## About

105

Publications

17,818

Reads

**How we measure 'reads'**

A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more

1,596

Citations

Introduction

I work on uncertainty quantification and optimal control methods for kinetic equations.

**Skills and Expertise**

Additional affiliations

April 2022 - present

November 2019 - March 2022

August 2018 - October 2019

Education

January 2014 - December 2016

October 2010 - December 2012

## Publications

Publications (105)

In this paper we propose a novel numerical approach for the Boltzmann equation with uncertainties. The method combines the efficiency of classical direct simulation Monte Carlo (DSMC) schemes in the phase space together with the accuracy of stochastic Galerkin (sG) methods in the random space. This hybrid formulation makes it possible to construct...

In this work we focus on the construction of numerical schemes for the approximation of stochastic mean--field equations which preserve the nonnegativity of the solution. The method here developed makes use of a mean-field Monte Carlo method in the physical variables combined with a generalized Polynomial Chaos (gPC) expansion in the random space....

In this paper we focus on the construction of numerical schemes for nonlinear Fokker-Planck equations that preserve the structural properties, like non negativity of the solution, entropy dissipation and large time behavior. The methods here developed are second order accurate, they do not require any restriction on the mesh size and are capable to...

In this paper, we propose a kinetic model of traffic flow with uncertain binary interactions, which explains the scattering of the fundamental diagram in terms of the macroscopic variability of aggregate quantities, such as the mean speed and the flux of the vehicles, produced by the microscopic uncertainty. Moreover, we design control strategies a...

In this paper we consider a kinetic description of follow-the-leader traffic models, which we use to study the effect of vehicle-wise driver-assist control strategies at various scales, from that of the local traffic up to that of the macroscopic stream of vehicles. We provide a theoretical evidence of the fact that some typical control strategies,...

We propose a kinetic model for understanding the link between opinion formation phenomena and epidemic dynamics. The recent pandemic has brought to light that vaccine hesitancy can present different phases and temporal and spatial variations, presumably due to the different social features of individuals. The emergence of patterns in societal react...

We study the large time behavior of a system of interacting agents modeling the relaxation of a large swarm of robots, whose task is to uniformly cover a portion of the domain by communicating with each other in terms of their distance. To this end, we generalize a related result for a Fokker-Planck-type model with a nonlocal discontinuous drift an...

It is recognized that social heterogeneities in terms of the contact distribution have a strong influence on the spread of infectious diseases. Nevertheless, few data are available on the group composition of social contacts, and their statistical description does not possess universal patterns and may vary spatially and temporally. It is therefore...

The design of particle simulation methods for collisional plasma physics has always represented a challenge due to the unbounded total collisional cross section, which prevents a natural extension of the classical Direct Simulation Monte Carlo (DSMC) method devised for the Boltzmann equation. One way to overcome this problem is to consider the desi...

Understanding the impact of collective social phenomena in epidemic dynamics is a crucial task to effectively contain the disease spread. In this work, we build a mathematical description for assessing the interplay between opinion polarization and the evolution of a disease. The proposed kinetic approach describes the evolution of aggregate quanti...

We obtain equilibration rates for a one-dimensional nonlocal Fokker-Planck equation with time-dependent diffusion coefficient and drift, modeling the relaxation of a large swarm of robots, feeling each other in terms of their distance, towards the steady profile characterized by uniform spreading over a finite interval of the line. The result follo...

The study of uncertainty propagation is of fundamental importance in plasma physics simulations. To this end, in the present work we propose a novel stochastic Galerkin (sG) particle method for collisional kinetic models of plasmas under the effect of uncertainties. This class of methods is based on a generalized polynomial chaos (gPC) expansion of...

Understanding the impact of collective social phenomena in epidemic dynamics is a crucial task to effectively contain the disease spread. In this work we build a mathematical description for assessing the interplay between opinion polarization and the evolution of a disease. The proposed kinetic approach describes the evolution of aggregate quantit...

In this work, we apply a kinetic version of a bounded confidence consensus model to biomedical segmentation problems. In the presented approach, time-dependent information on the microscopic state of each particle/pixel includes its space position and a feature representing a static characteristic of the system, i.e. the gray level of each pixel. F...

It is recognized that social heterogeneities in terms of the contact distribution have a strong influence on the spread of infectious diseases. Nevertheless, few data are available and their statistical description does not possess universal patterns and may vary spatially and temporally. It is therefore essential to design optimal control strategi...

