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Introduction
In medical research, we are often interested in the relationship 
between a particular outcome variable and one or more predic-
tor variables, for example the relationship between clinical out-
come and patient characteristics or treatment modalities. Several 
regression methods are available to investigate such associations. 
Choosing the appropriate method can sometimes be challenging 
for investigators. This pertains especially to settings where data 
are correlated or repeatedly measured. The appropriate analysis 
depends to a large extent on the nature of the data to be analysed. 
Furthermore, the data should meet the assumptions required by the 
regression analysis that is chosen. This paper gives a general over-
view of regression methods commonly encountered in medical 
research, with particular attention to correlated data and repeated 
measurements, and it describes the circumstances under which 
these methods are appropriate. Its aim is to give a broad overview. 
Therefore, completeness is not claimed and exceptions as well as 
further extensions are possible.

Regression analysis in general
In regression analysis, statistical models are used to predict one 
variable (the outcome or dependent variable) from one or more 
other variables (the predictor or independent variables). The 
description which follows will first address regression models suit-
able for continuous outcome variables, along with relevant adap-
tations and extensions. Subsequently, regression models suitable 
for binary outcome variables will be described. Figure 1 depicts 
a flow chart that captures these regression models and the settings 
in which they may be used.

Continuous outcome: general linear model 
(GLM) and its extensions
GLM: BASIC PRINCIPLE
An overview of the relations between frequently encountered 
regression methods in medical research is given in Table 1. The 
simplest form is the linear model with one independent vari-
able, i.e., univariable (or “simple”) linear regression, without 
further extensions (Table 1, Figure 1). The regression equation 
of this model may be defined as: y=α+βx+ε. It should be noted 
that, in general, a model may be linear in its parameters (here, α 
and β) and/or linear in its variables (here, x). An example of an 
equation that is linear in its parameters but not in its variables 
is: y=α+β1x+β2x

2+ε (because of x2). An example of an equation 
that is non-linear in its parameters is: y=α+β1e

–β2x+ ε. In statistics, 
a regression equation is called linear if, and only if, it is linear in 
its parameters. In medical literature, however, regression models 
are usually called linear when they are also linear in their vari-
ables. We will adhere to the latter terminology in the current paper.

In linear regression, the dependent variable (y, vertical axis) is 
continuous, such as for example percent coronary stenosis (for an 
explanation of types of variables, please see Hoeks et al1). The 
independent variable (x, horizontal axis) may be binary or con-
tinuous, cholesterol level being an example of the latter. When x 
and y have a linear relation, linear regression can be used to deter-
mine the optimal straight line through the sample data points2. In 
the above-mentioned regression equation, α is the intercept of this 
line (the value of y when x=0), while β represents the slope and is 
called the regression coefficient. Specifically, β denotes the num-
ber of units of change in y associated with one unit of change 
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in x. Calculation of the linear regression line involves numerous 
equations. Apart from the aforementioned intercept and regression 
coefficient, the calculation results in a test of the hypothesis that 
x and y have a linear relation2. A relation between two biological 
variables will never be captured perfectly with one line. Therefore, 
deviations from the line are accepted and represented by the error 
terms (ε) in the equation: y=α+βx+ε. The error is the difference 
between the observed value and the regression line we would draw 
for the total source population. In practice, since we do not have 
data available on the total source population, we cannot compute 
this error. The residual is the difference between the observed 
value and the regression line in the sample. Thus, a residual is an 
observable estimate of the unobservable error. On the other hand, 
linear regression determines how much of the total variability in 
the dependent variable can actually be accounted for by the inde-
pendent variable. Specifically, this is defined by the coefficient of 
determination (R2) which is calculated. In univariate models, R2 is 

the square of Pearson’s correlation coefficient between the inde-
pendent variable and dependent variable.

Multiple independent (or predictor) variables can simultane-
ously be tested for their effect on the continuous dependent vari-
able. This is referred to as the “general linear model” (GLM), or 
multiple linear regression. Computer output will present a table 
that includes the partial regression coefficients and p-values for 
each predictor variable2.

An elaborate explanation of linear regression, including its 
practical applications and example syntax, was recently given by 
De Ridder et al3.

GLM: ASSUMPTIONS
Several assumptions should be taken into account when consider-
ing the use of the GLM4, and, if one or more of these assumptions 
is violated, the inferences made by the model may no longer be 
valid (Table 2):

Type of outcome variable

Continuous outcome Binary outcome

Consider polynomial or piecewise
linear regression

Consider transformation of variables

Consider GLS (e.g. weighted
least squares)

If model is linear in its variables: 
linear association?

