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Abstract

Modeling electricity prices after market deregulation has become notoriously difficult and yet more important due
to the increase of price volatility. The aim of this work is to propose two alternative multivariate autoregressive
models with α-stable noise for modeling New Zealand electricity market prices. The models account for nodal price
interrelations as well as price dependency on empirical factors. Moreover, a novel extension of classical approaches
is provided by incorporating non-Gaussian noise structure to reproduce price spikes. The results are robust and show
high accuracy in day-ahead forecasts and provide market participants with a sound basis for risk assessment.

Key words: electricity price, day-ahead forecast, multivariate autoregression, VAR, non-Gaussian noise

1. Introduction

Electricity prices have become some of the most challenging time series to be modeled mathematically. This is
due to electricity market deregulation, which has by now been carried out in many countries across the world. Its aim
was to allow fair competition in the market and thus open it to more participants. Indeed, the goal of reducing average
price level through competition has been achieved, however, electricity prices have also become more volatile and
less predictable than ever before.

An important factor which contributes to high volatility in most of the markets is the large variations in demand
and supply of electricity, both of which are very uncertain in deregulated markets (Burger et al., 2004). For instance,
temperature strongly affects the demand; in total, the demand varies between 50-100%. Thus, as some say, forecast-
ing demand is almost equivalent to forecasting weather (Podraza, 2006). Next to any climatic factors, hydrological
balance, demand and base load supply (Vehviläinen and Pyykkönen, 2005) can be considered with equal importance
as the key spot price drivers.

Electricity prices can be studied both in their inter- and intraday format (hourly or half-hourly, depending on the
market). A lot of research efforts have so far focused on investigating spot price interdependencies. For instance,
the New Zealand spot prices can be divided into five intraday groups: overnight off-peak, morning peak, day-time
off-peak, evening peak, and evening off-peak. Then it appears that prices within these groups are a lot more correlated
than between these groups along different trading periods (Guthriea and Videbeck, 2007). Another work analyzed a
group of models classified as Markov regime-switching (MRS) (Janczura and Weron, 2010). There, the focus was on
the performance of different models in terms of statistical goodness-of-fit and the results showed that the best one was
an independent spike 3-regime model with time-varying transition probabilities, heteroscedastic diffusion-type base
regime dynamics and shifted spike regime distributions.

Thorough understanding of intraday price structure makes day-ahead forecasting these days possible up to a
significant level of accuracy. However, also long-term predictions are equally important for risk management. It is
known that electricity price trend and cyclic structure comes in big part from the influence of some well recognized
factors. Among those one should list hydrological storage (for heavily hydro-dependent markets, like Nord Pool ad
New Zealand) and thus rainfall, weather and demand (Vucetic et al., 2001; Ruibal and Mazumdar, 2008; Laitinen
et al., 2000; Jabłońska et al., 2011). A stochastic model using a number of explanatory variables has been proposed,
for instance, for the California electricity market (Kian and Keyhani, 2001), among others. For the case of New
Zealand prices, there is lack of modeling approaches that would be able to thoroughly explain behavior of prices.
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Only some works have just identified that the nature of prices has changed after market deregulation in various ways
(Ying and Flynn, 2003). Some other researches have used discrete wavelet transforms to investigate the demand-price
relationship (Qureshi et al., 2009) and market volatility in New Zealand with the use of GARCH models (Situ and
Nair, 2007).

The main contribution of this study is twofold. Firstly, it exploits the significant interdependencies between
the prices in different trading nodes, as well as external factors influencing them, like hydro storage, rainfall, air
temperature and demand. This is done through multivariate autoregressive models which provide a lot of advantage
over a classical regression analysis. Secondly, both proposed models consider non-Gaussian noise with α-stable
structure, which allows to capture statistically the occurrence of price spikes. This is a novelty when compared to
the classical ARMA-GARCH methodology. Results show that both models provide accurate day-ahead forecasts for
the period of a year ahead. Therefore, we demonstrate that a novel combination of VAR models with non-Gaussian
noise provides a powerful tool for analysis and day-ahead forecasting of electricity spot prices, including a new way
of coping with simulation of price spikes.

This article is structured as follows. Section 2 describes the data set used in the study together with the main
statistical features of the data. In Section 3, the multivariate autoregressive model with non-Gaussian structure is
introduced. Section 4 applies the model to the real data and collects fit and forecast results. Section 5 concludes the
results.

