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Abstract— We propose a Bayesian trajectory prediction and
criticality assessment system that allows to reason about immi-
nent collisions of a vehicle several seconds in advance. We first
infer a distribution of high-level, abstract driving maneuvers
such as lane changes, turns, road followings, etc. of all vehicles
within the driving scene by modeling the domain in a Bayesian
network with both causal and diagnostic evidences. This is
followed by maneuver-based, long-term trajectory predictions,
which themselves contain random components due to the im-
manent uncertainty of how drivers execute specific maneuvers.
Taking all uncertain predictions of all maneuvers of every
vehicle into account, the probability of the ego vehicle colliding
at least once within a time span is evaluated via Monte-Carlo
simulations and given as a function of the prediction horizon.
This serves as the basis for calculating a novel criticality
measure, the Time-To-Critical-Collision-Probability (TTCCP) –
a generalization of the common Time-To-Collision (TTC) in ar-
bitrary, uncertain, multi-object driving environments and valid
for longer prediction horizons. The system is applicable from
highly-structured to completely non-structured environments
and additionally allows the prediction of vehicles not behaving
according to a specific maneuver class.

I. INTRODUCTION AND MOTIVATION

Future Advanced Driver Assistance Systems (ADAS) must
not just react to the actual state of the environment, but
anticipate the future evolution of the traffic scene to perform
correct decisions, warnings and interventions. Whereas this
evolution can reasonably be predicted for a short time
(typically less than a second) by just considering physical
quantities such as estimated vehicles’ velocities or yaw rates,
the evolution over several seconds is much stronger influ-
enced by the intentions, motivations and goals of all traffic
participants within the specific driving environment. This
raises the complexity for longer-term predictions consider-
ably. Two major challenges exist in the design of long-term
trajectory prediction and criticality assessment algorithms for
active collision avoidance and warning systems. First, it is
neither optimal to determine just a single future trajectory for
each vehicle nor is it reasonable to predict every physically
possible trajectory. In the first case, the one and only future
hypothesis will most certainly not occur whereas human
drivers take different scene evolutions into account. In the
second case, false warnings will be generated. For example,
the reachable sets of two oncoming vehicles on different
lanes will overlap after a very short prediction horizon
although this standard situation is usually uncritical.
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The second less considered challenge is that the further
one tries to predict into the future, the more assumptions
have to be made, which tempts to model the average, sensible
driver in a given traffic situation. As an extreme example, the
prediction could be based upon the assumption that every
driver obeys the traffic rules or follows the road flawlessly.
Although these assumptions are reasonable for microscopic
traffic simulations, they are not appropriate for active safety
systems, because especially actions that do not match the
traffic rules and contradict with the standard situation evolu-
tion might become dangerous. Thus, all prediction methods
that are solely based upon the average driver are not suitable
for an emergency situation ADAS as exactly these situations
are excluded by the prediction assumptions beforehand and
therefore cannot be predicted at all.

Consequently, the system must i) be sensitive to ex-
ceptional, rarely happening situations, ii) should not only
consider physical quantities but also information about the
drivers’ intentions and the driving environment and iii) take
into account only a reasonable subset of possible future scene
evolutions.

As the drivers’ intentions manifest in form of high-level
driving maneuvers, it seems beneficial to first infer these
more abstract hidden states. Our approach then connects the
abstract, qualitative maneuver detection with the quantitative
trajectory prediction domain with the ultimate goal to cal-
culate a criticality measure suitable for arbitrary, uncertain
driving environments for longer prediction time spans – the
so-called Time-To-Critical-Collision-Probability (TTCCP).

II. RELATED WORK

Long-term trajectory prediction methods can be classi-
fied into methods of pattern recognition in motion pattern
databases [1], [2] and approaches fusing dynamic motion
models with behavior and/or environment descriptions [3]–
[6]. Besides the problem of generating, saving and fitting
large motion pattern data records, the first group has the
immanent disadvantage that only trajectories included in
the database can be predicted. This makes them unsuitable
for criticality assessment due to their inability to predict
abnormal situations. Some representatives of the second
group, which consider uncertainty and additionally include
a criticality assessment part, are explained in the following.

