
Mattia CrespiSapienza University of Rome | la sapienza
Mattia Crespi
About
254
Publications
61,866
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,663
Citations
Citations since 2017
Introduction
Skills and Expertise
Publications
Publications (254)
In recent years, change detection (CD) using deep learning (DL) algorithms has been a very active research topic in the field of remote sensing (RS). Nevertheless, the CD algorithms developed so far are mainly focused on generating two-dimensional (2D) change maps where the planimetric extent of the areas affected by changes is identified without p...
Change detection is one of the most active research areas in Remote Sensing (RS). Most of the recently developed change detection methods are based on deep learning (DL) algorithms. This kind of algorithms is generally focused on generating two-dimensional (2D) change maps, thus only identifying planimetric changes in land use/land cover (LULC) and...
Tsunami detection and forecasting require observations from open-ocean sensors. It is well known that tsunamis can generate internal gravity waves that propagate through the ionosphere from the earthquake center along with the tsunami wave. These disturbances can be detected by Global Navigation Satellite Systems (GNSS) receivers. The VARION (Vario...
Earthquakes cannot be predicted with ultimate precision, so that the progressive reduction of the prediction uncertainty in space and time is an evergreen and challenging task, both from the scientific point of view for the intrinsic complexity of the seismic phenomenon and for its high societal relevance.
To this aim, algorithms exist (like CN, M8...
DSM generation from satellite imagery is a long-lasting issue and it has been addressed in several ways over the years; however, expert and users are continuously searching for simpler but accurate and reliable software solutions. One of the latest ones is provided by the commercial software Agisoft Metashape (since version 1.6), previously known a...
Global Navigation Satellite System (GNSS) is used in seismology to study the ground displacements as well as to monitor the ionospheric total electron content (TEC) perturbations following seismic events. The aim of this work is to combine these two observations in one real-time method based on the Total Variometric Approach (TVA) to include the GN...
High-rate GNSS observations are usually studied in relation to earthquake analysis and structural monitoring. Most of the previous research on short-term dynamic deformations has been limited to natural earthquakes with magnitudes exceeding 5 and amplitudes equal to several dozen centimetres. High-frequency position monitoring via GNSS stations is...
Civil infrastructures, such as tunnels and bridges, are directly related to the overall economic and demographic growth of countries. The aging of these infrastructures increases the probability of catastrophic failures that results in loss of lives and high repair costs; all over the world, these factors drive the need for advanced infrastructure...
Alpine glaciers play a key role in our society through the production of freshwater for domestic, industrial and agricultural use. As they are severely affected by climate change, it is of crucial importance to understand their behaviour and monitor their morphological evolution, with the primary aims to estimate ice volume and mass changes. Howeve...
In the past two decades, the high-precision Global Positioning System (GPS) has significantly increased the range of geoscience applications and their precision [...]
High-rate GNSS observations are used in applications that require high precision and information about changes in the location of GNSS stations in small time intervals, such as earthquake monitoring, including early warning systems, and structural health monitoring.
Here, we aimed to present the novel application of GNSS-seismology broadening its u...
Earthquakes cannot be predicted with ultimate precision, so that the progressive reduction of the prediction uncertainty in space and time is an evergreen and challenging task, both from the scientific point of view for the intrinsic complexity of seismic phenomenon and for its high societal relevance. To this aim, algorithms (like CN, M8 and M8S)...
Thanks to the advances in computer power, memory storage and the availability of low-cost and high resolution digital cameras, Digital Image Correlation (DIC) is currently one of the most used optical and non-contact techniques for measuring material deformations. A free and open source 2D DIC software, named py2DIC, was developed at the Geodesy an...
The paper deals with the general presentation of the Urban GEO BIG DATA, a collaborative acentric and distributed Free and Open Source (FOS) platform consisting of several components: local data nodes for data and related service Web deploy; a visualization node for data fruition; a catalog node for data discovery; a CityGML modeler; data-rich view...
In this study, we analyze the impact of the sea level rise induced by climate change on the coastal cultural heritage site of Motya, the Phoenician colony (IV–III millennium B.P.) located in the San Pantaleo island, NW corner of Sicily (southern Italy). In particular, we assessed the effects of this phenomenon on the human settlement in the past 24...
In this study, we analyzed signals transmitted by the U.S. Wide Area Augmentation System (WAAS) geostationary (GEO) satellites using the Variometric Approach for Real-Time Ionosphere Observation (VARION) algorithm in a simulated real-time scenario, to characterize the ionospheric response to the 24 August 2017 Falcon 9 rocket launch from Vandenberg...
DATE (Digital Automatic Terrain Extractor) is a Free and Open Source Software for Geospatial (FOSS4G), which combines photogrammetric and computer vision algorithms in order to automatically generate DSMs from multi-view SAR and optical high resolution satellite imagery, following an iterative and pyramidal workflow in order to refine a coarse DSM...
