Matthias RüdtHES-SO Valais-Wallis | HES-SO
Matthias Rüdt
Doctor of Engineering
About
17
Publications
4,970
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
494
Citations
Publications
Publications (17)
Chemometric modeling for spectral data is considered a key technology in biopharmaceutical processing to realize real-time process control and release testing. Machine learning (ML) models have been shown to increase the accuracy of various spectral regression and classification tasks, remove challenging preprocessing steps for spectral data, and p...
Monitoring the protein concentration and buffer composition during the Ultrafiltration/Diafiltration (UF/DF) step enables the further automation of biopharmaceutical production and supports Real-time Release Testing (RTRT). Previously, in-line Ultraviolet (UV) and Infrared (IR) measurements have been used to successfully monitor the protein concent...
A promising application of Process Analytical Technology to the downstream process of monoclonal antibodies (mAbs) is the monitoring of the Protein A load phase as its control promises economic benefits. Different spectroscopic techniques have been evaluated in literature with regard to the ability to quantify the mAb concentration in the column ef...
Real‐time monitoring and control of protein A capture steps by process analytical technologies (PATs) promises significant economic benefits due to the improved usage of the column's binding capacity, by eliminating time‐consuming off‐line analytics and costly resin lifetime studies, and enabling continuous production. The PAT method proposed in th...
Monitoring preparative protein chromatographic steps by in-line spectroscopic tools or fraction analytics results in medium or large sized data matrices. Multivariate Curve Resolution (MCR) serve to compute or to estimate the concentration values of the pure components only from these data matrices. However, MCR methods often suffer from an inheren...
As competition in the biopharmaceutical market gets keener due to the market entry of biosimilars, process analytical technologies (PATs) play an important role for process automation and cost reduction. This article will give a general overview and address the recent innovations and applications of spectroscopic methods as PAT tools in the downstr...
Ultrafiltration/diafiltration (UF/DF) plays an important role in the manufacturing of biopharmaceuticals. Monitoring critical process parameters and quality attributes by process analytical technology (PAT) during those steps can facilitate process development and assure consistent quality in production processes. In this study, a lab-scale cross-f...
PEGylation of biological macromolecules is a well-established strategy to increase circulation half-life, decrease renal clearance and improve biocompatibility. PEGylation is a process in which polyethylene glycol (PEG) is covalently attached to a target molecule. The production of PEGylated biopharmaceuticals is usually executed by first producing...
Virus‐like particles (VLPs) have shown great potential as biopharmaceuticals in the market and in clinics. Nonenveloped, in vivo assembled VLPs are typically disassembled and reassembled in vitro to improve particle stability, homogeneity, and immunogenicity. At the industrial scale, cross‐flow filtration (CFF) is the method of choice for performin...
Current biopharmaceutical production heavily relies on chromatography for protein purification. Recently, research has intensified towards finding suitable solutions to monitoring the chromatographic steps by multivariate spectroscopic sensors. Here, hard-constraint multivariate curve resolution (MCR) was investigated as a calibration-free method f...
The conjugation reaction of monoclonal antibodies (mAbs) with small-molecule drugs is a central step during production of antibody-drug conjugates (ADCs). The ability to monitor this step in real time can be advantageous for process understanding and control. Here, we propose a method based on UV/Vis spectroscopy in conjunction with partial least s...
Fourier-transform infrared spectroscopy (FTIR) is a well-established spectroscopic method in the analysis of small molecules and protein secondary structure. However, FTIR is not commonly applied for in-line monitoring of protein chromatography. Here, the potential of in-line FTIR as a process analytical technology (PAT) in downstream processing wa...
In preparative protein chromatography, broad dynamic ranges of protein concentrations as well as co-elution of product and impurities are common. Despite being the standard in biopharmaceutical production, monitoring of preparative chromatography is generally limited to surrogate signals, e.g. UV absorbance at 280 nm. To address this problem, varia...
Process Analytical Technologies (PAT) for the manufacturing of biologics have drawn increased interest in the last decade. Besides being encouraged by the Federal Drug Administration's (FDA's) PAT initiative, PAT promises to improve process understanding, reduce overall production costs and help to implement continuous manufacturing. This article f...
The load phase in preparative Protein A capture steps is commonly not controlled in real-time. The load volume is generally based on an offline quantification of the monoclonal antibody (mAb) prior to loading and on a conservative column capacity determined by resin-life time studies. While this results in a reduced productivity in batch mode, the...
Application of model-based design is appealing to support the development of protein chromatography in the biopharmaceutical industry. However, the required efforts for parameter estimation are frequently perceived as time-consuming and expensive. In order to speed-up this work, a new parameter estimation approach for modelling ion-exchange chromat...