The approaches of [4], [5] perform probabilistic trajectory
predictions by employing path-planning algorithms from the
viewpoint of each traffic participant to generate distributions
over future motions of all vehicles. Different combinations
of future system inputs are considered via Monte-Carlo



simulations while the stochastic inputs are restricted to
specific, typical human driving behaviors and actions such
as lane changes or overtaking – a similarity to our approach.
They are, however, the result of goal functions, which model
behaviors. No explicit maneuver detections are performed.
The result is a probability of collision for the complete traffic
scene as well as a so-called danger level display for each road
position at each future time.

In [3], stochastic reachable sets of all other (interacting)
traffic participants are determined assuming that they follow
specific paths along a known road network with a certain
accuracy. The ego vehicle’s future path is considered known
as the system is designed for autonomous vehicles with a
known planned future trajectory and not for ADAS. The
longitudinal dynamic motion models of other vehicles along
their paths are abstracted into discrete Markov chains, the lat-
eral positions are described by predefined, fixed distributions.
The future actions “go straight” and “turn” are considered for
the other vehicles. As their motions are constrained along
road geometries and speed limits, an unintentional leaving
of the road cannot be detected.

The approach of [6] allows longer-term criticality as-
sessment in structured highway environments and focuses
on the interaction of traffic participants. By updating a
hand-designed prior intention distribution with results of the
corresponding, fictive collision probabilities stemming from
the execution of each intention, so-called interaction-aware
maneuver probabilities are estimated. They are based on the
postulation that drivers do not perform maneuvers with high
collision risks as long as safer options are possible. This
assumption, however, inevitably prevents the detection of
specific dangerous situations such as colliding with a slower
vehicle on the same lane, if there is still a free adjacent lane
for a possible lane change. Our approach, in contrast, predicts
maneuvers only in case physically measurable evidences
indicate a maneuver.

Besides explicit trajectory prediction methods, numerous
approaches reason about the future traffic scene on a more
abstract level. The mathematical tools comprise probabilistic
state machines [7], static Bayesian networks [8], general
dynamic Bayesian networks [9], Hidden Markov Models
(HMM’s) [10], Dempster-Shafer theory [11], fuzzy the-
ory [7] or specific classifiers [12]. Our approach connects
a novel Bayesian network-based, qualitative maneuver de-
tection approach with the quantitative, uncertain trajectory
prediction domain to generate long-term predictions – a
similar two-step approach with layered HMM’s for maneuver
detection can be found in [13].

In the subsequent situation criticality assessment, Time-
To-X (TTX) metrics such as the Time-To-Collision (TTC)
are common [14]. A recent extension [15] additionally con-
siders uncertainty by calculating a probability distribution
over TTC’s via the Unscented Transform. In contrast to
our approach, however, only uncertain state estimates are
considered and not additional uncertainties in the drivers’
behaviors.

III. SYSTEM OVERVIEW

The system is subdivided into three main parts: The ma-
neuver detection, the prediction and the criticality assessment
part as shown in Fig. 1.
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Fig. 1. System overview.

In the maneuver detection part (blue), every vehicle’s ac-
tual driving maneuvers are estimated via Bayesian inference.
For this purpose, a Bayesian network is modeled and fed with
measured vehicle and environment evidences. The inference
result is a probability mass function (pmf) p(ME,k) of the
discrete maneuver random variable ME,k for the ego vehicle
at each time step k as well as for the i = 1, . . . , f additional
vehicles Vi,k within the observed traffic scene p(MVi,k).