The paper presents a first evaluation of the potentialities
of the imagery acquired by the GÖKTÜRK-1 satellite
for the generation of orthoimages. Starting from a stereo pair
captured over Rome (Italy), two orthoimages were generated
with the Free and Open Source Software DATE developed
at the Geodesy and Geomatics Division, Sapienza University
of R...
This paper illustrates a methodology to get a reliable estimation of the local wave properties, based on the reconstruction of the motion of a moving sailboat by means of GNSS receivers installed on board and an original kinematic positioning approach. The wave parameters reconstruction may be used for many useful practical purposes, e.g. to improv...
The Variometric Approach for Displacement Analysis Standalone Engine (VADASE) was successfully applied for seismological and monitoring purposes using GPS observations. In this work, GPS inter-operable and specific signals transmitted by Galileo satellites were considered to evaluate the impact of Galileo observations on VADASE solutions. The repet...
A new low-cost L1/L2c receiver board is presented in this short letter, along with its first tests. The main strength of the board is its low price tag (around 200 EUR, in quantities of hundreds) as an effective dual-frequency receiver. The effectiveness of the receiver was at first proven by a pedestrian walk experiment on a closed loop, allowing...
The Variometric Approach for Real-Time Ionosphere Observation (VARION) is a real-time Global Navigation Satellites Systems (GNSS)-based algorithm which can be used to detect broadband spectra of ionospheric disturbances associated with natural hazards, such as tsunamis and earthquakes. In the presentation we apply for the first time the VARION algo...
Global Navigation Satellite System (GNSS) sensors represent nowadays a mature technology, low-cost and efficient, to collect large spatio-temporal datasets (Geo Big Data) of vehicle movements in urban environments. Anyway, to extract the mobility information from such Floating Car Data (FCD), specific analysis methodologies are required. In this wo...
All over the world, the rapid urbanization process is challenging the sustainable development of our cities. In 2015, the United Nation highlighted in Goal 11 of the SDGs (Sustainable Development Goals) the importance to “Make cities inclusive, safe, resilient and sustainable”. In order to monitor progress regarding SDG 11, there is a need for prop...
The goal of this article is the illustration of the new functionalities of the VADASE (Variometric Approach for Displacements Analysis Stand-alone Engine) processing approach. VADASE was presented in previous works as an approach able to estimate in real time the velocities and displacements in a global reference frame (ITRF), using high-rate (1 Hz...
In the last few decades, there has been a growing interest in studying non-contact methods for full-field displacement and strain measurement. Among such techniques, Digital Image Correlation (DIC) has received particular attention, thanks to its ability to provide these information by comparing digital images of a sample surface before and after d...
Today, range cameras represent a cheap, intuitive and effective technology for collecting the 3D geometry of objects and environments automatically and practically in real time. Such features can make these sensors a valuable tool for documenting archaeological small finds, especially when not expert users are involved. Therefore, in this work, Sca...
High-frequency geodesy is here intended as the capability of retrieving information relevant to geodesy and geophysics at high frequency through geodetic measurements and methodologies. In particular, this short review work focuses on two aspects: fast ground motions, as those due to earthquakes, and fast ionospheric total electron content (TEC) di...
The glaciers are a natural global resource and one of the principal climate change indicator at global and local scale, being influenced by temperature and snow precipitation changes. Among the parameters used for glacier monitoring, the surface velocity is a key element, since it is connected to glaciers changes (mass balance, hydro balance, glaci...
The aim of this work is to exploit the large-scale analysis capabilities of the innovative Google Earth Engine platform in order to investigate the temporal variations of the Urban Heat Island phenomenon as a whole. A intuitive methodology implementing a largescale correlation analysis between the Land Surface Temperature and Land Cover alterations...
The glaciers are a natural global resource and one of the principal climate change indicator at global and local scale, being influenced by temperature and snow precipitation changes. Among the parameters used for glacier monitoring, the surface velocity is a key element, since it is connected to glaciers changes (mass balance, hydro balance, glaci...
The glaciers are a natural global resource and one of the principal climate change indicator at global and local scale, being influenced by temperature and snow precipitation changes. Among the parameters used for glacier monitoring, the surface velocity is a key element, since it is connected to glaciers changes (mass balance, hydro balance, glaci...
The estimation of the precipitable water vapour content (W) with high temporal and spatial resolution is of great interest to both meteorological and climatological studies. Several methodologies based on remote sensing techniques have been recently developed in order to obtain accurate and frequent measurements of this atmospheric parameter. Among...
The topic of this research is the identification of an innovative strategy for DSMs generation from optical satellite tri-stereo imagery, exploiting efficient dense matching algorithms from computer vision, without losing a rigorous photogrammetric approach. The main challenge is related to the epipolarity resampling for satellite images, for which...
