Matthias Vandichel

Matthias Vandichel
University of Limerick | UL · Department of Chemical Sciences

PhD

About

73
Publications
12,080
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,425
Citations
Additional affiliations
October 2019 - present
University of Limerick
Position
  • Lecturer
September 2018 - October 2019
Aalto University
Position
  • Researcher
October 2016 - August 2018
Chalmers University of Technology
Position
  • Researcher

Publications

Publications (73)
Article
Full-text available
We report the exceptional finding that NiO, a known electroactive catalyst for the reduction of CO2 to CO, can be tuned to become an active electrocatalyst for CO2 reduction to formate when chlorine is synthetically incorporated into NiO. The CO2 reduction reaction (CO2RR) is carried out on chlorine-containing NiO octahedral particles made by a sol...
Article
Full-text available
Photocatalytic H2 generation by water splitting is a promising alternative for producing renewable fuels. This work synthesized a new type of Ta2O5/SrZrO3 heterostructure with Ru and Cu (RuO2/CuxO/Ta2O5/SrZrO3) using solid-state chemistry methods to achieve a high H2 production of 5164 μmol g–1 h–1 under simulated solar light, 39 times higher than...
Article
Proton Electroreduction In article number 2202410, Elena L. Gubanova, Aliaksandr S. Bandarenka, Matthias Vandichel, and co‐workers report the structure–activity relations that govern the complex electrochemical processes for the proton electro‐reduction on Pd(hkl) electrodes using a combination of theoretical and experimental approaches. The format...
Article
The structure–activity relationship is a cornerstone topic in catalysis, which lays the foundation for the design and functionalization of catalytic materials. Of particular interest is the catalysis of the hydrogen evolution reaction (HER) by palladium (Pd), which is envisioned to play a major role in realizing a hydrogen‐based economy. Interestin...
Article
Full-text available
Alumina (Al2O3) is a widely used material for catalysis in the chemical industry. Besides a high specific surface area, acid sites on Al2O3 play a crucial role in the chemical transformation of adsorbed molecules, which ultimately react and desorb from the catalyst. This study introduces a synthetic method based on electrospinning to produce Al2O3...
Article
Full-text available
Hybrid ultramicroporous materials, HUMs, are comprised of metal cations linked by combinations of inorganic and organic ligands. Their modular nature makes them amenable to crystal engineering studies, which have thus far afforded four HUM platforms (as classified by the inorganic linkers). HUMs are of practical interest because of their benchmark...
Article
Hybrid ultramicroporous materials, HUMs, are comprised of metal cations linked by combinations of inorganic and organic ligands. Their modular nature makes them amenable to crystal engineering studies, which have thus far afforded four HUM platforms (as classified by the inorganic linkers). HUMs are of practical interest because of their benchmark...
Article
Water splitting will become important to store excess renewable electrical energy into hydrogen. Although the oxygen-evolution reaction (OER) by water oxidation is a critical reaction for water splitting, further investigations are needed to find the details of the OER mechanism for various electrocatalysts. More in particular for homogeneous elect...
Article
The trade-off between selectivity and adsorption capacity with porous materials is a major roadblock to reducing the energy footprint of gas separation technologies. To address this matter, we report herein a systematic crystal engineering study of C2H2 removal from CO2 in a family of hybrid ultramicroporous materials (HUMs). The HUMs are composed...
Article
Full-text available
Unlike most gases, acetylene storage is a challenge because of its inherent pressure sensitivity. Herein, a square lattice (sql) coordination network [Cu(4,4'-bipyridine)2(BF4)2] n (sql-1-Cu-BF 4 ) is investigated with respect to its C2H2 sorption behavior from 189 to 298 K. The C2H2 sorption studies revealed that sql-1-Cu-BF 4 exhibits multistep i...
Article
Herein, we investigate the oxygen-evolution reaction (OER) and electrochemistry of a Pd foil in the presence of iron under alkaline conditions (pH ≈ 13). As a source of iron, K2FeO4 is employed, which is soluble under alkaline conditions in contrast to many other Fe salts. Immediately after reacting with the Pd foil, [FeO4]2- causes a significant i...
