modeled as a Gaussian variable as in [50]. Note
that these simulations assume that the UAVs are equipped with
the RFD900x Radio Modem [51], which has a transmitting
power of 1W and and is running at a baudrate of 1800 bytes
per second (or 14,400 bits per second). Note that this radio was
specifically chosen as it is capable of radio transmissions upto
a range of 80 km. It is assumed to operate at a frequency of
928 MHz as mentioned in the datasheet. It is very important
to understand which components consume more energy for
energy efficiency. [52]

In our simulations, the following transmissions are ac-
counted for :

1) Periodic Transmissions : These refer to the periodic trans-
mission elaborated in Section IV-B. They have a packet
size of 256 bytes and therefore, consume (1*256/1800) J
or approximately 142mJ of energy per radio transmission.
The bandwidth of the radio used in this work is RFD900x
Radio Modem is typically 500 kbits per second [51]. Even
if the update of network parameters is performed every
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second, the control packets use 2048 bits of this 500
kbits which accounts to 0.4% of the bandwidth which
is very insignificant. Thus, the overhead for the periodic
transmissions is not very significant.

2) Event Based Transmissions : These are event based
transmissions from the CMs to the GCS. For the purpose
of simulation, we are assuming the transmission of a
1920x1080p image in a 24-bit RGB format, the size of
which is 6220800 bytes. Therefore, event based transmis-
sions consume (1*6220800/1800) J, which is 3456 J per
transmission.

Also, as mentioned in [53], when hovering at a constant
height, UAV energy consumption varies linearly with time.
Also, Since the CHs in our model are quasi-static and can
therefore, be assumed to hover at a constant height, the power
consumption of the UAVs due to its motors and accessories
is constant. For the purpose of simulations, UAV CHs are
assumed to have an idle hovering flight time of 8 hours and
initial energy of 3.5 MJ. Therefore, the power consumption by
the UAV motors and accessories is 3.5MJ/(8x3600)s, which is
approximately 121 J/s.

Additionally, note that packets are generated by CMs using
Gaussian variables of mean 1 and standard deviation 1.

Simulation parameters for the routing mechanism are further
summarized in Table III. It must noted here that all simulated
algorithms use the same mechanism for CM to CH routing.
They differ only in inter-CH routing where the respective
algorithm is followed. The forthcoming sections provide an
analysis of the network performance metrics.

A. Network Lifetime

Network Lifetime is defined as the time taken for any
CH in the network to run out of energy. In this simulation,
each CH has been allotted an initial energy of 3.5 MJ for
transmission. Once a CH runs out of energy, it cannot be used
for routing, and the routing protocols consider other available
paths. Figure 5 shows the network lifetime of the protocols.
Clearly, MOBMDP has the best network lifetime. This can
be attributed to the REMEN and PD parameters used in
this work, which evenly distribute the energy consumption in
the network. Further, since RARP and MAB also attempt to
optimize energy consumption, they perform second and third
best respectively. Neither P-OLSR nor PRED consider energy
as an optimizing parameter, owing to which they perform
fourth and fifth best.

TABLE III: Routing Algorithm Simulation Parameters

Parameter Value
Number of Packets Simulated 2600

Non-deterministic delay standard deviation 93 ×10−7

γ 0.2
α 0.9

CHint (MJ) 3.5
PE (Burst Error Probability) 0.02777

UAV Motor and Accessory Power Consumption (W) 121
Energy Consumed per Periodic Radio Transmission (mJ) 142

Energy Consumed per Event Based Radio Transmission (J) 3456
Operating Frequency (MHz) 928

Fig. 5: Network Lifetime

B. Packet Delivery Ratio

Packet Delivery Ratio (PDR) is defined as the ratio of
successful transmissions to the total number of transmissions
from CM to GCS. To model the burst errors (errors due to
random changes in the channel), this work uses the Burst Error
model proposed in [54] and [55]. This model defines a two-
state Markov chain with probability PE (named burst error
probability), denoting the probability of the transmission to go
from a “good” (or successful) state to a “bad” (or unsuccessful)
one. Apart from burst errors, packets are considered dropped
if no paths to the GCS are available. Figure 6 shows a
comparative analysis of the PDRs. Note that this figure shows
the variation of the cumulative PDR at every point on the
X-axis. For example, the PDR value calculated at packet
number 2000 is that of all packets transmitted between the
first recorded packet to packet number 2000. Once again,
MOBMDP outperforms the other routing algorithms. This can
be attributed to MOBMDP having a higher network lifetime
than the competing algorithms. This ensures that UAV nodes
take longer to run out of energy and packets dropped due to
the unavailability of routing paths (arising from UAV nodes
running out of energy) are minimized.

C. Energy Efficiency

Energy efficiency is the total energy expended by the CHs
per successful transmission. This can be calculated using the
PDR as below:

Energy Efficiency =
Total energy expended by the CHs

PDR
(20)

The comparative analysis of the energy efficiency of MOB-
MDP and the other routing algorithms has been presented
in Fig. 7. As mentioned in section V-B, a higher network
lifetime contributes to an increase in the number of successful
transmissions. Further, MOBMDP uses a novel metric, “PD”
(Power Distance ratio), which ensures that the UAV nodes
balance maximizing network lifetime and minimizing energy
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Fig. 6: Packet Delivery Ratio

Fig. 7: Average Energy Expended in Successful Transmissions

Fig. 8: Average Delay in Successful Transmissions

expended in transmitting data. Hence, MOBMDP expends
less energy on transmissions and has more successful trans-
missions. Therefore, MOBMDP outperforms the remaining
routing algorithms in energy efficiency.