Fake news spreading, with the aim of manipulating individuals’ perceptions of facts, is now recognized as a major problem in many democratic societies. Yet, to date, little has been understood about how fake news spreads on social networks, what the influence of the education level of individuals is, when fake news is effective in influencing publi...

We study the impact of contact heterogeneity on epidemic dynamics. A system characterized by multiple susceptible populations is considered. The description of the spread of an infectious disease is obtained through the study of a system of Boltzmann-type equations for the number densities of social contacts of the introduced compartments. A macros...

The study of uncertainty propagation is of fundamental importance in plasma physics simulations. To this end, in the present work we propose a novel stochastic Galerkin (sG) particle methods for collisional kinetic models of plasmas under the effect of uncertainties. This class of methods is based on a generalized polynomial chaos (gPC) expansion o...

Nonlinear Fokker-Planck equations play a major role in modeling large systems of interacting particles with a proved effectiveness in describing real world phenomena ranging from classical fields such as fluids and plasma to social and biological dynamics. Their mathematical formulation has often to face with physical forces having a significant ra...

In this paper, we focus on the construction of a hybrid scheme for the approximation of non-Maxwellian kinetic models with uncertainties. In the context of multiagent systems, the introduction of a kernel at the kinetic level is useful to avoid unphysical interactions. The methods here proposed, combine a direct simulation Monte Carlo (DSMC) in the...

We introduce and discuss a system of one-dimensional kinetic equations describing the influence of higher education in the social stratification of a multi-agent society. The system is obtained by coupling a model for knowledge formation with a kinetic description of the social climbing in which the parameters characterizing the elementary interact...

In this paper we study a novel Fokker-Planck-type model that is designed to mimic manufacturing processes through the dynamics characterizing a large set of agents. In particular, we describe a many-agent system interacting with a target domain in such a way that each agent/particle is attracted by the center of mass of the target domain with the a...

The spread of COVID-19 has been thwarted in most countries through non-pharmaceutical interventions. In particular, the most effective measures in this direction have been the stay-at-home and closure strategies of businesses and schools. However, population-wide lockdowns are far from being optimal, carrying heavy economic consequences. Therefore,...

Fake news spreading, with the aim of manipulating individuals' perceptions of facts, is now recognized as a major problem in many democratic societies. Yet, to date, little has been understood about how fake news spreads on social networks, what the influence of the education level of individuals is, when fake news is effective in influencing publi...

We study the application of a recently introduced hierarchical description of traffic flow control by driver-assist vehicles to include lane changing dynamics. Lane-dependent feedback control strategies are implemented at the level of vehicles and the aggregate trends are studied by means of Boltzmann-type equations determining three different hydr...

In this survey we report some recent results in the mathematical modelling of epidemic phenomena through the use of kinetic equations. We initially consider models of interaction between agents in which social characteristics play a key role in the spread of an epidemic, such as the age of individuals, the number of social contacts, and their econo...

In this paper, we focus on the construction of a hybrid scheme for the approximation of non-Maxwellian kinetic models with uncertainties. In the context of multiagent systems, the introduction of a kernel at the kinetic level is useful to avoid unphysical interactions. The methods here proposed, combine a direct simulation Monte Carlo (DSMC) in the...

In this work, we develop a kinetic model of tumour growth taking into account the effects of clinical uncertainties characterising the tumours’ progression. The action of therapeutic protocols trying to steer the tumours’ volume towards a target size is then investigated by means of suitable selective-type controls acting at the level of cellular d...

The spread of the COVID-19 pandemic has highlighted the close link between economics and health in the context of emergency management. A widespread vaccination campaign is considered the main tool to contain the economic consequences. This paper will focus, at the level of wealth distribution modeling, on the economic improvements induced by the v...

The spreading of Covid-19 pandemic has highlighted the close link between economics and health in the context of emergency management. A widespread vaccination campaign is considered the main tool to contain the economic consequences. This paper will focus, at the level of wealth distribution modelling, on the economic improvements induced by the v...

In this paper, we extend a recently introduced multi-fidelity control variate for the uncertainty quantification of the Boltzmann equation to the case of kinetic models arising in the study of multiagent systems. For these phenomena, where the effect of uncertainties is particularly evident, several models have been developed whose equilibrium stat...

In this paper, we derive second order hydrodynamic traffic models from kinetic-controlled equations for driver-assist vehicles. At the vehicle level we take into account two main control strategies synthesising the action of adaptive cruise controls and cooperative adaptive cruise controls. The resulting macroscopic dynamics fulfil the anisotropy c...