Residuals: normally distributed?

Residuals: constant variance?

Consider eliminating variables or 
principal components analysis Multivariable model: multicollinearity?

No time data Time data

Independent 
observations

Dependent 
observations

Independent 
observations

Dependent 
observations

Independent 
observations

Dependent 
observations

Interpretation: 
population 

level

Interpretation: 
subject 
specific

Interpretation: 
population 

level

Interpretation: 
subject 
specific

No change 
assumed 
between 

measurements

Estimation of 
temporal 
trajectory

General linear 
model (GLM)

Marginal
model

Linear mixed 
model (LMM)

GLIM (with 
logit link)

GEE 
(with logit link)

GLMM (with 
logit link)

Cox 
model

Extended Cox 
model

Joint 
model

no

no

no

yes

yes

yes

no

yes

Figure 1. Flow chart.

Table 1. Summary of frequently encountered regression methods in medical research and their relations.

Model Remarks
General linear model (GLM): continuous outcome Basis =simple linear regression

1. GLM with correlations: marginal model Used in case of repeated or hierarchical data; target of inference is the 
population.

2. GLM with random effects: linear mixed model (LMM) Used in case of repeated or hierarchical data; target of inference is 
subject- specific.

Generalised linear model (GLIM): includes binary outcome (logit link) GLIM= GLM with y replaced by link function (e.g., logit link results in 
logistic regression)

1. GLIM with correlations: generalised estimating equations (GEE) Used in case of repeated or hierarchical data; target of inference is the 
population.

2. GLIM with random effects: generalised linear mixed model (GLMM) Used in case of repeated or hierarchical data; target of inference is 
subject-specific.

Cox proportional hazards model: binary outcome Time to event is taken into account

1. Extended Cox model: time- varying covariables Assumes the variable’s level remains constant between measurements.

2. Joint model: combination of linear mixed model and Cox model Uses a mixed model to estimate the variable’s temporal trajectory.
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1. The relation between the predictor variables and the outcome 
variable should be linear.

2. The residuals should be normally distributed with a mean equal 
to zero.

3. The residuals should have a constant variance.
4. In multivariable models, no multicollinearity should be present.
5. The residuals (for simplicity, we will state “observations” 

instead of “residuals” in this case) should be independent of 
each other, i.e., no autocorrelation should be present.
Checking assumptions is further explained by De Ridder et al3. 

There are several ways to adapt or extend the model in order to 
deal with violations of assumptions (Table 2, Figure 1). In the fol-
lowing paragraphs, we describe these adaptations and extensions, 
with the above-described assumptions serving as the outset.

GLM: ADAPTATIONS AND EXTENSIONS
1. GLM FOR ESTIMATING NON-LINEAR RELATIONSHIPS: 
POLYNOMIAL AND PIECEWISE LINEAR REGRESSION
When the relation between the predictor variables and the outcome 
variable is not linear, the predictor variables may be transformed 
in order to draw a curved line through the data points. For exam-
ple, use of polynomial linear regression models may be consid-
ered. Such models contain higher order terms of the independent 
variable, such as x2 and x3. Including x2 will produce a U-shaped 
curve (note that, from a statistical point of view, models contain-
ing such higher order terms are still called linear if linear in their 
parameters). Other types of non-linearity may also be modelled, 
e.g., by using x1*x2, log(x), or ex.

In some cases, the overall relation between the predictor vari-
ables and the outcome variable is not linear, but there clearly seem 
to be multiple different linear relationships in the data, with sud-
den changes in slope along the x-axis. In such cases, several lin-
ear regression models may be constructed for separate ranges of 
the independent variable, which are connected to each other. This 
is termed piecewise or segmented linear regression. The points of 
separation in piecewise regression are called knots. To force the 
lines to join at the knots, so-called linear spline regression can 
be applied. An overview of piecewise linear regression has been 
given in the past by Vieth5.
2. GLM USING TRANSFORMED VARIABLES
When residuals are not distributed normally, the x and/or y var-
iables may be transformed to obtain a normal distribution. This 
may, for example, be done by using the square root or a logarith-
mic transformation. After the model is fitted using the transformed 
variables, the predicted values may be transformed back into the 
original units using the inverse of the transformation applied.
3. GLM WITH WEIGHTED LEAST SQUARES
The GLM assumes that the variance of the residuals is constant, or 
in other words that information on y is equally precise over all val-
ues of x. This is called homoscedasticity. When, on the other hand, 
heteroscedasticity is present, the so-called “weighted least squares” 
(WLS) approach may be used. This is a special case of “generalised 
least squares” (GLS), which is described in section 5.1 of this paper. 
WLS incorporates weights, associated with each data point, into the 
model. Less weight is given to the less precise measurements and 
more weight to more precise measurements when estimating the 

Table 2. Possible model adaptations in case of violated assumptions. 