D. Average Delay in Data Transmission

Average Delay is calculated by considering the average
delay for successful transmissions for each protocol. In other

Fig. 9: Error in Predicted Delay

Fig. 10: MOBMDP Convergence

words, delay values were only considered where the packet
was successfully delivered to the GCS. The comparative
analysis of the average delays of the five algorithms is depicted
in Fig. 8. MOBMDP, MAB, P-OLSR, RARP, and PRED all
perform comparably with an average difference of 1 µs.

E. Error in Delay Estimation

Among the five algorithms compared, MOBMDP and
PRED attempt to predict the delay associated with all possible
paths and use that as a parameter to decide their forwarding
nodes. Therefore, Fig. 9 shows a comparative analysis of the
error in predicted delay of MOBMDP and PRED. Error is
defined as Error = |DelayPredicted − Delayactual| MOB-
MDP gives a more accurate delay prediction than PRED. In
fact, it reduces the error in the delay prediction by a factor
of 10. This can be attributed to the RL-based mechanism
proposed in MOBMDP using real-time delay information to
update its prediction in contrast to PRED, which simply makes
estimations based on the distance between the UAV nodes.
F. Convergence Analysis

Figure 10 depicts the absolute Bellman error of CH1
in MOBMDP for every packet transmission. In Q-learning,
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(a) Network Lifetime vs number of CHs (b) Average Energy consumed vs number of CHs

(c) Packet Delivery Ratio vs number of CHs (d) Average Delay vs number of CHs

Fig. 11: Analysis of various performance parameters with varying network size (number of CHs)

Bellman error is defined as the change in the Q-value of
an agent in the next observed state [42]. Clearly, after the
first packet, there is a considerable change in the Q-value of
CH1. However, the Bellman error remains relatively low and
stable until the 2600th packet. Therefore, it can be concluded
that MOBMDP converges. Further, since the Bellman error
stabilizes almost instantly, it can be concluded that MOBMDP
shows fast convergence.

G. Scalability Analysis

The performance of MOBMDP is analysed for various
parameters with varying number of CHs. Figure 11 presents
the results of this analysis for Network lifetime in Fig. 11a,
Average energy consumed in Fig. 11b, PDR in Fig. 11c and
average delay in Fig. 11d.

It can be seen from Fig. 11a that the network lifetime
increases with the number of CHs. The reason for this trend
can be attributed to the fact that as the network size increases,
more CHs are available for forwarding the packets in the
network. Thus, it takes longer for the first CH to run out of
energy, thereby increasing the network lifetime.

Figure 11b shows that the network’s average energy con-
sumed (in Joules) increases with network size. This is because
more CHs are present in the network, increasing the total
energy consumed by the mechanical parts of the CH UAVs
(like motors). Further, as the network lifetime increases with
network size, data packets transmitted increases with network
size. This, in turn, further increases the energy consumed as

network size increases. Note that only CHs were considered
for this energy calculation because this paper focuses on the
routing algorithm of the CHs.

The Packet Delivery Ratio (PDR) (or successful transmis-
sion rate) variation with network size is shown in 11c. This
graph shows the PDR remains greater than 95% for all network
sizes considered, thereby showing the efficiency of MOBMDP.
This shows that network size does not affect the PDR and
MOBMDP ensures a high packet delivery ratio. Further,
MOBMDP’s PDR is higher than the competing algorithms,
as shown in Fig. 6.

Figure 11d shows the variation of average transmission
delay with network size. This figure shows that the average
delay increases with network size as the CHs farther from the
GCS take more hops to reach the GCS.

H. Effect of Discount factor on the Network Performance

The effect of discount factor γ on various network perfor-
mance parameters is shown in Fig. 12. In this experiment,
the number of CHs is kept constant at seven. The value of γ
varies from 0.1 to 0.5 in the steps of 0.1. Figure 12a shows the
variation of network lifetime with varying values of γ. A small
increase in network lifetime value is observed with an increase
in γ. The effect of γ on average energy consumed by the CHs
is shown in Fig. 12b. The variation of energy consumption is
very slight from 2926.16 J for γ = 0.1 compared to 3113.61
J which is an increase of 6.4%. This shows that the effect of
γ on average energy consumption is fairly minimal. Variation
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(a) Network Lifetime vs discount factor (b) Average Energy consumed vs discount factor

(c) Packet Delivery Ratio vs discount factor (d) Average Delay vs discount factor

Fig. 12: Analysis of various performance parameters with varying discount factors γ for N=7 (CHs)

of PDR with γ is shown in Fig. 12c. This shows change in
γ does not have an appreciable effect on PDR. Figure 12d
shows the effect of γ on the average (transmission) delay of
the CHs. Again the increase in average delay is fairly minimal,
i.e., 1.85% from γ = 0.1 to γ = 0.5.

VI. CONCLUSION

This work presents MOBMDP (Multi-Objective Markov
Decision Process Based Routing), a novel Q-learning and
MDP-based routing algorithm explicitly designed for multi-
UAV system facilitated search operations. This algorithm out-
performs four state-of-the-art algorithms in terms of network
lifetime, energy efficiency and packet delivery ratio while
maintaining similar performance in data transmission delay .
In future works, the aim will be to apply this routing protocol
in a novel end-to-end secure UAV network framework on a
hardware testbed.
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