Matthias Forkel

Matthias Forkel
Technische Universität Dresden | TUD

Junior Professor in Environmental Remote Sensing

About

75
Publications
47,433
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,754
Citations
Citations since 2017
57 Research Items
4412 Citations
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800
20172018201920202021202220230200400600800
Introduction
My main research interest is the use of remote sensing for a better understanding and modelling of terrestrial ecosystems in the Earth system. Specifically, I'm interested in 1) how climate variability and soil moisture affect vegetation phenology, productivity and dynamics; 2) how climate, vegetation, and humans affect fire spread and fire emissions; and 3) the role of vegetation dynamics in the global carbon cycle.
Additional affiliations
January 2016 - August 2019
TU Wien
Position
  • University Assistant
January 2015 - December 2015
Max Planck Institute for Biogeochemistry Jena
Position
  • PostDoc Position
January 2011 - December 2014
Max Planck Institute for Biogeochemistry Jena
Position
  • PhD Student
Education
October 2008 - December 2010
Friedrich Schiller University Jena
Field of study
  • Geoinformatics
October 2005 - September 2008
Friedrich Schiller University Jena
Field of study
  • Geography

Publications

Publications (75)
Article
Full-text available
Recent climate changes have increased fire-prone weather conditions in many regions and have likely affected fire occurrence, which might impact ecosystem functioning, biogeochemical cycles, and society. Prediction of how fire impacts may change in the future is difficult because of the complexity of the controls on fire occurrence and burned area....
Article
Full-text available
The apparent decline in the global incidence of fire between 1996 and 2015, as measured by satelliteobservations of burned area, has been related to socioeconomic and land use changes. However, recent decades have also seen changes in climate and vegetation that influence fire and fire-enabled vegetation models do not reproduce the apparent decline...
Article
Full-text available
The response of land ecosystems to future climate change is among the largest unknowns in the global climate-carbon cycle feedback. This uncertainty originates from how dynamic global vegetation models (DGVMs) simulate climate impacts on changes in vegetation distribution, productivity, biomass allocation, and carbon turnover. The present-day avail...
Preprint
Full-text available
Vegetation attenuates the microwave emission from the land surface. The strength of this attenuation is quantified in models in terms of the parameter Vegetation Optical Depth (VOD), and is influenced by the vegetation mass, structure, water content, and observation wavelength. Earth observation satellites operating in the microwave frequencies are...
Article
Full-text available
The moisture content of vegetation canopies controls various ecosystem processes such as plant productivity, transpiration, mortality, and flammability. Leaf moisture content (here defined as the ratio of leaf water mass to leaf dry biomass, or live-fuel moisture content, LFMC) is a vegetation property that is frequently used to estimate flammabili...
Article
Full-text available
While numerous studies report shifts in vegetation phenology, in this regard eddy covariance (EC) data, despite its continuous high-frequency observations, still requires further exploration. Furthermore, there is no general consensus on optimal methodologies for data smoothing and extracting phenological transition dates (PTDs). Here, we revisit e...
Article
Full-text available
The response of vegetation physiology to drought at large spatial scales is poorly understood due to a lack of direct observations. Here, we study vegetation drought responses related to photosynthesis, evaporation, and vegetation water content using remotely sensed data, and we isolate physiological responses using a machine learning technique. We...
Preprint
Full-text available
Numerous studies report shifts in vegetation phenology, however, in this regard eddy covariance (EC) data is still not fully exploited despite their continuous high-frequency observations. Moreover, there is no general consensus on optimal methodologies for data smoothing and extracting phenological transition dates (PTDs). Here, we revisit existin...
Article
Full-text available
Masting is a well-known phenomenon in forest science in which trees recurrently produce exceptional high seed amounts throughout their lifespan. Occurring simultaneously across wide regions, masting may impact carbon sequestration and carbon cycling of forest ecosystems. To identify masting-induced changes in tree canopies, remote sensing methods m...