Article
C2H2/CO2 separation is an industrially important process that remains challenging because of the similar physicochemical properties of C2H2 and CO2. We herein report that the new square lattice (sql) coordination network [Cu (bipy-xylene)2(NO3)2]n, sql-16-Cu-NO3 , 16 = bipy-xylene = 4,4′-(2,5-dimethyl-1,4-phenylene)dipyridine, exists in at least th...
Article
Full-text available
The development of cheap and robust heterogeneous catalysts for the Meerwein‐Ponndorf‐Verley (MPV) reduction is desirable due to the difficulties in product isolation and catalyst recovery associated with the traditional use of homogeneous catalysts for MPV. Herein, we show that microwave heated γ‐Al2O3 can be used for the reduction of aldehydes to...
Article
Full-text available
The oxygen evolution reaction (OER) is the limiting factor in an electrolyzer and the oxygen reduction reaction (ORR) the limiting factor in a fuel cell. In OER, water is converted to O2 and H⁺/e⁻ pairs, while in ORR the reverse process happens to form water. Both reactions and their efficiency are important enablers of a hydrogen economy where hyd...
Article
Full-text available
The sluggish kinetics of the oxygen evolution reaction at the anode severely limits the hydrogen production at the cathode in water spitting systems. While electrocatalytic systems based on cheap and earth‐abundant metal copper catalysts have been promising for water oxidation under basic conditions, only very few examples with high overpotential c...
Article
Full-text available
Ambient pressure operando soft X-ray absorption spectroscopy (soft-XAS) was applied to study the reactivity of hydroxylated SnO2 nanoparticles towards reducing gases. H2 was first used as a test case, showing that gas phase and surface states can be simultaneously probed: soft-XAS at the O K-edge gains sensitivity towards the gas phase, while at th...
Article
Water oxidation is traditionally performed over IrO2 and RuO2 owing to their high stability at low pH compared to molecular O2 evolution catalysts. The low stability of molecular complexes in acids limits their industrial exploitation as anodes in water-splitting devices, where high current densities and proton conductivity are required. Herein, an...
Article
Closed-to-open structural transformations in flexible coordination networks are of potential utility in gas storage and separation. Herein, we report the first example of a flexible SiF62--pillared square grid material, [Cu(SiF6)(L)2] n (L = 1,4-bis(1-imidazolyl)benzene), SIFSIX-23-Cu. SIFSIX-23-Cu exhibits reversible switching between nonporous (β...
Article
Oxygen evolution (OER) via mixed metal oxy hydroxides [M(O)(OH)] may take place on a large variety of possible active sites on the actual catalyst. A single site computational description assumes a 4‐step electrochemical mechanism with coupled H + /e ‐ transfers between 4 intermediates (M‐*, M‐OH, M=O, M‐OOH). We also consider bifunctional routes,...
Article
Nanostructured materials are essential building blocks for the fabrication of new devices for energy harvesting/storage, sensing, catalysis, magnetic, and optoelectronic applications. However, because of the increase of technological needs, it is essential to identify new functional materials and improve the properties of existing ones. The objecti...
Article
The initial oxidation of Fe(100) at 400 °C has been studied by X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and low-energy electron diffraction (LEED), in combination with density functional theory (DFT) calculations. The first observed well-ordered surface oxide is formed at a coverage of ∼3 oxygen atoms per unrecon...
Article
Full-text available
Density functional theory calculations are used to investigate CO adsorption, dissociation and SnOX formation on Pt3Sn. We find that direct CO dissociation is prevented by high activation energies. An energetically feasible path is instead CO dimer formation followed by C–O bond cleavage. Dimers are formed in the presence of Sn adatoms which effect...
Article
Full-text available
Segregation induced formation of oxide/metal interfaces can significantly influence the catalytic activity of alloy nanoparticles. One example is Pt3Sn nanoparticles, which are known to segregate into SnOX and an Sn deficient alloy phase during typical operating conditions for CO oxidation. Here, we use density functional theory calculations to inv...
