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Abstract Dengue fever is the most prevalent mosquito-borne viral disease of hu-
mans in tropical lands. As an efficient vaccine is not yet available, the only means
to prevent epidemics is to control mosquito populations. These are influenced by
human behavior and climatic conditions and thus, need constant effort and are very
expansive. Examples of succeeded prevention are rare because of the continuous
reintroduction of virus or vector from outside, or growing resistance of mosquito
populations to insecticides. Climate variability and global warming are other factors
which may favour epidemics of dengue. During a pilot study in Claris EC project,
a model for the transmission of dengue was built, to serve as a tool for estimating
the risk of epidemic transmission and eventually forecasting the risk under climatic
change scenarios. An ultimate objective would be to use the model as an early
warning system with meteorological forecasts as input, thus allowing better decision
making and prevention.
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Abbreviations
EWS Early warning systems
GCM Global circulation models

1 Introduction

There is now a scientific consensus on the reality of climate change (Oreskes 2004)
and it is clear that this change will have an impact on human health (Githeko et al.
2000; Patz et al. 2005; McMichael et al. 2006). Besides the impact on extreme weather
events or on food supply, a major concern is the potential spread of climate-related
infectious diseases and their emergence in previously spared areas (Shope 1992).
Among them, tropical mosquito-borne diseases (malaria, yellow fever or dengue)
have attracted most attention (Gubler et al. 2001; Hales et al. 2002; Unnasch et al.
2005). Their transmission depends on mosquito biology and population dynam-
ics, which itself depends on climate. Warm temperature and high humidity favor
longevity and shortens incubation and blood-feeding intervals (Christophers 1960).
Climate change is expected to widen the warm regions and consequently vector
distribution areas (Duvallet 2006). Based on the current distribution of dengue,
these studies model the climatic domain for its occurrence, either by using statistical
approaches deriving a probability of epidemic occurrence from climate variables
(Rogers et al. 2006) or by using a mechanistic approach parameterizing the vector
biology (Hopp and Foley 2003). The spatial distribution of the disease incidence is
then redrawn for future climate, as projected by GCM. These studies thus rely on the
strong assumption that the current and future disease distributions are dependent on
climate only, which may be abusive as it fails to consider that the relations between
man, the vector and the environment also matter for disease transmission (Burnett
and Matthews 1997; Reiter 2001).

A striking example has been, from the late 1940s and on, the emergence of dengue,
the most important arthropod-borne viral disease and a major global concern for
international health organizations (Gubler 2002). This spread has been driven mainly
by the changing habits of humans: population growth, urbanization and living stan-
dards have favoured the proliferation of the vector while the increase of air travel
has facilitated the transport of dengue serotypes (Mairuhu et al. 2004). Dengue is
typical of the complex interaction between climate, environment and man at the
origin of epidemics (Guzmán and Kouri 2002). Its main vector, Aedes (Stegomyia)
aegypti (L.), is closely related to human societies as it mainly bites humans and
breeds preferentially in artificial water-holding containers (Hopp and Foley 2001).
The availability and the nature of these water-holding containers exert therefore a
primary control on the vector population and can be referred to as “environmental”
controls (Favier et al. 2006). Similarly, temperature, humidity and rainfall can be
referred to as “climatic” controls. To establish how climate change is likely to modify
dengue occurrence patterns, it is necessary to define a measure of how environment
acts to sustain epidemics under a determined climate, rather than trying to establish
an unequivocal relationship between climate and incidence. After a short review of
statistical models, we will consider mechanistic models to relate the transmission
potential R0 not only to climate, through the climatic dependence of biological
stages, but also to the environment.
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Due to the nature of the dengue transmission cycle—anthropic mosquitoes, vi-
ruses and human beings—key factors should be studied and selected among all those
which regulate (1) the mosquito distribution, populations and vectorial capacity,
(2) the virus multiplication and transmission, and (3) human behaviour. These factors
are interconnected and are mainly influenced by changes in the global and local
climate. A model of dengue epidemic risk would thus integrate all key factors of
dengue fever transmission and estimate local risk indexes, according to climate
variability and climate change projections.