Article
Full-text available
Fires are a pervasive feature of the terrestrial biosphere and contribute large carbon emissions within the earth system. Humans are responsible for the majority of fire ignitions. Physical and empirical models are used to estimate the future effects of fires on vegetation dynamics and the Earth’s system. However, there is no consensus on how human...
Article
Full-text available
Terrestrial water storage (TWS) is an integrative hydrological state that is key for our understanding of the global water cycle. The TWS observation from the GRACE missions has, therefore, been instrumental in the calibration and validation of hydrological models and understanding the variations in the hydrological storage. The models, however, st...
Article
Full-text available
Vegetation attenuates the microwave emission from the land surface. The strength of this attenuation is quantified in models in terms of the parameter vegetation optical depth (VOD) and is influenced by the vegetation mass, structure, water content, and observation wavelength. Earth observation satellite sensors operating in the microwave frequenci...
Article
Full-text available
The Araucaria-Nothofagus forests are a unique ecosystem in temperate rainforests of Chile and Argentina. They include red-listed species and have a high cultural importance for the ancestral population and thus require continuous monitoring to support conservation. Monitoring of phenology by satellite observations is a key tool to quantify the impa...
Article
Full-text available
Global vegetation and associated ecosystem services critically depend on soil moisture availability which has decreased in many regions during the last three decades. While spatial patterns of vegetation sensitivity to global soil water have been recently investigated, long-term changes in vegetation sensitivity to soil water availability are still...
Article
Full-text available
Recent wildfire outbreaks around the world have prompted concern that climate change is increasing fire incidence, threatening human livelihood and biodiversity, and perpetuating climate change. Here, we review current understanding of the impacts of climate change on fire weather (weather conditions conducive to the ignition and spread of wildfire...
Poster
Full-text available
Wildfires can either mediate or endanger forest ecosystem services and ecological processes. If left uncontrolled, wildfires can cause severe damage and negative cascading effects. For example, atmospheric pollution, health issues, soil erosion, landslides, biotic damages, and ecosystem degradation. The undergoing climate changes across Europe and...
Article
Full-text available
Long-term global monitoring of terrestrial gross primary production (GPP) is crucial for assessing ecosystem responses to global climate change. In recent decades, great advances have been made in estimating GPP and many global GPP datasets have been published. These datasets are based on observations from optical remote sensing, are upscaled from...
Chapter
O período entre 2018 e 2022 mostrou-nos que o problema dos incêndios à escala global não está a diminuir, antes pelo contrário. Parece que as consequências das alterações climáticas já estão a afectar a ocorrência de incêndios florestais em várias partes do Mundo, de uma forma que só esperaríamos que acontecesse vários anos mais tarde. Em muitos pa...
Article
Full-text available
Recent extreme wildfire seasons in several regions have been associated with exceptionally hot, dry conditions, made more probable by climate change. Much research has focused on extreme fire weather and its drivers, but natural wildfire regimes – and their interactions with human activities – are far from being comprehensively understood. There is...
Article
Changes in soil moisture strongly affect vegetation growth, which may in turn feed back on soil moisture by directly affecting evapotranspiration and indirectly regulating precipitation. Previous studies often focused on the unidirectional effects of soil moisture on temporal vegetation dynamics, yet bidirectional dependencies have rarely been stud...
Article
Full-text available
The leaf economics spectrum1,2 and the global spectrum of plant forms and functions³ revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species². Ecosystem functions depend on environmental conditions and the traits of species that comprise...
Article
Full-text available
The terrestrial biosphere is exposed to land-use and climate change, which not only affects vegetation dynamics but also changes land–atmosphere feedbacks. Specifically, changes in land cover affect biophysical feedbacks of water and energy, thereby contributing to climate change. In this study, we couple the well-established and comprehensively va...
Article
Full-text available
The seasonal and longer-term dynamics of fuel accumulation affect fire seasonality and the occurrence of extreme wildfires. Failure to account for their influence may help to explain why state-of-the-art fire models do not simulate the length and timing of the fire season or interannual variability in burnt area well. We investigated the impact of...