2. Main features of New Zealand electricity prices

2.1. New Zealand electricity market

New Zealand electricity market is a very interesting case study for spot prices analysis from many points of view.
Its electricity sector is principally (70%) based on renewable energy sources such as hydropower, geothermal power
and a steadily increasing wind energy, which makes New Zealand one of the most sustainable countries in the world
when it comes to energy generation. On the other hand, its electricity demand has been significantly growing in the
past by an average of 2.4% per year since 1974 and by 1.7% over 1997 – 2007.

New Zealand is characterized by a geographically unbalanced demand-supply relation. The highest electric power
production takes place on the South Island whereas the highest demand comes from the more populated and industri-
alized North Island. Moreover, the electricity market in New Zealand is not pooled. The main participants are seven
generators/retailers who trade at over 200 nodes across the transmission grid.

New Zealand market data is available free of charge from the Electricity Authority (former Electricity Commis-
sion) in the form of Centralized Dataset. The data consists of half-hourly information on nodal prices, bids and offers,
meter data and binding constraints, as well as additional daily hydrology and network configuration data. The au-
thors utilized price data from a number of nodes, as well as the centralized demand and hydrological storage values.
Moreover, additional data on rainfall and temperatures in each of the considered nodes was used.

The analysis presented in this paper considers 11 trading nodes spread across both South and North Island, as
presented in Fig. 1. Six of them are located near powerplants. In particular, Benmore, Tuai and Whakamaru that
represent the hydro power generation, while Huntly, Otahuhu and Stratford are based on geothermal generation. The
remaining 5 nodes are only splitting substations. The data covers a period from 1st of January, 1999 to 31st of July,
2009. Data are quoted daily.

The choice of the trading nodes was deliberate to properly represent the most important power generators as well
as the key splitting substations. For instance, Haywards is the key node splitting power delivered through the High
Voltage Direct Current (HVDC) connection between the South Island (originating in Benmore) and North Island.
Numerous times, price spikes can occur in that node due to electricity transmission constraints. Also, fair balance
between the South and North Island was needed as, for instance, prices in the South used to be on average lower than
in the North until an additional fee was imposed on the generators for using the HVDC connector to transmit power.

Let us note that the 11 nodes create just a small representative subset of the total of over 200 nodes across the
country. Theoretically, it is of course possible to work with all the grid nodes in one model. However, this would,
in our opinion, make the system over-represented and, certainly, computationally heavy when it comes to parameter
estimation (there would be many more parameters to be estimated that data points available).
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Figure 1: Location of the 11 nodes in the New Zealand grid used in the analysis.

2.2. Relationship between respective price data corresponding to analyzed nodes

The first approach proposed in this study is based on relationships between price data for the 11 considered nodes.
The analyzed data sets, which correspond to 11 vectors of electricity prices in chosen nodes in New Zealand during
examined period, exhibit very similar behavior. In Fig. 2, we present the analyzed prices. Moreover the data sets
have also similar statistical properties. The first property that we observe here is the non-stationarity of each vector.
This non-stationarity can be easily proven by observing the autocorrelation functions (ACFs) of appropriate data sets.
Moreover, in the ACFs we can also see the seasonal behavior for all of considered vectors of observations. The
corresponding ACFs are presented in Fig. 3.

The second statistical property that is observable for all considered data sets is the weekly seasonality. This kind
of seasonality can be seen in ACFs of differenced series. In Fig. 4 we present the autocorrelation functions for 11
electricity price vectors, where the weekly seasonality is easily observable for lags that are multiples of seven.

The last property that should be emphasized here is a strong relation between the analyzed data sets. The corre-
lation coefficients are large and the test for its significance indicates at non-zero correlation between analyzed prices.
That is, all the p-values (for testing the hypothesis of no correlation against the alternative that there is a non-zero cor-
relation) are very close to zero. In particular, all correlation coefficients among the 11 price series themselves exceed
0.9. High correlations could raise a multicollinearity concern, however, this is problematic with classical regression
models, whereas it has not been proven such in the case of autoregressive models. The idea of multivariate autore-
gressive models used in this study is that all the variables are equally important and we do not distinguish between
dependent and independent variables. Therefore, there is no need to remove any of the highly correlated components.