2 Statistical versus mechanistic models

Statistical models are built from correlations between predictors and predistands.
However the very nature of causal relationship between the two remains unknown.
Basing their model on the relationships between seasonal climate forecasts and
malaria incidence in Botswana, Thomson et al. (2006) developed a model to forecast
the risk of malaria transmission. This statistical modelling approach has also been
used for many other mosquito-borne diseases (Maelzer et al. 1999). In the case of
Dengue fever, either the distribution of the disease or infestation levels of its main
vector Aedes aegypti (L.) are corrrelated with global climate variables and represent
first steps toward forecasting epidemic risks (Hales et al. 2002; Corrêa et al. 2005;
Nakhapakorn and Tripathi 2005). Statistical methods, allied with processing of
georeferenced data, are also commonly used to identify environmental factors of
risk (Heukelbach et al. 2001; Hay et al. 2002; Barcellos et al. 2005; Rogers et al. 2006;
Almeida et al. 2007). Thus, they allow a better and more target-specific allocation of
ressources for the mosquito control and prevention in heterogeneous environments
(Kolivras 2006). More simply, correlation analysis has attempted to show some
associations between climate variables and dengue incidence (Depradine and Lovell
2004). In particular, El Niño phenomena (ENSO) has received special attention as
it may be highly correlated with episodes of diseases transmission and spread (Hales
et al. 1999; Kovats et al. 2003).

Mechanistic or dynamic models are reproducing with more or less details the bio-
logical processes which result in transmission of pathogens (Morse et al. 2005). The
great majority of these models are adopting the principles of Ross-MacDonald as
explained by Anderson (1981) and Dietz (1974). At diverse temporal scale, these
models evaluate the fluctuations of mosquito densities and/or dengue cases according
to climate seasonal or global variability. Global-scale models are those developed
for dengue by Hopp and Foley (2003). Such models may accept a variety of driving
climate values, like the CRU historical and present data or the SRES scenarios of
future climate change (Martens et al. 1997; Arnell et al. 2004). At regional scale,
many models have been described (Focks 1988; Bartley et al. 2002; Otero et al. 2005).

3 Early warning systems (EWS): the necessary link between scientific
and operational research

Public health decision-making generally needs early warning output from systems
which are based on uncertain data (Kuhn et al. 2005). The output of these EWS is
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generally evaluated as a risk assessment (Eisenberg et al. 2002). The concept of trans-
mission risk is mostly based on the paradigm of basic reproduction rate of the disease
(R0; Lieshout et al. 2004; Cruz-Pacheco et al. 2005), which arose initially in demog-
raphy (Nishiura and Inaba 2007). Operationally, methods are being developed for
mosquito density monitoring, in order to survey the effects of prevention (Nogueira
et al. 2005). The quick detection of dengue cases is also of first importance (Beckett
et al. 2005).

4 An example: the Claris dengue risk model

The model mimics the transmission of dengue virus by female mosquitoes from one
infected human to an uninfected one. It evaluates a risk index, based on the suitability
of the climate for the mosquito cycle to complete and for the virus to be transmitted
from one human to another. The parameters which are included in the model as
constant or variable quantities, as well as their relations, are showed in Fig. 1. The
relative density of mosquitoes m is exprimed in number of pupae per habitant, as this
measure is considered the best estimate of productivity of the environment (Focks
et al. 2006) and may be rather easily counted in the field. The daily number of bites
is elevated at power two because it includes both the numbers of infective bites from
mosquito to man and from sick man to mosquitoes, with probability of infection b
and c, respectively. The duration of viremia in the host (γ ) is considered as a constant.
Other important parameters are the mortality rate of adult female mosquitoes (the
only which have a role as vectors; μ) and the duration of the extrinsic cycle or
multiplication of the virus in the mosquito (τe). R0 is put to 1 and m is then estimated
with the other parameters calculated with the climate input. A recent development
of the model integrates a weighting of m according to the suitability of the climate to
the breeding of the mosquito.

Climate is currently represented by monthly means of the pressure vapour deficit
and temperature and thus, the risk index is estimated for each month. A cut-off
value of the risk is when it allows an epidemic to occur, i.e. when the R0 > 1.
However this model doesn’t take into account the differences of human environment
or human behavior, control activities etc. (Favier et al. 2005b). Spatially, the model
is constrained by the scale of the climatic data: at this time, it was run on three grid
scales: 2.5◦ × 2.5◦ (world), 1◦ × 1◦ (South America) and 6 × 6 km (New Caledonia).