In the prediction part (orange), maneuver-specific predic-
tion models are employed to predict the configuration x =
(x, y, ψ)T of each vehicle forward in time within a common
global coordinate system. The individual j = 1, . . . , r predic-
tion models are adapted to the actual driving environment and
uncertainties in the drivers’ future maneuver realizations are
taken into account by introducing uncertainties within these
models. Therefore, even if we knew a driver is performing
a specific maneuver for sure, the prediction model would
nevertheless generate many possible trajectory realizations
of this maneuver. The result of the prediction part is a joint
probability distribution function (pdf) p(xk:k+TP) of future
configurations over the TP ∈ N prediction time steps for each
vehicle.1

In the criticality assessment part (yellow), these individual
joint distributions are used to estimate the collision proba-
bility p(Ck(TP)) of the event that the ego vehicle collides
with at least one other vehicle at least once within the
prediction horizon [k, k + TP] via Monte-Carlo simulation.
Subsequently, the TTCCP criticality measure is calculated
as the necessary prediction time until the probability of this
collision event exceeds a certain value. It is therefore a
time measure analogous to TTC, which, however, takes all

1For shorter notation, the sequence k, k + 1, . . . , k + TP is written as
k : k + TP.



possible future traffic scene evolutions into account. In the
following, the three parts are explained in more detail.

A. MANEUVER DETECTION

The Bayesian network for maneuver detection is modeled
with the application criticality assessment in mind and there-
fore needs to allow the detection of exceptional, non-standard
situations. This can hardly be accomplished by modeling
a single, complex network that takes interactions between
all traffic participants into account. This approach would
inevitably lead to the design of average traffic situations, thus
preventing the detection and subsequent prediction of rare
events.2 In contrast, we instantiate a separate network for
every vehicle that primarily obtains evidences independent
from other traffic participants. The last statement can be
justified by thinking about, for example, adding the evidence
that a neighboring vehicle occupies the ego vehicle’s adjacent
lane such as done in [8]. Then this evidence could only
be reasonably included into the network in a way that it
lowers the probability of an impending lane change for the
ego vehicle due to the occupied adjacent lane. If weighted
too strongly, this evidence would prevent the prediction of
a collision if the ego vehicle indeed performs the unlikely
lane change and is therefore intentionally not included in our
network. As a result of these considerations, our network is
designed under the implicit premise of drivers overlooking
each other, at least, unless physical evidence contradicts
this premise. An example for this is a vehicle already
braking strongly in front of an obstacle. In this situation,
the prediction of the timely stop prevents false warnings and
is therefore incorporated.

The developed network is shown in Fig. 2. It consists of 8
binary (true and false) maneuver nodes within the maneuver
layer (blue), 6 helper nodes (yellow) and 16 evidence nodes
(shaded) subsumed in Table I. All naturally continuous
random variables such as velocities are discretized by divid-
ing their values into several reasonable intervals. Thus, the
complete network is discrete. We do not use either causal
(predictive – from cause to effect as in [8]) or diagnostic
(evidential – from effect to cause as in [16]) reasoning,
but both by embedding the hidden maneuver node layer in-
between the observable causal and diagnostic evidence node
layers, which additionally allows intercausal reasoning. The
main consideration in the network design process is that
the causal evidence layer models requirements for specific
maneuvers to happen. The existence of a neighboring lane,
for example, is a necessity for a lane change maneuver or
the time until a turning is reached influences the probability
of an oncoming turn maneuver. The diagnostic evidence
layer, in contrast, models the maneuvers’ consequences
(symptoms) in form of measurable physical motion states.
We use longitudinal and lateral vehicle acceleration aR,lon/lat,
lateral velocity vR,lat and yaw angle ψR within a lane-fixed
coordinate system as diagnostic evidences. These are partly

2This could, however, be a reasonable approach for other applications
such as cognitive, autonomous vehicles that need the understanding of the
standard future traffic scene evolution for adequate decision making.

TABLE I
RANDOM VARIABLES OF TYPE CAUSAL EVIDENCE (CE), DIAGNOSTIC

EVIDENCE (DE), HELPER NODE (HN) AND MANEUVER NODE (MN).