2.3. Relationship between price data and deterministic factors

The second proposed approach is based on the relationship between price in one node and other variables that can
have influence on the price. Along with the nodal spot price, the deterministic factors considered here are: rainfall in
the analyzed node, country’s hydro storage, electricity demand and temperature in the region.

The choice of the variables was deliberate with respect to their level of correlation with the prices, as well as the
ability to represent both local and country-level situation. Therefore, some of them are considered as measurements
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Figure 2: The examined 11 data sets corresponding to electricity prices in New Zealand in the examined period.

from the particular node location, and some are aggregated for the whole country. Firstly, as we mentioned before, the
New Zealand electricity market is heavily hydro-dependent and the information on country’s hydrological information
is of key importance to price modeling (Tipping et al., 2004). Therefore, we include two variables which can account
for this feature. The amount of rainfall is measured regionally in millimeters per square meter. This variable tells
a lot about whether a given season/year is dry or not in the region. On the other hand, we know that prices in all
nodes depend on the entire country’s hydro reservoir levels, with correlations between the spot price and the hydro
information ranging between -0.39 and -0.49 in various nodes. Namely, when the overall reserves drop, this triggers
the prices to raise. Therefore, we add another variable which is the New Zealand’s total hydro storage, since the
study considers trading nodes which are representing not only hydro powerplants but also other plants and purely
splitting substations. In the same fashion we include two demand-related variables, as it is known that when the
consumption significantly increases, it may cause the prices to go the same way. One of them is regionally measured
air temperature, and another is the total demand calculated for the entire country.

In Fig. 5 we present the five analyzed data sets. As we observe, there is a strong relation between the studied
variables, which is especially visible in the seasonal behavior of all data series.

Similarly, as in the first approach, here we should also emphasize the non-stationarity of the data. This non-
stationarity can be proved by using ACFs, where we can observe a strong relation between the analyzed processes,
see Fig. 6. The only exception is rainfall, not showing non-stationarity.

It is worth mentioning that some of the analyzed vectors of observations exhibit also weekly seasonal behavior. We
observe this especially for electricity price data and electricity demand. In Fig. 7, we present ACFs of the differenced
series, where weekly seasonality is visible for price and demand data.

The last property is a strong relation between the analyzed data sets that can be proved not only by visualization
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Figure 3: The ACFs of electricity prices in New Zealand in the examined period.

but also a strong statistical test. The correlation coefficients are large and the test for its significance indicates at
non-zero correlation between analyzed variables. All p-values for testing the hypothesis of no correlation against the
alternative that there is a non-zero correlation are very close to zero which indicates the correlations are significantly
different from zero. In particular, the correlation coefficients between the price and other variables vary between -0.54
to 0.2. Only one exception is the correlation between rainfall and temperature. For those variables the p-value of the
test for no-correlation is equal 0.6954 that means the correlation is at zero level.

3. Multivariate autoregressive model with non-Gaussian structure

An m-dimensional process {Xt} = {X1
t , ....X

m
t } is an m-variate autoregressive moving average (ARMA) of order

(p, q) if it is stationary and if for every t it satisfies the following equation (Brockwell and Davis, 1996):

Xt − Φ1Xt−1 − ... − ΦpXt−p = εt + Θ1εt−1 + ... + Θqεt−q, (1)

where {εt} is an m-variate white noise of mean vector 0 and covariance matrix Γ(t, t + h) that is independent of t and
has the following form:

Γ(t, t + h) = Γ(h)


Σ for h = 0

0 otherwise
(2)
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Figure 4: The ACFs of differenced series. The larger values of autocorrelations at lags being multiple of seven indicate at week seasonality.

Let us remind the covariance matrix for m-dimensional vector is the matrix Γ(t, t + h) defined as follows:

Γ(t, t + h) =

 γ11(t, t + h) ... γ1m(t, t + h)
... ... ...
γm1(t, t + h) ... γmm(t, t + h)

 (3)

In the above definition γi j(t, t + h) = Cov(Xi
t , X

j
t+h). In the further analysis we denote {εt} ∼ WN(0,Σ) (white noise).