Preprint
Full-text available
Long-term global monitoring of terrestrial Gross Primary Production (GPP) is crucial for assessing ecosystem response to global climate change. In recent years and decades, great advances in estimating GPP on a global level have been made and many global GPP datasets have been published. These global data records are either based on observations fr...
Article
Full-text available
The productivity of terrestrial vegetation is determined by multiple land surface and atmospheric drivers. Water availability is critical for vegetation productivity, but the role of vertical variability of soil moisture (SM) is largely unknown. Here, we analyze dominant controls of global vegetation productivity represented by sun-induced fluoresc...
Article
Full-text available
p>Vegetation optical depth (VOD) from microwave satellite observations has received much attention in global vegetation studies in recent years due to its relationship to vegetation water content and biomass. We recently have shown that VOD is related to plant productivity, i.e., gross primary production (GPP). Based on this relationship between VO...
Article
Full-text available
Biomass burning is one of the most critical factors impacting vegetation and atmospheric trends, with important societal implications, particularly when extreme weather conditions occur. Trends and factors of burned area (BA) have been analysed at regional and global scales, but little effort has been dedicated to study the interannual variability....
Preprint
Full-text available
The terrestrial biosphere is exposed to land-use and climate change, which not only affects vegetation dynamics, but also changes land-atmosphere feedbacks. Specifically, changes in land-cover affect biophysical feedbacks of water and energy, therefore contributing to climate change. In this study, we couple the well established and comprehensively...
Article
Full-text available
Scatterometer observations over land are sensitive to the water content in soil and vegetation, but have been rarely used to study seasonal changes in the plant water status and seasonal development of deciduous trees. Here we use Advanced Scatterometer (ASCAT) observations to investigate the sensitivity of C-band backscatter to spring phenology of...
Article
Full-text available
The Pannonian Basin in southeastern Europe is heavily used for rain-fed agriculture. The region experienced several droughts in the last years, causing major yield losses. Ongoing climate change, characterised by increasing temperatures and potential evapotranspiration, and by changes in precipitation distribution will likely increase the frequency...
Preprint
Full-text available
Vegetation optical depth (VOD) from microwave satellite observations has received much attention in global vegetation studies in recent years due to its relationship to vegetation water content and biomass. We recently have shown that VOD is related to plant productivity, i.e. gross primary production (GPP). Based on this relationship between VOD a...
Preprint
Full-text available
The seasonal and longer-term dynamics of fuel accumulation affect fire seasonality and the occurrence of extreme wildfires. Failure to account for their influence may help to explain why state-of-the-art fire models do not simulate the length and timing of the fire season or interannual variability in burnt area well. We investigated the impact of...
Article
Full-text available
In this study, we use simulations from seven global vegetation models to provide the first multi‐model estimate of fire impacts on global tree cover and the carbon cycle under current climate and anthropogenic land use conditions, averaged for the years 2001‐2012. Fire reduces the tree covered area and vegetation carbon storage by 10%. Regionally t...
Article
Full-text available
Since the late 1970s, space-borne microwave radiometers have been providing measurements of radiation emitted by the Earth’s surface. From these measurements it is possible to derive vegetation optical depth (VOD), a model-based indicator related to the density, biomass, and water content of vegetation. Because of its high temporal resolution and l...
Article
Full-text available
Vegetation fires influence global vegetation distribution, ecosystem functioning, and global carbon cycling. Specifically in South America, changes in fire occurrence together with land-use change accelerate ecosystem fragmentation and increase the vulnerability of tropical forests and savannas to climate change. Dynamic global vegetation models (D...
Article
Full-text available
Agricultural and hydrological applications could greatly benefit from soil moisture (SM) information at sub-field resolution and (sub-) daily revisit time. However, current operational satellite missions provide soil moisture information at either lower spatial or temporal resolution. Here, we downscale coarse resolution (25-36 km) satellite SM pro...