Variable Type Explanation
LEl/r/a CE Lane existence left/right/actual
TLCl/r CE Time to line crossing left/right
TTUl/r CE Time to turning left/right
TEl/r CE Turning existence left/right
vrel CE Relative velocity to front object
OEfro CE Front object existence
TOfro CE Time to front object
ψR DE Yaw angle to road tangent
aR,lat DE Lateral acceleration perpendicular to road tangent
vR,lat DE Lateral velocity perpendicular to road tangent
aR,lon DE Longitudinal acceleration along road tangent
TRl/lon/r HN Trash class helper left/longitudinal/right
LATl/r HN Lateral motion left/right
LON HN Longitudinal motion
LCl/r MN Lane change to the left/right
TUl/r MN Turn to the left/right
TR MN Trash maneuver class (no maneuver)
FV MN Follow vehicle
FR MN Follow road
TB MN Target brake

not directly connected with the maneuver layer, but via
helper nodes LATl/r and LON for lateral and longitudinal
motion, respectively. This simplifies the parametrization of
the corresponding Conditional Probability Tables (CPT’s).

The combination of causal and diagnostic evidences allows
explaining away. If, for example, the observed states of
the diagnostic nodes are indistinguishable consequences of
either a lane change or a turn maneuver, then the additional
causal knowledge of a non-existing turning automatically
raises the probability that the observed diagnostic evidence
stems from a lane change. Moreover, the design approach
allows to integrate a trash maneuver class TR for modeling
all motions not belonging to a specific maneuver class, e.g.
irrational movements of a drunken driver, by explaining away
all contradictory evidence to the trash maneuver class via
the helper nodes TRl/lon/r. These are connected to TR in a
noisy-or manner. The trash maneuver class also gets a high
probability if all other maneuver requirements are missing,
e.g. no lane or turning information is available such as in
completely unstructured environments like parking zones or
dirt tracks.

In every time step k, the network is updated with all
available evidences. Then, the individual maneuver nodes
are normalized so that they form a single, valid, discrete
maneuver random variable M with the 8 maneuver states
and corresponding pmf p(M).

B. TRAJECTORY PREDICTION

For each maneuver, a prediction model is set up. In
Fig. 3, the mean predicted trajectories of each maneuver
class are qualitatively visualized. Each model is adapted
to the actual traffic scene situation by taking vehicle and
environment evidences into account such as lane width or
the distance to a stopping point. They additionally contain
random components to model different driving styles and are
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Fig. 2. Bayesian network for maneuver detection instantiated for each vehicle within the traffic scene at each time step k. Hidden maneuver nodes (blue)
are inferred via Bayesian inference given causal and diagnostic evidence nodes (shaded). Helper nodes (yellow) are used to facilitate parametrization.
Abbreviations are explained in Table I.
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Fig. 3. Maneuver-based prediction models. Follow road (a), Follow
vehicle (b), Target brake (c), Lane change (d), Turn (e), Trash maneuver
class (f). Dashed trajectories correspond to mean predicted trajectories.

shortly explained in prose in the following.3

• Follow road: The model predicts the vehicle’s longitu-
dinal position along the road according to a (nearly)
constant acceleration model in which the acceleration
is treated as a random variable with normal distribution
around the actual acceleration and linearly growing

3Due to space limitations, the complete mathematical description of
the maneuver prediction models is omitted as not considered crucial for
understanding the concept.

variance over the prediction horizon to model the rising
uncertainty in the driver’s acceleration profile. Negative
velocities are suppressed. The vehicle’s lateral position
along the road follows a normal distribution around the
actual lateral position and a standard deviation designed
such that a vehicle driving in the middle of the road
is completely inside the lane corresponds to the three
sigma interval. The yaw angle along the road is likewise
following a normal distribution with zero mean and
small allowed deviations as the vehicle’s orientation is
supposed to nearly correspond to the road orientation
in a follow road maneuver.