The process {Xt} is called ARMA(p, q) with mean µ if {Xt} − µ is an ARMA(p, q) system.
The multivariate ARMA processes are very useful in practice. They found many applications, especially, because

of their simple form. They are extensions of known one-dimensional ARMA models extremely popular in different
fields. Some of interesting applications of multivariate ARMA models can be found in Ranam and Sunilkumar (1995);
Tiao and Tsay (1989); Stathopoulos and Karlaftis (2003); du Preeza and Witt (2003).

In the classical approach, the residual series {εt} is assumed to be an m-variate Gaussian distributed random vari-
able, i.e. random variable of the following probability density function:

f (x) = (2π)−m/2|Σ|−1/2 exp
{
−

1
2

(x − µ)′Σ−1(x − µ)
}
, (4)

where x = (x1, ..., xm) and µ = (µ1, ..., µm) is the mean vector. Let us mention that if the random variable has m-
dimensional Gaussian distribution, then each component has one-dimensional Gaussian distribution with appropriate
parameters.

For simplicity, in the further analysis we concentrate only on multivariate autoregressive (AR) models that we
denote as VAR (vector AR). In this case, the procedure of estimating the parameters is based on the method of
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Figure 5: The five examined data sets corresponding to electricity price N1, rainfall, hydro storage, electricity demand and temperature. The rainfall
and temperature are measured in the region corresponding to node 1.

moments and it is an extension of the popular Yule-Walker method applied to one-dimensional AR systems (Brockwell
and Davis, 1996). The method applied to multidimensional AR systems is called the Whittle’s algorithm (Whittle,
1963). If we multiply the causal VAR process:

Xt = Φ1Xt−1 + ...ΦpXt−p + εt (5)

by X′t− j for j = 0, 1, .., p and take expectations of both sides, then we obtain the following equations:

Σ = Γ(0) −
p∑

j=1

Φ jΓ( j), Γ(i) =

p∑
j=1

Γ(i − j), j = 1, 2, ...p

Now, taking the empirical equivalences of matrices Γ(0), ...,Γ(p), we can estimate the matrices Φ1, ...,Φp and Σ.
Let us remind that a natural estimator of covariance matrix is the sample covariance, that for the vector X = (X1, ..., Xm)
(each component of n elements) is given by:

Γ̂(h) =


n−1 ∑n−h

j=1 (Xt+h − µ̂)(Xt − µ̂) for 0 ≤ h ≤ n − 1

Γ̂′(−h) for −n + 1 ≤ h < 0
(6)

In the above formula, µ̂ denotes the sample mean vector.
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Figure 6: The ACFs of examined 5 data sets corresponding to electricity price N1, rainfall, hydro storage, electricity demand and temperature.

3.1. The VAR model with non-Gaussian structure

Because many real data series exhibit behavior not adequate for Gaussian systems, in this paper we extend the
classical VAR model presented above by replacing the m-dimensional Gaussian distribution with more general class
of distributions, namely, α−stable (called also stable), which belong to the family of the so-called heavy-tailed distri-
butions. The α−stable distribution is flexible for data modeling and includes Gaussian distribution as a special case.
The importance of this class of distributions is strongly supported by the limit theorems which indicate that the stable
distribution is the only possible limiting distribution for the normed sum of independent and identically distributed
random variables. The interesting applications of a class of α−stable distributions can be found, for instance, in Mit-
tnik and Ratchev (2000); Fichea et al. (2013); Stuck and Kleiner (1974). See also Nowicka-Zagrajek and Wyłomańska
(2006, 2008).

We start by introducing a one-dimensional α−stable random variable. A random variable S has one dimensional
stable distribution if, for any numbers A, B > 0, there exist numbers C > 0 and D ∈ R such that

AS 1 + BS 2
d
= CS + D, (7)

where S 1 and S 2 are two independent copies of S (Samorodnitsky and Taqqu, 1994). For each stable random variable
S there exists a number α ∈ (0, 2] such that the constant C in equation (7) satisfies the following relation:

Cα = Aα + Bα.

The second equivalent definition is based on the characteristic function of random variable S .
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Figure 7: ACFs of the five differenced data sets corresponding to electricity price N1, rainfall, hydro storage, electricity demand and temperature.