Article
Optimum band gap values, favourable band edge positions and stability in the electrolyte are critical parameters required for a semiconductor to have efficient photoelectrode properties. The present investigation carried out on the phase pure α & β MoO3 thin film shows that the low bandgap β-MoO3 possesses a mis-alignment with the water oxidation p...
Article
Metal alloying is commonly used as a design strategy for catalyst optimization. The mechanistic understanding of this class of systems is, however, obscured by reaction induced segregation phenomena. Herein the case of CO oxidation over Pt3Sn is investigated using Density Functional Theory calculations combined with ab initio thermodynamics and fir...
Article
Full-text available
The direct interaction between CO2 and terminal alkynes in the presence of bis-(NHC)-metal catalysts at ambient conditions was studied. Two Cu and Ag-based bis-N-heterocyclic carbene Transition Metal catalysts were synthesized. The (NHC)2-Ag complex showed a better catalytic performance towards the carboxylation of terminal alkynes in comparison wi...
Article
Full-text available
Water splitting is the key step towards artificial photosystems for solar energy conversion and storage in the form of chemical bonding. The oxidation of water is the bottle-neck of this process that hampers its practical utility and hence efficient, robust, and also easy to make catalytic systems based on cheap and earth abundant materials are of...
Article
The UiO-66 metal organic framework is one of the most thermally and chemically stable hybrid materials reported to date. However, it is also accepted that the material contains structurally embedded defects, which may be engineered to enhance properties towards specific applications such as catalysis, sensing, etc. The synthesis conditions determin...
Article
Nanoscale Zr-based metal organic frameworks (MOFs) UiO-66 and UiO-67 were studied as potential anticancer drug delivery vehicles. Two model drugs were used, hydrophobic paclitaxel and hydrophilic cisplatin, and were adsorbed onto/into the nano MOFs (NMOFs). The drug loaded MOFs were further encapsulated inside a modified poly(ε-caprolactone) with D...
Article
This article provides a comprehensive review of the nature of catalytic sites in MOFs. In the last decade, a number of striking studies have reported outstanding catalytic activities of MOFs. In all cases, the authors were intrigued as it was unexpected from the ideal structure. We demonstrate here that (surface) defects are at the origin of the ca...
Article
A full mechanistic investigation is proposed for the industrially important cross-aldol condensation reaction of heptanal with benzaldehyde on the UiO-66 and the amino-functionalized UiO-66-NH2 metal-organic frameworks to form jasminaldehyde. Several experimental studies indicate that the activity for the aldol condensation reaction can be increase...
Article
Full-text available
We present the in situ synthesis of Au nanoparticles within the Zr based Metal Organic Framework, UiO-66. The resulting Au@UiO-66 materials were characterized by means of N2 sorption, XRPD, UV-Vis, XRF, XPS and TEM analysis. The Au nanoparticles (NP) are homogeneously distributed along the UiO-66 host matrix when using NaBH4 or H2 as reducing agent...
Article
We present the in situ synthesis of Au nanoparticles within the Zr based Metal Organic Framework, UiO-66. The resulting Au@UiO-66 materials were characterized by means of N2 sorption, XRPD, UV-Vis, XRF, XPS and TEM analysis. The Au nanoparticles (NP) are homogeneously distributed along the UiO-66 host matrix when using NaBH4 or H2 as reducing agent...
Article
The catalytic activity of the Zr-benzenedicarboxylate (Zr-BDC) UiO-66 can be drastically increased if some BDC linkers are missing, as this removes the full coordination of the framework metal ions. As a result, metal centers become more accessible and thus more active for Lewis acid catalysed reactions. Addition of modulators (MDL) to the synthesi...
Article
Full-text available
Copper(I)-catalyzed 1,3-dipolar cycloaddition of azides and terminal alkynes (CuAAC), better known as “Click” reaction, has triggered the use of 1,2,3-triazoles in bioconjugation, drug discovery, materials science and combinatorial chemistry. Here we report a new series of catalysts based on N-Heterocyclic Carbenes (NHC)-Cu complexes which are addi...