Fig. 1 Relations between the
parameters (constant and
variables) included in the risk
model. According to colour,
some variables are influenced
either by both temperature
and hygrometry (in blue) or
temperature alone (in red).
Others are considered
constant or not climate
dependent
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Fig. 2 Present and past distribution of dengue fever (last 40 years)

Its validation was first done globally by checking the epidemic risk map against
the known distributional map of dengue fever. In Fig. 2 is reported the known
distribution of dengue fever during the last 40 years. The distribution of the risk
of epidemics, calculated by the model with the mean climate of the same period
(Fig. 3), corresponds fairly well with the actual distribution of dengue fever. Only
China, the Arabic peninsula, and south of USA show a more extant dengue risk area
than actually registered. This may be due to uncertainties in the climate data (case
of China and Arabic Peninsula) or good environmental management activities (case
of USA). On a more local scale and during some well-documented epidemics, the
curves of variation of the incidence of dengue cases were compared with those of the
risk given by the model (Fig. 4). In the case of the Athens epidemic in 1928, the peak
of number of cases corresponds with the maximum of the risk index. In the other
cases (Brazil and Thailand), the risk index changes are preceding by 1–2 months
the changes in dengue prevalence. This is probably due to the necessary biological
delay between growing up of populations of vectors and effective transmission of
the viruses.

Fig. 3 Map of risk of dengue transmission, computed by the model with the climatology of 1970–
2000 from ERA40 reanalyses. Dark and light-coloured risk areas represent endemic and epidemic
dengue-prone areas, respectively
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Fig. 4 Evolution of the monthly risk index computed with 1970–2000 climatology from ERA40
reanalyses during the epidemics of a Athens, 1927–28; b Brasilia, DF Brazil, 2000–03 average;
c Fortaleza, CE Brazil, 2001–03 average; d Bangkok, Thailand, 1983–96 average. Threshold values
are indicated by a horizontal line

Outputs of the model may be shown as maps of risk: for given climate conditions,
the risk index is proportionate to the density of mosquitoes to be attained to ensure
an R0 above 1, i.e. epidemic transmission (Degallier et al. 2005, 2006; Figs. 5, 6
and 7). During the austral summer (Fig. 5: January), greater part of tropical SA is
under risk. The southeast limit corresponds with the risk maps given for Argentina
by Carbajo et al. (2001). Great seasonal variation in the extension of risk areas is
shown when comparing Fig. 6 with Fig. 5. It is interesting to note that, excepted the
Amazonian basin, Northeastern Brazil would also be favourable for dengue trans-
mission, although with lower risk during austral winter (July). Interannual climate
variations may favour winter transmission in these regions. Seasonality of dengue
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Fig. 5 Map of the risk index
for transmission of dengue
fever in South America,
computed for the mean
climate of January (1981–90)
CRU data

Fig. 6 Map of the risk index
for transmission of dengue
fever in South America,
computed for the mean
climate of July (1981–90)
CRU data
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Fig. 7 Map of the months
of maximum risk index for
transmission of dengue fever
in South America, computed
for the mean climate in CRU
data (1981–90)

transmission risk is well exemplified by the month when the risk index is maximum
(Fig. 7). This approach may serve as a preliminary EWS, indicating the months when
prevention activities should be intensified, according to each region.

Fig. 8 Scatterplot of climate
risk index against dengue
fever prevalence (2000–2005)
according to population
density (coloured scale)
in a 0.5◦ × 0.5◦ gridded
representation of Brazil
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However, aspects which are not related to climate have been ignored in the
model, and it can be seen in Fig. 8 that prevalence of the disease is not exclu-
sively correlated to climate conditions but also to the density of human population
and other environmental factors. When population density is low, climate should
always be very suitable for dengue epidemics to occur. On the other hand, in
big cities or densely populated States, disease prevalence grows up as climate risk
becomes higher.

5 Discussion and conclusions

Influence of climate change (e. g. global warming) or variability (ENSO influence) on
the spread of mosquito-borne diseases has been questioned (Burnett and Matthews
1997; Cazelles et al. 2005) despite numerous signs of an effective impact of climate
change on the distribution of the vectors (Epstein et al. 1998). However, the impor-
tance of the human way of life and behaviour on the distribution of diseases should
not be under estimated (Lifson 1996; Reiter 2001; Norris 2004; Sutherst 2004).
Various methodologies and tools are available to forecast and eventually prevent
epidemics but actually no one may be sufficient by itself. Thus, statistical and
mathematical methods should be associated with data mining and geoprocessing
(Barcellos et al. 2005; Almeida et al. 2007). Anyway, some limitations are yet met
while modelling (Favier et al. 2005a), and the quality of data, mainly climatical,
epidemiological and entomological, is of prime importance for building good models
(Degallier et al. 2004). The development of reliable EWSs for dengue epidemics
would allow to lowering the economic impact of the disease (Clark et al. 2005)
and better evaluation of the outcomes of prevention programmes by the community
(Marzochi 1994; Kay and Nam 2005). Future works should concentrate on including
into the Claris model some non-climate parameters in order to cope with historical
(immunization rate of population, level and efficiency of control and prevention
measures), regional environmental, and socio-cultural (risky behaviours) factors.
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