• Follow vehicle: The model is based on the assumption
that the driver reacts to another vehicle in front and
accelerates in a way that an adequate mean time gap of
2 s occurs. The acceleration assumes moderate reaction
(acceleration bounds between −3.5 m

s2 and 2.5 m
s2 ) of the

driver similar to adaptive cruise control systems and
does therefore not predict abrupt braking maneuvers.
The model can predict collisions if the driver reacts to
a vehicle in front too slightly as well as also suppress
false warnings that would occur if a driver moderately
reacts to vehicles further away, in which a pure follow
road maneuver would already predict a collision. Lateral
and yaw angle deviations are modeled analogous to the
follow road maneuver.

• Target brake: The model predicts under the assumption
that the vehicle stops in front of a braking target such as
an obstacle, another vehicle or a stop line. The predicted
acceleration equals the necessary constant acceleration
for the vehicle to stop in a specified distance to the



braking target.4 This distance is treated as normally
distributed around 1m with standard deviation designed
in a way that a vehicle stopping directly in front of the
braking target with no safety margin corresponds to the
three sigma interval.

• Lane change: The model predicts lane changes under
the assumption that both lanes have the same width and
the maneuver started nearly in the middle of the lane.
The trajectory is supposed to follow a sine half-cycle in
road coordinates, which is scaled based on the expected
distance along the road coordinate until the maneuver
is finished. This distance is calculated by aligning the
tangent of the sine shape with the vehicle’s actual
orientation at each time step. The uncertainty within the
predicted lateral displacement and yaw angle is modeled
by considering the lateral maneuver origin around the
middle of the lane from which the maneuver started
as normally distributed. The longitudinal acceleration
along the road coordinate equals the follow road model.
As soon as the end of the sine half-cycle is reached, the
model obeys the follow road model for the remaining
prediction horizon.

• Turn: The model predicts turns by partitioning the
maneuver into three segments. Before the vehicle leaves
the initial road, the turning itself and the remaining
prediction on the destination road after the turning.
The prediction in the first segment follows a straight
line along the initial road with a constant acceleration
model with predicted acceleration calculated as the
mean, necessary (negative) acceleration required in a
way that a maximal velocity is not exceeded at the
start of the turn. This maximal velocity is itself deter-
mined so that the driver is only exposed to a maximal
centripetal acceleration during the second segment, the
actual turning phase. Here, the transition between the
two roads is modeled as a circular arc. The arc’s
center lies on the angle bisector between the two road
tangents, the radius is adapted according to the roads’
geometry so that initial and destination roads’ tangents
are also tangents of the circle. The third segment on the
destination road is again a straight line. The longitudinal
motion in segment two and three is realized via a
constant velocity model, lateral positions on the initial
and destination road are considered random variables
following a normal distribution to model different turn
executions as every driver cuts the corner differently.

• Trash maneuver class: The model predicts the motion
according to a (nearly) Constant Turn Rate and Accel-
eration model (CTRA), i.e. purely based on physical
states with no environment knowledge required.

Every maneuver prediction model generates, in a very
general sense, a joint pdf over the prediction horizon
p(xk:k+TP |Mj,k) with configuration x = (x, y, ψ)T for all
j = 1, . . . , r maneuvers for each vehicle. By marginal-

4If this lies below the minimal acceleration of −8 m
s2

, this value is used
instead.

izing out the maneuver states from the combined pdf
p(xE,k:k+TP ,Mk) with the help of p(ME,k) and p(MVi,k)
from the Bayesian network inference result of section III-A,
we reach

p(xE,k:k+TP) =

r∑
j=1

p(xE,k:k+TP |ME,k = j)p(ME,k = j),

p(xVi,k:k+TP) =

r∑
j=1

p(xVi,k:k+TP |MVi,k = j)p(MVi,k = j),

(1)

for the ego vehicle and the other i = 1, . . . , f vehicles, re-
spectively. These densities are used for criticality assessment
in the following.