The random variable S has α−stable distribution if there exist parameters α ∈ (0, 2], σ > 0, −1 ≤ β ≤ 1 and µ ∈ R
such that the characteristic function of S takes form:

EeixS =


exp {−σα|x|α(1 − iβsign(x)tan(πα/2)) + iµx} for α , 1

exp
{
−σ|x|(1 + iβ(2/π)sign(x) log(|x|)) + iµx

}
for α = 1.

(8)

Stability index α, scale parameter σ, skewness parameter β and shift parameter µ in a unique way define the distribu-
tion of a random variable S . In the further analysis, we denote S ∼ S (α, σ, β, µ). The probability density function for
most α−stable distributions has no explicit form. However, there are three exceptions, namely, Gaussian (for α = 2),
Cauchy (for α = 1 and β = 1) and Lévy (for α = 0.5 and β = 1).

The extension of a univariate stable distribution is the multivariate one. A characteristic function of an m-
dimensional random vector S = (S 1, ..., S m) is defined as follows:

Φ(x) = Eei
∑m

k=1 xkS k .

The m-dimensional vector S is α−stable in Rm if and only if there exists a finite-dimensional measure G on the unit
sphere S m and the vector µ such that:

Φ(x) = e−I(x)+i
∑m

k=1 xkµ
k
,
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where I(x) =
∫

S m
ψ(

∑m
k=1 sixi)G(ds1, ..., dsm) and

ψ(u) =


|u|α (1 − isign(u)tan(πα/2)) , for α , 1

|u|
(
1 + i 2

π
sign(u) log(|u|)

)
, otherwise

Moreover, (G, µ) is unique. It is worth mentioning that the stability index α, measure G (called spectral measure),
and the shift vector µ in a unique way define the m-dimensional stable distribution denoted as S m(α,G, µ). If S
has m-dimensional stable distribution, then each component has one-dimensional stable distribution with appropriate
parameters.

The multidimensional AR model with α−stable structure is the system defined in (1) for which the residual series
{εt} comes from an m-dimensional α−stable distribution.

4. Real data analysis

4.1. Model 1
In the first proposed model, we use the relationship between prices corresponding to 11 nodes. In the first step of

our analysis we remove the seasonal behavior from the original data sets, which is related to the annual seasonality
observable in electricity prices. In order to do this, we fit to all 11 vectors the sum of sinusoidal functions by using the
least squares method. After removing the sinusoidal functions, we differentiate the data. For each vector a different
function is fitted (we choose the best fitting) but results after those transformations are similar. This is especially
observable in the autocorrelation functions where only weekly seasonality is visible. As an example, we present the
vector N1 after mentioned transformation (see Fig.8 top panel) and its autocorrelation function (see Fig. 8 bottom
panel).

Because the autoregressive models can be used only to stationary series, before we fit the VAR model, we have to
remove weekly seasonality from the data. The simplest method is to remove the seasonal mean that is calculated by
using the data corresponding to each season. More precisely, from the analyzed data set X1, ...., XnT (T is the observed
season) we remove function w which is calculated as follows:

w(t) =
1
n

n−1∑
k=0

XkT+t, t = 0, 1, 2, ... (9)

After removing the seasonal behavior from the original data sets, we can fit the best VAR model. In order to find the
best order p we use the Schwartz-Bayesian criterion (BIC) which, for the vector X1, ..., Xm (each of n observations),
is defined as follows:

BIC(p) = log(|Σ(p)|) +
log(m)

m
pn2, (10)

where Σ(p) = 1
m

∑m
t=1 εtε

′
t is the residual covariance matrix from a VAR(p) model. The general approach is to fit a

VAR(p) model with order p = 0, ..., pmax and choose the value of p which minimizes the selection criterion. In Fig. 9,
we present the BIC statistic for order p taking values between 1 and 15. The plot clearly indicates that the best model
is VAR(4).

After selecting an appropriate order p, we can estimate the parameters. As it was mentioned earlier, here we use
the Whittle’s algorithm which is based on the method of moments (Brockwell and Davis, 1996). The model contains
11 ∗ 11 ∗ 4 = 5324 parameters, therefore, we do not present the estimated values. In the next step of the analysis, we
examine the residual series. Since we consider the multidimensional model, the series is also multidimensional. We
test the distribution of the residual series for each vector separately. For all vectors the residuals exhibit non-Gaussian
behavior. This can be proved by using the Jacque-Bera test for normality. The statistic of JB test for the vector ε1, ..., εn

is defined as follows (Jarque and Bera, 1980; Burnecki et al., 2011):

JB =
n
6

(
S 2 +

K − 3)2

4

)
, (11)
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where S and K are the sample skewness and kurtosis, respectively, namely:

S =
1/n

∑n
i=1(εi − ε̄)3( √

1/n
∑n

i=1(εi − ε̄)
)2 ,
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K =
1/n

∑n
i=1(εi − ε̄)4( √

1/n
∑n

i=1(εi − ε̄)
)2 .