Continuous 
outcome data

Binary outcome 
data

Binary outcome 
data with time 

variable

1 2 3 4 5

Illustration 
of situation

Red: multiple 
measurements in 
person 1 

Black: multiple 
measurements in 
person 2

Violation of 
assumption

When using a model 
linear in its variables: 
the relation between x 
variables and y 
variable is not linear

The residuals are not 
normally distributed 
with a mean of zero 
(here, there is a lower 
threshold for y)

The residuals do not 
have a constant 
variance (here, the 
variability of y increases 
with increasing x)

When performing 
multivariable 
regression: 
multicollinearity is 
present

The observations are 
not independent of 
each other

The observations are 
not independent of 
each other

Hazards are not 
proportional over 
time

Solution Use polynomial linear 
regression (higher 
order terms such as 
x2, x3, etc.)

Use piecewise linear 
regression

Transform x and/or y 
variable (e.g., square 
root, ln, log, etc.)

Use generalised least 
squares (GLS) (e.g., 
weighted least squares 
or feasible GLS)

Depending on 
research question, 
e.g., eliminate 
variables or perform 
principal 
components analysis

Model the correlated 
residuals (i.e., use 
GLS) or use random 
effects

Model the correlated 
residuals (i.e., use 
GLS) or use random 
effects

Stratify model
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unknown parameters in the model. Using weights that are inversely 
proportional to the variance at each level of the independent vari-
ables yields the most precise parameter estimates possible6. WLS 
regression is further explained by Strutz7. Alternatively, “feasible 
GLS” (FGLS) may be applied. This approach does not assume 
a particular structure of heteroscedasticity.
4. GLM: DEALING WITH MULTICOLLINEARITY
Multicollinearity occurs when two or more independent vari-
ables in a multivariable regression model are highly correlated. 
Consequently, the individual coefficient estimates may become 
unreliable. Multicollinearity may be detected by examining the 
correlation matrix of the independent variables, the variance infla-
tion factor (VIF; an index which measures how much the vari-
ance of an estimated regression coefficient is increased because of 
multicollinearity), or so-called “eigenvalues”. Remedial measures 
depend on the research question at hand and include, for exam-
ple, elimination of some independent variables from the model or 
performing principal components analysis. Further reading on this 
topic has been provided by Belsley et al8.
5. GLM: DEALING WITH DEPENDENT OBSERVATIONS/
AUTOCORRELATION
5.1. GLM extended with correlations: marginal model
As stated above, for GLMs the assumption that observations are 
independent of each other applies (Table 2, column 5). This sit-
uation is reflected by the data covariance matrix and the data 
correlation matrix of the GLM. Here, we will focus on the cor-
relation matrix. The correlation matrix of a GLM displays corre-
lations of 0 between residuals of separate observations from the 
sample (Figure 2A). Such a framework is called “ordinary least 
squares” (OLS). However, in medical research, observations are 
not always independent. Such research settings include nested 
data (e.g., patients within hospitals and hospitals within countries) 
or repeated measurements data. In the latter case, for example, 
cholesterol level could be measured repeatedly over time in each 
patient. If one were randomly to take two observations of choles-
terol from the same patient, they are likely to be more similar in 
value than two random observations of cholesterol from two dif-
ferent patients9. Observations from two different patients may, for 
their part, be completely independent.

Further to this example, since the residuals within one patient 
are correlated, they need to be modelled. For this purpose, the 
GLM may be extended by estimating parameters that capture 
these correlations. This extended GLM is called a marginal model 
(Table 1, Figure 1)9. The regression line of the marginal model is 
the same as that of the GLM (y=α+βx+ε). However, the correla-
tion matrix of the marginal model is adapted in such a way that 
it reflects the pattern of the dependencies between the residuals 
(Figure 2B). In other words, the OLS framework is extended to 
a GLS framework. In this framework, the correlations between the 
residuals within individuals may be specified: they may be set to 
be equal, but they may also be set to take other patterns. For exam-
ple, measurements closer in time can have higher correlations than 
those further away. A number of patterns is readily available in 

Independent observations (e.g., 
4 patients with 1 observation each): 
correlations between the residuals of 
the separate observations are equal to 
zero (and any residual correlates 
perfectly with itself, as reflected by 
a correlation of 1).