C. CRITICALITY ASSESSMENT

In [17], a general formula for probabilistic collision check-
ing is presented which, however, only holds for calculating
the collision probability of two uncertain, extended objects at
a specific point in time. Adapted to our case, the probability
of the ego vehicle colliding exactly with vehicle Vi at a
specific, common point in time is given by5 [17]

p(C) =

∫
xVi

∫
xE

IC1(xE,xVi)p(xE,xVi)dxEdxVi (2)

with joint density over the uncertain configurations of both
vehicles p(xE,xVi

) and collision indicator function

IC1(xE,xVi
) =

{
1, S(xE)

⋂S(xVi
) 6= ∅,

0, else.
(3)

Here, S(xE) and S(xVi) refer to the set of points in space
that are occupied by the ego and obstacle vehicle when
their configurations are given by xE and xVi

, respectively.
For criticality assessment over a future time span, i.e. the
calculation of the probability of the event CVi,k(TP): The
ego vehicle collides with vehicle Vi at least once within the
prediction horizon [k, k + TP], evaluated at time step k, the
formula has to be generalized as follows:

p(CVi,k(TP)) =

∫
xVi,k+TP

∫
xE,k+TP

. . .

∫
xVi,k

∫
xE,k

IC(xE,k:k+TP ,xVi,k:k+TP)p(xE,k:k+TP ,xVi,k:k+TP)

dxE,kdxVi,k . . . dxE,k+TP dxVi,k+TP

(4)

with new collision indicator function

IC(xE,k:k+TP ,xVi,k:k+TP) =


1, ∃m ∈ [k, k + TP] :
S(xE,m)

⋂S(xVi,m)
6= ∅,

0, else.
(5)

Therefore, an integration over the volume of the joint density
over both vehicles and all future time steps, at which the

5The short notation
∫
x(.)dx means integration over the whole range

of x, e.g. if x = (x1, . . . , xn)T ∈ Rn, then
∫
x(.)dx =

∫
Rn (.)dx =∫∞

−∞ . . .
∫∞
−∞(.)dx1 . . . dxn.



collision condition is fulfilled, is necessary.6 We further
consider the trajectories of all vehicles as independent7,
therefore the joint density in (4) reduces to

p(xE,k:k+TP ,xVi,k:k+TP) = p(xE,k:k+TP)p(xVi,k:k+TP) (6)

with the pdf’s on the right hand side given by (1). For all
f obstacle vehicles, the probability of the combined event
Ck(TP): The ego vehicle collides with at least one vehicle at
least once within the prediction horizon [k, k+TP], evaluated
at time step k, can now be calculated as

p(Ck(TP)) = p

(
f⋃

i=1

CVi,k(TP)

)
= p

(
¬

f⋂
i=1

¬CVi,k(TP)

)

= 1− p
(

f⋂
i=1

¬CVi,k(TP)

)
= 1−

f∏
i=1

(1− p(CVi,k(TP))) ,

(7)

in which the last step follows from the stochastic indepen-
dence assumption of the individual (not mutually exclusive)
collision events. Considering (7) as a function of TP, i.e.
the length of the prediction horizon (number of prediction
time steps), then the criticality measure TTCCP as the time
until the combined collision probability p(Ck(TP)) exceeds
a Critical Collision Probability (CCP) can be calculated as

TTCCP = min(TP|p(Ck(TP)) > CCP) · T, (8)

with prediction sampling time T . This can be seen as a
generalization for the criticality measure TTC in uncertain
driving environments. In a practical implementation, (4) is
solved via Monte Carlo simulation, so that the expectation
of the indicator function, i.e. the collision probability, can be
estimated by

p(CVi,k(TP)) = E(IC) ≈
1

N

N∑
i=1

IC(x̃i), (9)

in which x̃i is one out of N independent and iden-
tically distributed drawn samples from the joint density
p(xE,k:k+TP ,xVi,k:k+TP) and the unbiased estimate converg-
ing almost surely to the true collision probability by the
strong law of large numbers with convergence rate of order
O( 1√

N
). Each sample therefore corresponds to two com-

plete predicted trajectories. Although, following (6), the
trajectories of the vehicles can be drawn independently of
each other, the specification of the Monte Carlo estimate in
this more general form is advantageous, as it then becomes