The value of the JB statistic given by (11) forms a random variable which converges to zero if the underlying distribu-
tion has skewness zero and kurtosis 3 (e.g., Gaussian). Any deviation of skewness from zero and deviation of kurtosis
from 3 increases the JB statistic. For distributions with infinite kurtosis (like α−stable with α < 2) it diverges to
infinity. The test is quite standard and implemented in various numerical packages, like, for example, R or MATLAB.
Similar as for all statistical tests, the calculated p-value indicates whether the zero hypothesis can be accepted at the
given significance level. If p-value is small, the hypothesis (here of Gaussian distribution) should be rejected. For
the analyzed residuals from VAR(4) model the obtained p-values are at the level of 0.001 that indicates non-Gaussian
distribution. In order to show the analyzed residual series comes from an α−stable distribution, we use two goodness
of fit test statistics, namely, Kolmogorov-Smirnov and Anderson-Darling.

The most well-known supremum statistic is the Kolmogorov-Smirnov (KS) statistic. It is just the supremum of
the set of distances:

KS = supx |ECDF(x) − F(x)| , (12)

where F is the cumulative distribution function of the testing distribution and ECDF(x) is the empirical cumulative
distribution function, which for the series ε1, ..., εn is calculated as follows:

ECDF(x) =
1
n

n∑
i=1

1 {εi ≤ x} (13)

In the above definition 1{A} denotes the indicator of a set A.
The Anderson-Darling statistic, belongs to the Cramer-von-Misses family of statistics which incorporate the idea

of quadratic norm. The Cramer-von-Misses statistic for vector ε1, ..., εn is defined by (Burnecki et al., 2011)

Q = n
∫ ∞

−∞

(ECDF (x) − F (x))2 φ (x) dx (14)

where φ (x) is a suitable function which puts weights to the squared difference (ECDF (x) − F (x))2. When φ(x) = 1,
Q is called the Cramer-von-Misses statistic. If φ (x) = [F (x) (1 − F (x))]−1, the above definition yields the Anderson-
Darling (AD) statistic. Similar as for the JB test, there exists a statistical test that allows to test the proper distribution
of examined data. More details can be found in Anderson and Darling (1952, 1954); Burnecki et al. (2012).

In Tab. 1 we present the values of the KS and AD statistics and corresponding p-values of tests for α−stable
distribution for the 11 analyzed data sets. For the α−stable distribution the cumulative distribution function is not
given explicitly, thus to obtain the corresponding p-values we use the Monte Carlo method with 1000 repetitions.
As we observe, the obtained p-values significantly exceed the significance level 0.05 therefore we can not reject the
hypothesis of α−stable distribution of residual series.

Next we estimate the parameters of α−stable distribution for all residual series. We use here the regression method
(Koutrouvelis, 1980; Kogon and Williams, 1998). The method is based on the form of the characteristic function of
an α−stable random variable S (α, σ, β, µ) given in (8). For a random sample ε1, ..., εn from the α−stable distribution,
we calculate the empirical characteristic function:

ECHF(x) =
1
n

n∑
j=1

eixε j . (15)

In the regression method, the empirical characteristic function is compared to the theoretical one and by using least
squares method one can estimate the parameters. For more details see Borak et al. (2005). In Tab. 2, we present the
estimated parameters for all 11 vectors of residuals. As we observe the estimated α parameters of the residual series
are on the level 1.3 − 1.4, so tails of distributions of data related to the considered nodes are very similar. Moreover
the σ parameter in all considered cases is approximately 500, so the scaling in all cases is the same. The β parameters
indicate the data are symmetric (β close to zero). Only the shift parameter µ indicates at differences between the
distribution of residuals.
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Table 1: The values of KS and AD statistics and corresponding p-values of goodness of fit tests.