Article
The hybrid frameworks M(2)dobdc (dobdc(4-) = 2,5-dioxidoterephthalate, M2+ = Mg2+, Co2+, Ni2+, Cu2+ and Zn2+), commonly known as CPO-27 or MOF-74, are shown to be active catalysts in base-catalyzed reactions such as Knoevenagel condensations or Michael additions. Rather than utilizing N-functionalized linkers as a source of basicity, the intrinsic...
Article
Full-text available
A new concept has been developed for generating highly dispersed base sites on metal-organic framework (MOF) lattices. The base catalytic activity of two alkaline earth MOFs, M2(BTC)(NO3)(DMF) (M = Ba or Sr, H3BTC = 1,3,5-benzenetricarboxylic acid, DMF = N,N-dimethylformamide) was studied as a function of their activation procedure. The catalytic a...
Article
To optimally design next generation catalysts a thorough understanding of the chemical phenomena at the molecular scale is a prerequisite. Apart from qualitative knowledge on the reaction mechanism, it is also essential to be able to predict accurate rate constants. Molecular modeling has become a ubiquitous tool within the field of heterogeneous c...
Article
This perspective review paper describes the V-containing metal–organic frameworks that have been developed since the first systematic reports on MOFs almost 15 years ago. These hybrid crystalline materials, containing V(III) or V(IV) as metal nodes, show interesting behavior in oxidation catalysis and gas sorption. A significant amount of papers ha...
Article
The epoxidation of cyclohexene has been investigated on a metal–organic framework MIL-47 containing saturated V+IV sites linked with functionalized terephthalate linkers (MIL-47-X, X=OH, F, Cl, Br, CH3, NH2). Experimental catalytic tests have been performed on the MIL-47-X materials to elucidate the effect of linker substitution on the conversion....
Article
This perspective review paper describes the V-containing metal–organic frameworks that have been developed since the first systematic reports on MOFs almost 15 years ago. These hybrid crystalline materials, containing V(III) or V(IV) as metal nodes, show interesting behavior in oxidation catalysis and gas sorption. A significant amount of papers ha...
Article
Six new functionalized vanadium hydroxo terephthalates [VIII(OH)(BDC-X)]·n(guests) (MIL-47(VIII)-X-AS) (BDC = 1,4-benzenedicarboxylate; X = −Cl, −Br, −CH3, −CF3, −OH, −OCH3; AS = as-synthesized) along with the parent MIL-47 were synthesized under rapid microwave-assisted hydrothermal conditions (170 °C, 30 min, 150 W). The unreacted H2BDC-X and/or...
Article
Industrial (−)-menthol production generally relies on the hydrogenation of (−)-isopulegol, which is in turn produced with high selectivity by cyclization of (+)-citronellal. This paper uses a combined theoretical and experimental approach to study the activity and selectivity of three Lewis acid catalysts for this reaction, namely ZnBr2, aluminum t...
Article
The catalytic activity of the Zr-terephthalate UiO-66(Zr) can be drastically increased by using a modulation approach. The combined use of trifluoroacetic acid and HCl during the synthesis results in a highly crystalline material, with partial substitution of terephthalates by trifluoroacetate. Thermal activation of the material leads not only to d...
Article
When adsorbing guest molecules, the porous metal–organic framework MIL-53(Cr) may vary its cell parameters drastically while retaining its crystallinity. A first approach to the thermodynamic analysis of this “framework breathing” consists of comparing the osmotic potential in two distinct shapes only (large-pore and narrow-pore). In this paper, we...
Article
A vanadium based metal-organic framework (MOF), VO(BPDC) (BPDC(2-) = biphenyl-4,4'-dicarboxylate), adopting an expanded MIL-47 structure type, has been synthesized via solvothermal and microwave methods. Its structural and gas/vapor sorption properties have been studied. This compound displays a distinct breathing effect toward certain adsorptives...