6Note that it is incorrect to combine the collision probabilities calculated
via (2) for different future time steps in a way as treating the underlying
collision events (from which at least one has to be fulfilled) as independent.
This would falsely result in p(CVi,k(TP)) = 1 −

∏k+TP
m=k (1− p(Cm)),

which is obviously wrong as this combined probability depends on the
prediction sampling rate. If, for example, two vehicles overlap (collide)
for several consecutive time steps, then even if the individual collision
probabilities are negligibly small, the combined probability of collision
would converge to one if sampled infinitely fast due to the infinitely many
product operations.

7As mentioned already, otherwise, a collision prediction is hardly possible
as the necessary modeling of the combined traffic scene pdf would require
the postulation of sensible individual drivers that try not to collide.

directly obvious that only a single summation over simul-
taneously drawn samples from both individual distributions
p(xE,k:k+TP) and p(xVi,k:k+TP) is required, which is further
elaborated and justified in [17]. This way, much less samples
are needed to obtain the same estimation error in opposition
to a naive double summation over individual trajectory
samples.

IV. IMPLEMENTATION AND RESULTS

The complete system has been implemented in C++ and
coupled with the simulation environment IPG Carmaker. For
Bayesian network inference, we employ the junction tree
algorithm.The system has been parameterized by hand by
constructing manifold driving situations within the simula-
tion environment. In the following, two exemplary driving
situations are shown to illustrate the approach.8 In the first
example shown in Fig. 4(a,b,c), the ego vehicle approaches
another vehicle (blue) driving in the same direction on the
same lane, decelerates rapidly (t ≈ 4 s) to successfully
prevent a collision and subsequently performs a lane change
(t ≈ 6 s) to the left to overtake. On the adjacent lane,
however, an oncoming vehicle (red) approaches with which
the ego vehicle finally collides at t = 7.6 s. The maneuver
estimation (Fig. 4d) clearly shows the individual driving
maneuvers (in successive order: follow vehicle, target brake,
lane change to the left, follow road) for the ego vehicle –
the other two vehicles just follow the road with constant
velocity. Fig. 4e illustrates the scene from a bird’s eye view
and visualizes predicted trajectory samples of our approach
with corresponding combined collision probabilities over the
respective future 3 s time horizons in contrast to standard,
deterministic CTRA (Fig. 4f) and CV (Fig. 4g) models.9

The ego vehicle and the two other vehicles’ centered rear
points are shown with blue and green circles, respectively. It
becomes clearly visible that the deterministic predictions that
do not consider environment knowledge cannot reasonably
perform longer-term predictions. The derived criticality mea-
sures (TTC (CV/CTRA)) and TTCCP are shown in Fig. 4h.
The TTC calculated via a CV model generates false positive
criticality values at t ≈ 4 s as it does not consider the
deceleration of the ego vehicle before performing the lane
change, the TTC with a CTRA model as well as our approach
do not show this undesirable result. Our approach, at this
stage, mainly predicts via target brake and – to a lesser
extend – via a follow vehicle model. Additionally, we see
that the true collision can be detected first by our method
due to mainly predicting via a lane change model during the
lane change. Note that the first two TTC (CTRA) values stem

8We use 5000 trajectory samples per vehicle, a CCP of 20%, a 3 s
prediction horizon with prediction sampling time T = 0.1 s. The chosen
time-discretization allows the detection of collisions between two standard-
sized vehicles of length 4.7m up to a relative velocity of 340 km

h
or

collisions with a point object up to a velocity of 170 km
h

. The criticality
assessment itself is performed every 300ms.

9Only mean predicted trajectories over the lane change event are shown
for clarity. Combined collision probabilities are only visualized, if exceeding
5%. Deterministic CTRA and CV predictions only allow binary collision
decisions (yes: 100%; no: not shown) as they do not consider uncertainty.