The aim of this work is to present a comparison among three software applications currently available for the Occipital Structure SensorTM; all these software were developed for collecting 3D models of objects easily and in real-time with this structured light range camera. The SKANECT, itSeez3D and Scanner applications were thus tested: a DUPLOTM...
Within the construction sector, Building Information Models (BIMs) are more and more used thanks to the several benefits that they offer in the design of new buildings and the management of the existing ones. Frequently, however, BIMs are not available for already built constructions, but, at the same time, the range camera technology provides nowa...
Science on the GNSS-seismology interface
The main objective of this work is to investigate on precise positioning with a GPS and Galileo enabled chipset embedded in asmartphone. The investigated area is real time precise positioning with single frequency, focusing on the benefits of multi-constellation GNSS and raw data quality provided by a smartphone. The analysis is carried out with co...
The estimation of the precipitable water vapor content (W) with high temporal and spatial resolution is of great interest in both meteorological and climatological studies. Several methodologies based on remote sensing techniques have been recently developed, in order to obtain accurate and frequent measurements of this atmospheric parameter. Among...
Archaeological small finds provide a variegated myriad of data of crucial importance to the study of their finding contexts. Anyway, only a close all-around examination can give a full comprehension of their multiple functions. The production of reliable documentation is thus an essential process and this paper illustrates a fast, reliable and easy...
Nowadays, the increasing availability of low-cost sensors, Free and Open Source Software and High Performance Computing infrastructures allows Geomatics to widen its application scope, by stimulating new challenging investigations related to the modeling of the observations provided by these new tools.
In this review, some methodologies and applica...
From the wide range of methods available to landslide researchers and practitioners for monitoring ground displacements, remote sensing techniques have increased in popularity. Radar interferometry methods with their ability to record movements in the order of millimeters have been more frequently applied in recent years. Multi-temporal interferome...
Recently, there has been a growing interest in studying non-contact techniques for strain and displacement measurement. Within photogrammetry, Digital Image Correlation (DIC) has received particular attention thanks to the recent advances in the field of lowcost, high resolution digital cameras, computer power and memory storage. DIC is indeed an o...
This article presents a new application of the SAR-SIFT algorithm proposed by Dellinger et al. (IEEE Trans Geosci Remote Sens 53:453–466, 2015) for the automatic generation of tie points (TPs). In particular, SAR-SIFT is applied on stereo-SAR images to extract corresponding points and determine their 3D position. Furthermore, the potential of the c...
The ISPRS Working Group 4 Commission I on “Geometric and Radiometric Modelling of Optical Spaceborne Sensors”, provides a
benchmark dataset with several stereo data sets from space borne stereo sensors. In this work, the Worldview-1 and Cartosat-1 datasets
are used, in order to test the Free and Open Source Software for Geospatial (FOSS4G) Digital...
The high-performance cloud-computing platform Google Earth Engine has been developed for global-scale analysis based on the Earth observation data. In particular, in this work, the geometric accuracy of the two most used nearly-global free DSMs (SRTM and ASTER) has been evaluated on the territories of four American States (Colorado, Michigan, Nevad...
The production of reliable documentation of small finds is a crucial process during archaeological excavations. Range cameras can be a valid alternative to traditional illustration methods: they are veritable 3D scanners able to easily collect the 3D geometry (shape and dimensions in metric units) of an object/scene practically in real-time.
This...
It has been shown that tsunamis generate gravity waves that propagate up to the ionosphere and produce Travelling Ionospheric Disturbances (TIDs) in the E and F regions. These electron density disturbances can be studied in detail using ionospheric total electron content (TEC) measurements collected by continuously operating ground-based receivers...
It is well known that tsunamis can produce gravity waves that propagate up to the ionosphere generating disturbed electron densities in the E and F regions. These ionospheric disturbances can be studied in detail using ionospheric total electron content (TEC) measurements collected by continuously operating ground-based receivers from the Global Na...
The fully automatic generation of digital surface models (DSMs) is still an open research issue. From recent years, computer vision algorithms have been introduced in photogrammetry in order to exploit their capabilities and efficiency in three-dimensional modelling. In this article, a new tool for fully automatic DSMs generation from high resoluti...
Earthquakes cannot be predicted with precision, but algorithms exist for intermediate-term middle range prediction of main shocks above a pre-assigned threshold, based on seismicity patterns. Few years ago, a first attempt was made in the framework of project SISMA, funded by Italian Space Agency, to jointly use seismological tools, like CN algorit...
The aim of this research was to investigate the feasibility of merging the benefits offered by low-cost GNSS and MEMS accelerometers technology, in order to promote the diffusion of low-cost monitoring solutions. A merging approach was set up at the level of the combination of kinematic results (velocities and displacements) coming from the two kin...