vector KS p-vale (KS) AD p-value (AD)

N1 0.55 0.60 0.29 0.68

N2 0.43 0.95 0.16 0.95

N3 0.54 0.60 0.61 0.48

N4 0.72 0.27 0.46 0.54

N5 0.52 0.65 0.23 0.86

N6 0.37 0.97 0.18 0.89

N7 0.53 0.67 0.35 0.75

N8 0.52 0.63 0.24 0.73

N9 0.74 0.18 0.61 0.40

N10 0.44 0.88 0.29 0.74

N11 0.72 0.23 0.54 0.48

Table 2: The estimated parameters of α−stable distribution for the residual series from Model 1.

vector α σ β µ

N1 1.39 463.73 −0.02 −9.42

N2 1.42 483.86 −0.04 −9.23

N3 1.28 523.45 0.03 21.50

N4 1.28 536.31 0.04 17.81

N5 1.40 488.23 −0.03 −12.53

N6 1.38 513.43 −0.04 −21.46

N7 1.28 559.92 0.02 −3.09

N8 1.38 540.24 −0.03 −13.56

N9 1.27 513.06 0.05 37.71

N10 1.28 553.97 −0.03 −42.38

N11 1.28 530.19 0.06 36.20

By using the fitted model, we can simulate the VAR(4) system with α−stable residuals. In Fig. 10 we present the
exemplary vector N1 together with the quantile lines on the 10%, . . . , 90% levels from the simulated samples. The
quantile lines are constructed by using Monte Carlo methods with 1000 repetitions. Note that the observed price does
not exceed the bounds given by the 10% and 90% quantile lines.
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Figure 10: Quantile lines of level 10%, 20%, . . . , 90% and the measured price N1 (thick blue line)

4.2. Model 2
In the second approach we propose to use the relationship between the electricity price corresponding to node 1

and other variables such as rainfall, hydro storage, electricity demand and temperature. Let us remind that the rainfall
and temperature were measured for the region related to node 1, whereas the storage and demand have been aggregated
for the entire country (that is the original format in which the data has been provided by Electricity Commission).

Similarly as in the first approach, in the first step of the analysis we remove the non-stationarity of the data by
fitting the sum of sinusoidal functions for all considered vectors of observations. Only one exception is the rainfall
where the non-stationarity is not visible, see Fig. 6. Next, we differentiate the data after removing the fitted functions.
In the second step, for the data with weekly seasonal behavior (price and electricity demand), we calculate the periodic
mean and remove it. The formula for periodic mean is presented in (9).

Next, a proper order p should be calculated. Similar as in the previous approach, here we use the BIC criterion
defined in (10). In Fig. 11 we present the plot of BIC statistic for order p varied between 1 and 15.

2 4 6 8 10 12 14

8.3

8.35

8.4

p

B
IC

Figure 11: The BIC statistic for selection of the best model that takes under consideration the relationship between electricity price N1 and rainfall,
hydro storage, electricity demand and temperature. For considered data the best model is VAR(4).

After the proper model has been fitted, we can analyze the residuals. First, we check if they constitute samples
from Gaussian distribution. Similar as in Model 1, we use the JB statistic defined in (11) and test based on it. In
Tab. 3 we present the p-values of the test for gaussianity. Let us remind, the small p-value (less than significance level
0.05) indicates on non-Gaussian behavior of underlying random sample. As we observe, only the residuals related to
temperature can be treated as a sample from Gaussian distribution. The estimated parameters of Gaussian distribution
for temperature residuals are µ = 0.0034 and σ = 2.45.

14



Table 3: The p-values of the JB test for gaussianity.

price rainfall hydro storage demand temperature

0.001 0.001 0.001 0.001 0.1786

Next, we check if the the residuals related to price, rainfall, hydro storage and demand constitute samples from
α−stable distribution. In order to do this, we use the KS and AD goodness of fit tests presented above. In Tab. 4 we
present the values of the statistics and corresponding p-values calculated on the basis of 1000 Monte Carlo simulations.