Preprint
Full-text available
Vegetation fires influence global vegetation distribution, ecosystem functioning, and global carbon cycling. Specifically in South America, changes in fire occurrence together with land use change accelerate ecosystem fragmentation and increase the vulnerability of tropical forests and savannas to climate change. Dynamic Global Vegetation Models (D...
Article
Global estimation of Gross Primary Production (GPP) – the uptake of atmospheric carbon dioxide by plants through photosynthesis - is commonly based on optical satellite remote sensing data. This presents a source-driven approach since it uses the amount of absorbed light, the main driver of photosynthesis, as a proxy for GPP. Vegetation Optical Dep...
Article
Full-text available
Since the late 1970s, spaceborne microwave sensors have been providing measurements of radiation emitted by the Earth's surface. From these measurements it is possible to derive vegetation optical depth (VOD), a model-based indicator related to vegetation density and its relative water content. Because of its high temporal resolution and long avail...
Article
Secondary metabolites play important roles in plant responses to environmental stress but may also represent a large carbon (C) cost, resulting in trade-offs with other C sinks like growth and storage. However, it remains uncertain how such trade-offs may vary with changes in resource availability including water and CO 2 availability. We conducted...
Article
Full-text available
Recent climate changes increases fire-prone weather conditions and likely affects fire occurrence, which might impact ecosystem functioning, biogeochemical cycles, and society. Prediction of how fire impacts may change in the future is difficult because of the complexity of the controls on fire occurrence and burned area. Here we aim to assess how...
Article
Full-text available
Climate change is shifting the phenological cycles of plants1, thereby altering the functioning of ecosystems, which in turn induces feedbacks to the climate system2. In northern (north of 30° N) ecosystems, warmer springs lead generally to an earlier onset of the growing season3,4 and increased ecosystem productivity early in the season5. In situ6...
Article
Full-text available
The dynamic global vegetation model LPJmL4 is a process-based model that simulates climate and land use change impacts on the terrestrial biosphere, agricultural production, and the water and carbon cycle. Different versions of the model have been developed and applied to evaluate the role of natural and managed ecosystems in the Earth system and t...
Article
Full-text available
This paper provides a comprehensive description of the newest version of the Dynamic Global Vegetation Model with managed Land, LPJmL4. This model simulates – internally consistently – the growth and productivity of both natural and agricultural vegetation as coherently linked through their water, carbon, and energy fluxes. These features render LP...
Article
Full-text available
At the global scale, the uptake of atmospheric carbon dioxide by terrestrial ecosystems through photosynthesis is commonly estimated through vegetation indices or biophysical properties derived from optical remote sensing data. Microwave observations of vegetated areas are sensitive to different components of the vegetation layer than observations...
Article
Full-text available
Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented ve...
Article
Full-text available
This paper provides a comprehensive description of the newest version of the Dynamic Global Vegetation Model with managed Land, LPJmL4. This model simulates – internally consistently – the growth and productivity of both natural and agricultural vegetation in direct coupling with water and carbon fluxes. These features render LPJmL4 suitable for as...
Article
Full-text available
The dynamic global vegetation model LPJmL4 is a process-based model that simulates climate and land-use change impacts on the terrestrial biosphere, the water and carbon cycle and on agricultural production. Different versions of the model have been developed and applied to evaluate the role of natural and managed ecosystems in the Earth system and...
Article
Full-text available
Climate extremes have the potential to cause extreme responses of terrestrial ecosystem functioning. However, it is neither straightforward to quantify and predict extreme ecosystem responses, nor to attribute these responses to specific climate drivers. Here, we construct a factorial experiment based on a large ensemble of process-oriented ecosyst...
Article
Ecosystem water-use efficiency (WUE) is an important metric linking the global land carbon and water cycles. Eddy covariance-based estimates of WUE in temperate/boreal forests have recently been found to show a strong and unexpected increase over the 1992–2010 period, which has been attributed to the effects of rising atmospheric CO2 concentrations...
Article
Full-text available
Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. In particular, extreme fire conditions can cause devastating impacts on ecosystems and human society and dominate the year-to-year variability in global fire emissions. However, the climatic, environmental and socioeconomic factor...