We study the impact of contact heterogeneity on epidemic dynamics. A system characterized by multiple susceptible populations is considered. The description of the spread of an infectious disease is obtained through the study of a system of Boltzmann-type equations for the number densities of social contacts of the introduced compartments. A macros...

We introduce and discuss a system of one-dimensional kinetic equations describing the influence of higher education in the social stratification of a multi-agent society. The system is obtained by coupling a model for knowledge formation with a kinetic description of the social climbing in which the parameters characterizing the elementary interact...

In this work, we develop a kinetic model for tumour growth taking into account the effects of clinical uncertainties characterising the tumours' progression. The action of therapeutic protocols trying to steer the tumours' volume towards a target size is then investigated by means of suitable selective-type controls acting at the level of cellular...

In this survey we report some recent results in the mathematical modeling of epidemic phenomena through the use of kinetic equations. We initially consider models of interaction between agents in which social characteristics play a key role in the spread of an epidemic, such as the age of individuals, the number of social contacts, and their econom...

In this work, using a detailed dataset furnished by National Health Authorities concerning the Province of Pavia (Lombardy, Italy), we propose to determine the essential features of the ongoing COVID-19 pandemic in terms of contact dynamics. Our contribution is devoted to provide a possible planning of the needs of medical infrastructures in the Pa...

In this paper, we propose a kinetic model of traffic flow with uncertain binary interactions, which explains the scattering of the fundamental diagram in terms of the macroscopic variability of aggregate quantities, such as the mean speed and the flux of the vehicles, produced by the microscopic uncertainty. Moreover, we design control strategies a...

The spread of COVID-19 has been thwarted in most countries through non-pharmaceutical interventions. In particular, the most effective measures in this direction have been the stay-at-home and closure strategies of businesses and schools. However, population-wide lockdowns are far from being optimal carrying heavy economic consequences. Therefore,...

We introduce a mathematical description of the impact of the number of daily contacts in the spread of infectious diseases by integrating an epidemiological dynamics with a kinetic modeling of population-based contacts. The kinetic description leads to study the evolution over time of Boltzmann-type equations describing the number densities of soci...

The adoption of containment measures to reduce the amplitude of the epidemic peak is a key aspect in tackling the rapid spread of an epidemic. Classical compartmental models must be modified and studied to correctly describe the effects of forced external actions to reduce the impact of the disease. The importance of social structure, such as the a...

Lockdown and social distancing, as well as testing and contact tracing, are the main measures assumed by the governments to control and limit the spread of COVID-19 infection. In reason of that, special attention was recently paid by the scientific community to the mathematical modeling of infection spreading by including in classical models the ef...

In this work we consider an extension of a recently proposed structure preserving numerical scheme for nonlinear Fokker–Planck-type equations to the case of nonconstant full diffusion matrices. While in existing works the schemes are formulated in a one-dimensional setting, here we consider exclusively the two-dimensional case. We prove that the pr...

We study the relaxation to equilibrium for a class linear one-dimensional Fokker-Planck equations characterized by a particular subcritical confinement potential. An interesting feature of this class of Fokker-Planck equations is that, for any given probability density $e(x)$, the diffusion coefficient can be built to have $e(x)$ as steady state. T...

In this work, using a detailed dataset furnished by National Health Authorities concerning the Province of Pavia (Lombardy, Italy), we propose to determine the essential features of the ongoing COVID-19 pandemic in term of contact dynamics. Our contribution is devoted to provide a possible planning of the needs of medical infrastructures in the Pav...

In this paper, we extend a recently introduced multi-fidelity control variate for the uncertainty quantification of the Boltzmann equation to the case of kinetic models arising in the study of multiagent systems. For these phenomena, where the effect of uncertainties is particularly evident, several models have been developed whose equilibrium stat...

In this paper, we derive second order hydrodynamic traffic models from kinetic-controlled equations for driver-assist vehicles. At the vehicle level we take into account two main control strategies synthesising the action of adaptive cruise controls and cooperative adaptive cruise controls. The resulting macroscopic dynamics fulfil the anisotropy c...

The mathematical modeling of tumor growth has a long history, and has been mathematically formulated in several different ways. Here we tackle the problem in the case of a continuous distribution using mathematical tools from statistical physics. To this extent, we introduce a novel kinetic model of growth which highlights the role of microscopic t...

In this work we investigate the ability of a kinetic approach for traffic
dynamics to predict speed distributions obtained through rough data. The present approach adopts the formalism of uncertainty quantification, since reaction strengths are uncertain and linked to different types of driver behaviour or different classes of vehicles present in t...