Article
Full-text available
An amino functionalized vanadium-containing Metal Organic Framework, NH(2)-MIL-47, has been synthesized by a hydrothermal reaction in an autoclave. Alternatively, a synthesis route via microwave enhanced irradiation has been optimized to accelerate the synthesis. The NH(2)-MIL-47 exhibits the same topology as MIL-47, in which the V center is octahe...
Article
The epoxidation reaction of cyclohexene is investigated for the catalytic system vanadyl acetylacetonate (VO(acac)2) with tert-butyl hydroperoxide (TBHP) as oxidant with the aim to identify the most active species for epoxidation and to retrieve insight into the most plausible epoxidation mechanism. The reaction mixture is composed of various inact...
Article
A force field is proposed for the flexible metal-organic framework MIL-53(Al), which is calibrated using density functional theory calculations on non-periodic clusters. The force field has three main contributions: an electrostatic term based on atomic charges derived with a modified Hirshfeld-I method, a van der Waals (vdW) term with parameters t...
Article
Full-text available
The porous MIL-47 material shows a selective adsorption behavior for para-, ortho-, and meta-isomers of xylenes, making the material a serious candidate for separation applications. The origin of the selectivity lies in the differences in interactions (energetic) and confining (entropic). This paper investigates the xylene–framework interactions an...
Article
Functionalized linkers can greatly increase the activity of metal-organic framework (MOF) catalysts with coordinatively unsaturated sites. A clear linear free-energy relationship (LFER) was found between Hammett σ(m) values of the linker substituents X and the rate k(X) of a carbonyl-ene reaction. This is the first LFER ever observed for MOF cataly...
Article
The porous MIL-47 material shows a selective adsorption behavior for para-, ortho-, and meta-isomers of xylenes, making the material a serious candidate for separation applications. The origin of the selectivity lies in the differences in interactions (energetic) and confining (entropic). This paper investigates the xylene–framework interactions an...
Article
Since many industrially important processes start with the adsorption of guest molecules inside the pores of an acidic zeolite catalyst, a proper estimate of the adsorption enthalpy is of paramount importance. In this contribution, we report ab initio calculations on the adsorption of water, alcohols, and nitriles at the bridging Bronsted sites of...
Article
A Metal Organic Framework, containing coordinatively saturated V+IV sites linked together by terephthalic linkers (V-MIL-47), is evaluated as a catalyst in the epoxidation of cyclohexene. Different solvents and conditions are tested and compared. If the oxidant TBHP is dissolved in water, a significant leaching of V-species into the solution is obs...
Thesis
Nanoporeuze materialen bestaan uit een regelmatig opgebouwd netwerk vol poriën, met typische poriegroottes van ongeveer één nanometer. Ze hebben belangrijke toepassingen zowel in huishoudens (ionenwisselaar in waterverzachters en waspoeders) als in de chemische industrie. Industrieel worden ze als katalysator toegepast om reacties van componenten s...
Article
Methylations of ethene, propene, and butene by methanol over the acidic microporous H-ZSM-5 catalyst are studied by means of state of the art computational techniques, to derive Arrhenius plots and rate constants from first principles that can directly be compared with the experimental data. For these key elementary reactions in the methanol to hyd...
Article
The methanol-to-olefin (MTO) process, catalyzed by acidic zeolites such as H-ZSM-5, provides an increasingly important alternative to the production of light olefins from crude oil. However, the various mechanistic proposals for methanol-to-olefin conversion have been strongly disputed for the past several decades. This work provides theoretical ev...
Article
The remarkable catalytic activity of the saturated metal organic framework MIL-47 in the epoxidation of cyclohexene is elucidated by means of both experimental results and theoretical calculations.
Article
The formation of cyclic hydrocarbons from smaller building blocks such as ethene and propene is investigated in protonated ZSM-5, using a 2-layered ONIOM(B3LYP/6-31+g(d):HF/6-31+g(d)) approach and an additional Grimme-type van der Waals dispersion correction term to account for the long-range dispersion interactions. These cyclic species form precu...