(a) t = 4 s (b) t = 6 s (c) t = 7.6 s
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Fig. 4. Lane change scenario and collision with oncoming vehicle.
Traffic scene (a,b,c); maneuver probabilities (d); bird’s eye view (e,f,g) with
corresponding combined collision probability for 3 s prediction horizon (e);
TTC/TTCCP evolution (h).

from another false collision detection of the ego vehicle with
the blue vehicle on the same lane as the predicted trajectories
with high turn rate cross the original road again – a clearly
non-reasonable prediction. With this in mind, our prediction
approach is able to generate the criticality measure 0.9 s
earlier than the CTRA model and 0.6 s earlier than a CV
model. This allows timelier driver warnings – 1.6 s before the
immanent collision in this scenario. Note that the true TTC
progression as an optimal result is impossible to match for
any prediction method here as, for example, 3 s in advance
(at t = 4.6 s), absolutely no evidence is available that would
imply an impending lane change. Our approach, however,
clearly converges to the true collision time t = 7.6 s, the
closer we reach this point in time.10

The second scenario is visualized in Fig. 5(a,b,c). The ego
vehicle approaches an intersection while another crossing
vehicle (red) approaches from the left. The ego vehicle turns
to the left and finally collides with constant velocity with a
standing obstacle. We first notice in Fig. 5g that the TTC for
both the CTRA and CV model do not give any clue about
the dangerous situation, in which both vehicles approach
the intersection and can therefore not be used to warn the
driver or trigger interventions. This is because the vehicles
do not exactly, but only almost collide. The TTCCP value, in
opposition, clearly shows the danger several seconds (3 s) in
advance by predicting both vehicles (mainly) according to a
follow road model in which the future acceleration realiza-
tions are considered uncertain. Consequently, a noticeable,
non-zero combined collision probability exists as can also
be seen in the bird’s eye view in Fig. 5e – reflecting the
criticality.11 As soon as it becomes evident that probably
no collision occurs, the TTCCP vanishes (rises to ∞) at
t = 9.6 s. The ego vehicle then performs the turn to the left
at t ≈ 10 s, which is correctly identified via the Bayesian
network, before it again follows the road, see Fig. 5d. The
peak within the trash maneuver class after the turning stems
from the vehicle’s motion further to the right than necessary
to follow the road, so that this could also mean that the
driver accidentally leaves the road. After the turning, the
ego vehicle collides with the standing obstacle with constant
velocity at t = 17.5 s. In this unambiguous case, the TTCCP
coincides with the TTC.

V. CONCLUSION

A novel method for long-term trajectory prediction and
criticality assessment has been presented that combines a
Bayesian maneuver detection with maneuver-specific, uncer-
tain trajectory predictions to calculate the criticality measure

10The deviations between TTCCP and true TTC before the collision event
stem from a difference between the lane change prediction model and the
true, executed lane change trajectory.

11Eventual alarms triggered by the low TTCCP values at t ≈ 9 s should
not be considered false alarms as all available knowledge at this point in time
implies a critical situation that is only resolved when the situation evolves
further. Fig. 5f additionally shows the combined collision probability as a
function of the prediction length TP · T (in seconds) at two specific times
(t = 8.4 s; t = 15.3 s) to explain how the corresponding TTCCP values
emerge.



(a) t = 7 s (b) t = 10 s (c) t = 17.5 s
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Fig. 5. Turning scenario (a) with near-collision with cross-traffic (b) and
subsequent collision with stationary vehicle (c). Maneuver probabilities (d);
bird’s eye view with corresponding combined collision probability for 3 s
prediction horizon (e); combined collision probabilities over prediction
horizon length (f); TTC/TTCCP evolution (g).

TTCCP. The approach allows the suppression of false warn-
ings, the generation of timelier true warnings in comparison
to TTC as well as the generation of warnings in critical
almost-collision situations, in which the TTC does not even
exist. Although the approach contains novelties in the areas
of maneuver detection, trajectory prediction and criticality
assessment, the main contribution might lie in the throughout
design of the individual components with the aim of long-
term criticality assessment in mind.
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