Table 4: The values of KS and AD statistics and corresponding p-values of goodness of fit tests.

vector KS p-vale (KS) AD p-value (AD)

price 0.64 0.39 0.31 0.72

rainfall 49.37 0 0.26 0.56

hydro storage 49.55 0 1.71 0.82

demand 1.02 0 2.5 0.13

As we observe, the KS test indicates that only the price comes from an α−stable distribution. This can be seen
from the prominent values of the statistic. But the AD test indicates the residuals of mentioned in Tab. 4 variables
can be treated as from α−stable family. Therefore, we estimate the parameters of this distribution. In Tab. 5, we
present the estimated parameters by using the regression method. Here the situation is different than in Model 2. As
we observe there is a difference in α parameters so the tail behavior is different for the considered variables. The other
parameters also are different for different variables.

Table 5: The estimated parameters of α−stable distribution for the residual series from Model 2.

vector α σ β µ

price 1.4 457.49 0.07 26.60

rainfall 1.10 1.11 −0.18 108.96

hydro storage 1.19 7.46 0.56 751.87

demand 1.58 1.390 0.19 237.75

By using the fitted model we can simulate the VAR(4) system with residuals which come from the fitted distribu-
tions. In Fig. 12 we present the price vector N1 together with the quantile lines on the level 10%, . . . , 90% from the
simulated model. The quantile lines are constructed by using Monte Carlo methods with 1000 repetitions. Note that
the observed price does not exceed the bounds given by the 10% and 90% quantile lines.

Finally, in order to illustrate how beneficial the obtained models might be in the problem of electricity price
description, we calculate the price prediction for the next year. The obtained predicted values are then validated by
comparing them to the actual values. To this end, we fit the model to the first 2091 observations and then based on
the obtained estimates we calculate the prediction for next 360. The obtained values are plotted in Fig. 13. As can be
observed in the figure, the predicted values visually resemble the actual values for both considered models.
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Figure 12: Quantile lines of level 10%, 20%, . . . , 90% and the electricity price N1 (blue thick line)
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Figure 13: Values of electricity prices N1 together with the prediction for the next year. The predicted values were calculated by using the Model
1 (top panel) and Model 2 (bottom panel).

In order to check which model gives better prediction results, we calculate three measures: mean squared error
(MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of the forecast for the next year. The
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measures are defined as:

MS E =
1
k

k∑
t=1

(Xt − X̂t)2, MAE =
1
k

k∑
t=1

|Xt − X̂t |, MAPE =
1
k

k∑
t=1

|Xt − X̂t |

Xt
,

where k is the number of predicted values, Xt is the measured observation at point t and X̂t its prediction. The obtained
values of mentioned measures are given in Tab. 5.

Table 6: Mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of the prediction for the next year

MSE MAE MAPE

Model 1 7.48 ∗ 106 1.73 ∗ 103 17%

Model 2 4.99 ∗ 106 1.59 ∗ 103 19%

5. Conclusions

In this work two multivariate autoregressive models with non-Gaussian noise structure for forecasting day-ahead
electricity prices in New Zealand have been proposed. The approaches have clear advantages over classical ARMA-
GARCH type modeling. Firstly, they do not rely only on the historical values of the price itself, but account for other
data series as well. In one of the models we have referred one of the nodal prices to ten other nodes. This is explained
by the fact that prices throughout the country are interconnected and strongly correlated. The choice of nodes (11 out
of over 200), has been carefully designed to pick representative nodes, but not to make the model too big.

The second approach modeled one of the nodal prices with the used of the regressed price itself together with
some deterministic factors having significant influence on price dynamics. These were country’s hydrological stor-
age, centralized demand, node’s rainfall and air temperature from the studies region. This model proved better in
forecasting for two main reasons. Firstly, the forecasting skill was higher than for Model 1. Secondly, the model had
less parameters than the first one, which made it more appropriate from modeling and parameter estimation point of
view. Finally, second model better results in comparison to Model 1 show that incorporation of deterministic factors
in price modeling is of key importance to high forecasting accuracy.

The robustness of our results was confirmed by the fact that both applied models were optimal with the same
order, namely, VAR(4). Moreover, the models had non-Gaussian noise included which allowed us to capture statically
the non-Gaussian distribution of prices themselves. One could argue that more trading nodes should be included in
the analysis. However, we argue that this would unnecessarily complicate parameter estimation without much added
value.

Our work provides a sound basis for risk analysis for electricity market traders in New Zealand. Further steps
should include the use of Markov Chain Monte Carlo Methods in parameter estimation, to allow proper understanding
of price noise structure.
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