Correlated observations (e.g., 
4 observations within 1 individual): 
correlations between the residuals of 
the observations are specified, and, 
in this example, equal to ρ.

A B

Figure 2. Examples of correlation matrices. A) Independent 
observations. B) Correlated observations.

most statistical software packages, such as compound symmetry, 
auto-regressive patterns, and FGLS (sometimes termed “unstruc-
tured”). Of note, correlation matrices still assume that the residu-
als across different individuals are independent of each other, i.e., 
that their correlation is zero.
5.2. GLM extended with random effects: linear mixed model (LMM)
Just like marginal models, linear mixed models account for the 
correlation among the residuals in data with dependent observa-
tions (Table 1, Figure 1). However, they use a different approach. 
They extend the GLM with so-called random effects9-11. We have 
seen that, for the GLM, the regression line is written as y=α+βx+ε. 
Here, α and β are so-called fixed regression coefficients, which 
may be interpreted as population-average effects. The term 
“mixed” implies that, next to the conventional fixed effects, ran-
dom effects are incorporated into linear mixed models. These are 
subject-specific: thus, while fixed effects are constant across indi-
viduals, random effects vary between individuals. The linear mixed 
model may consequently be written as: yi=α+ai+(β+bi)xi+ε, where 
ai and bi are random effects for subject i (ai=random intercept and 
bi=random slope). By adding these subject-specific coefficients, 
linear mixed models account for the fact that measurements within 
each individual are likely to be more similar. Linear mixed mod-
els provide many possibilities. For example, they can accommo-
date multiple hierarchical levels, like repeated measurements on 
patients clustered within hospitals.

The choice between a marginal model and a linear mixed model 
is based on the necessities arising from the data structure, as well 
as on the interpretation that is preferred. In marginal models, the 
target of inference is the population, and thus population-averaged 
coefficients are obtained (while taking into account the depend-
ence of the residuals). In linear mixed models, the target of infer-
ence is subject-specific, and thus more precise subject effects 
may be estimated. An illustrative example is provided by P.D. 
Allison12: “If you are a doctor and you want an estimate of how 
much a statin drug will lower your patient’s odds of getting a heart 
attack, the subject-specific coefficient is the clear choice. On the 
other hand, if you are a state health official and you want to know 
how the number of people who die of heart attacks would change 
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if everyone in the at-risk population took the statin drug, you 
would probably want to use the population-averaged coefficients.”

Binary outcome: generalised linear model (GLIM) 
and its extensions
GLIM: ADDING A LINK FUNCTION TO GLM
Until now, we have discussed methods to model a continuous out-
come. If the outcome is not continuous (but, for example, binary, 
such as death or myocardial infarction), we need alternative meth-
ods. GLIMs (Table 1, Figure 1) generalise the linear modelling 
framework to outcomes whose residuals are not normally distrib-
uted. This is based on the following. A GLIM is made up of a lin-
ear predictor, a link function and a variance function (latter not 
discussed here). The linear predictor resembles the linear regres-
sion model and can be defined as: η=α+βx. The link function 
g(E[y]) is a function of the mean, E[y], (i.e., the expected mean 
value of y), which is linear in its parameters. In other words, it is 
a function of the dependent variable which yields a linear function 
of the independent variables13. Thus, this function describes how 
the mean depends on the linear predictor: g(E[y])=η. In medical 
research, GLIMs are most commonly used to model binary data. 
In that case, the link function is:

This is called the “logit link”, and the GLIM herewith becomes 
a logistic regression model:

where E[y]/(1–E[y]) is the odds of the outcome13. Accordingly, 
the odds of the outcome can be expressed as eα+βx.

It should be noted that the GLM is a particular case of a GLIM, 
in which g(E[y])=E[y], since the dependent variable, by defini-
tion, is linear in its parameters. This simply leads to E[y]=α+βx 
(the regression equation previously described). Other link functions 
are also available, for example the log link is used to model count 
data which are expected to follow a Poisson distribution (“Poisson 
regression”). The choice of a particular link function depends on 
the distribution one wants to choose for the outcome variable.

GLIM EXTENDED WITH CORRELATIONS: GENERALISED 
ESTIMATING EQUATIONS (GEE)

In parallel to the above description of GLMs with correlations, 
GLIMs may also be extended by specifying parameters that cap-
ture correlations. This combination is called generalised estimating 
equations (GEE) (Table 1, Figure 1)9,14. When a binary outcome 
is examined, which necessitates a logistic regression, and repeated 
measurements of the predictor are performed, then GEE may be used.