In recent decades, kinetic theory - originally developed as a field of mathematical physics - has emerged as one of the most prominent fields of modern mathematics. In recent years, there has been an explosion of applications of kinetic theory to other areas of research, such as biology and social sciences. This book collects lecture notes and rece...

We study the application of a recently introduced hierarchical description of traffic flow control by driver-assist vehicles to include lane changing dynamics. Lane-dependent feedback control strategies are implemented at the level of vehicles and the aggregate trends are studied by means of Boltzmann-type equations determining three different hydr...

In this paper we propose a novel numerical approach for the Boltzmann equation with uncertainties. The method combines the efficiency of classical direct simulation Monte Carlo (DSMC) schemes in the phase space together with the accuracy of stochastic Galerkin (sG) methods in the random space. This hybrid formulation makes it possible to construct...

We introduce a mathematical description of the impact of sociality in the spread of infectious diseases by integrating an epidemiological dynamics with a kinetic modeling of population-based contacts. The kinetic description leads to study the evolution over time of Boltzmann-type equations describing the number densities of social contacts of susc...

Unlike the classical kinetic theory of rarefied gases, where microscopic interactions among gas molecules are described as binary collisions, the modelling of socioeconomic phenomena in a multi-agent system naturally requires to consider, in various situations, multiple interactions among the individuals. In this paper, we collect and discuss some...

In this paper, we consider a kinetic description of follow-the-leader traffic models, which we use to study the effect of vehicle-wise driver-assist control strategies at various scales, from that of the local traffic up to that of the macroscopic stream of vehicles. We provide theoretical evidence of the fact that some typical control strategies,...

We study the distribution of wealth in a market economy in which the trading propensity of the agents is uncertain. Our approach is based on kinetic models for collective phenomena, which, at variance with the classical kinetic theory of rarefied gases, has to face the lack of fundamental principles, which are replaced by empirical social forces of...

We develop a mathematical framework to study the economic impact of infectious diseases by integrating epidemiological dynamics with a kinetic model of wealth exchange. The multiagent description leads to the study of the evolution over time of a system of kinetic equations for the wealth densities of susceptible, infectious, and recovered individu...

After the introduction of drastic containment measures aimed at stopping the epidemic contagion from SARS-CoV2, many governments have adopted a strategy based on a periodic relaxation of such measures in the face of a severe economic crisis caused by lockdowns. Assessing the impact of such openings in relation to the risk of a resumption of the spr...

We develop a mathematical framework to study the economic impact of infectious diseases by integrating epidemiological dynamics with a kinetic model of wealth exchange. The multi-agent description leads to study the evolution over time of a system of kinetic equations for the wealth densities of susceptible, infectious and recovered individuals, wh...

The adoption of containment measures to reduce the amplitude of the epidemic peak is a key aspect in tackling the rapid spread of an epidemic. Classical compartmental models must be modified and studied to correctly describe the effects of forced external actions to reduce the impact of the disease. The importance of social structure, such as the a...

In this paper we consider a Boltzmann-type kinetic description of Follow-the-Leader traffic dynamics and we study the resulting asymptotic distributions, namely the counterpart of the Maxwellian distribution of the classical kinetic theory. In the Boltzmann-type equation we include a non-constant collision kernel, in the form of a cutoff, in order...

This paper is devoted to the construction of structure preserving stochastic Galerkin schemes for Fokker-Planck type equations with uncertainties and interacting with an external distribution, that we refer to as a background distribution. The proposed methods are capable to preserve physical properties in the approximation of statistical moments o...

In this paper we consider a Boltzmann-type kinetic description of Follow-the-Leader traffic dynamics and we study the resulting asymptotic distributions, namely the counterpart of the Maxwellian distribution of the classical kinetic theory. In the Boltzmann-type equation we include a non-Maxwellian, viz. non-constant, collision kernel in order to e...

In this work we investigate the ability of a kinetic approach for traffic dynamics to predict speed distributions obtained through rough data. The present approach adopts the formalism of uncertainty quantification, since reaction strengths are uncertain and linked to different types of driver behaviour or different classes of vehicles present in t...

In this paper, we discuss the passage to hydrodynamic equations for kinetic models of opinion formation. The considered kinetic models feature an opinion density depending on an additional microscopic variable, identified with the personal preference. This variable describes an opinion-driven polarisation process, leading finally to a choice among...

In this paper we introduce and discuss numerical schemes for the approximation of kinetic equations for flocking behavior with phase transitions that incorporate uncertain quantities. This class of schemes here considered make use of a Monte Carlo approach in the phase space coupled with a stochastic Galerkin expansion in the random space. The prop...