GLIM EXTENDED WITH RANDOM EFFECTS: GENERALISED 
LINEAR MIXED MODEL (GLMM)
Generalised linear mixed models (GLMMs) are GLIMs that are 
extended with random effects (Table 1, Figure1)15,16. Depending 
on the interpretation that is preferred (see “linear mixed model”), 

these models may serve as an alternative when a binary out-
come is examined and repeated measurements of the predictor are 
performed.

Binary outcome taking time into account: Cox 
proportional hazards model
COX MODEL: BASIC PRINCIPLE
As described above, logistic regression, which is a particular case 
of a GLIM, may be used to model binary outcomes (for exam-
ple, death or myocardial infarction). However, logistic regression 
does not take into consideration the time that passes between the 
patient’s entry into a study and the occurrence of the outcome. To 
take time into account, an alternative technique may be used –
Cox regression (Table 1, Figure 1)17. A so-called Cox proportional 
hazards model, or in brief Cox model, is a statistical technique that 
explores the relationship between several explanatory variables 
and the time to occurrence of the outcome18. Herewith, it allows 
us to estimate the hazard (or instantaneous risk) of the outcome for 
individuals, given their characteristics. It also allows patients to be 
“censored”, for example at the moment they are lost to follow-up.

The equation of the Cox model is the following:

Here, 
 
is a function of hazard ratio (or relative risk), 

α is the coefficient of the constant, and β the coefficient of an 
independent variable included in the model. An important assump-
tion of the Cox model is the “proportional hazards” assumption17, 
meaning that the risk ratio of two subjects must remain constant 
over time (the so-called “log(-log) survival curves” should be par-
allel and should not intersect). This requires that variables in the 
model should not interact with time. If this is not the case, an 
appropriate modification should be used, such as stratification on 
the variable for which the assumption was violated17.

EXTENDED COX MODEL
Independent variables in Cox regression may be continuous or 
binary. Since time is taken into account in Cox regression, the 
value of a predictor variable does not necessarily need to be fixed 
from baseline to the end of the study; it may also be allowed to 
change during follow-up17. Using this possibility may be appro-
priate when repeated measurements (of, for example, cholesterol 
level) are performed in each patient, and when the association of 
this series of repeated measurements is examined with one out-
come event (for example, death or myocardial infarction), which 
occurs after the series of measurements has been performed 
(Table 1, Figure 1). It should be noted that, when using this type 
of “time-dependent” variable in a Cox model, a patient reaches 
an outcome only once. Conversely, in a GLIM (or specifically 
a logistic regression model) extended with correlations, the out-
come variable is assessed concomitantly to the independent varia-
ble, i.e., repeatedly. Consequently, the outcome variable is allowed 
to change multiple times during follow-up (for example, in heart 
transplant recipients, when the outcome of interest is allograft 
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rejection, this outcome may occur, then abate after treatment, and 
subsequently re-occur).

Basically, in an extended Cox model, the complete follow-up 
time for each patient is divided into different time windows, and 
for each time window a separate Cox analysis is carried out using 
the specific value of the time-dependent variable. Subsequently, 
a weighted average of all the time window-specific results is cal-
culated and presented as one relative risk19.

COX MODEL COMBINED WITH MIXED MODEL: JOINT MODEL
The extended Cox model carries limitations, in particular when 
repeated measurements of continuous variables (such as cholesterol, 
blood pressure, etc.) are examined20. One such limitation is that the 
model assumes that, from one measurement to the next, the variable 
remains constant, and that subsequently a sudden change in the lev-
els occurs on the day the next measurement is performed. However, 
in reality, variables (such as cholesterol or blood pressure) may 
change continuously over time. A relatively novel approach that 
overcomes several limitations of the extended Cox model and that 
has gained attention recently is the so-called joint model (Table 1, 
Figure 1). The basic intuitive idea behind joint models is that they 
combine the Cox model with a mixed model20. Herewith, these 
models estimate the evolution of the variable over time for each 
individual patient (mixed model), and relate this temporal profile to 
the outcome (Cox model). Thus, joint models may be used to exam-
ine the association between the detailed time course of a continuous 
variable with a binary outcome.

Conclusion
When aiming to investigate the association between predictor and 
outcome variables by using regression analysis, care should be taken 
to apply the appropriate method. The method of choice should agree 
with the nature of the data (including the type of outcome variable 
and the presence of dependent observations) as well as the nature of 
the research question (including target of inference). Furthermore, 
assumptions required by the method of choice should be met by 
the data. The simplified flow chart that summarises some of these 
aspects (Figure 1) may aid in choosing an appropriate approach. 
Using the right method will ensure that the analysis will lead to 
a correct answer to the research question that is being investigated.
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