Matthias M. Boer

Matthias M. Boer
  • PhD (Utrecht)
  • Professor (Associate) at Western Sydney University

About

148
Publications
48,458
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
7,319
Citations
Current institution
Western Sydney University
Current position
  • Professor (Associate)
Additional affiliations
January 2017 - January 2017
Western Sydney University
Position
  • Professor (Associate)
May 2011 - present
Western Sydney University
Position
  • Professor (Associate)
August 1993 - July 1999
Spanish National Research Council
Position
  • Researcher
Education
May 1995 - May 1999
Utrecht University
Field of study
  • Physical Geography

Publications

Publications (148)
Article
Full-text available
With large wildfires becoming more frequent1,2, we must rapidly learn how megafires impact biodiversity to prioritize mitigation and improve policy. A key challenge is to discover how interactions among fire-regime components, drought and land tenure shape wildfire impacts. The globally unprecedented3,4 2019–2020 Australian megafires burnt more tha...
Preprint
Full-text available
The European Union has recently passed the Nature Restoration Law (NRL) which, among others, seeks to increase the cover of forest reserves protected for biodiversity and, globally, the Kunming-Montreal Global Biodiversity Framework similarly seeks to expand protected areas. Here we test whether a trade-off exists between protected areas expansion...
Article
Full-text available
Plain Language Summary Lightning strikes occurring with minimal rainfall, known as dry lightning strikes, often ignite wildfires in dry vegetation, especially in remote areas. These fires can remain undetected for hours to days and quickly grow out of control under favorable conditions, causing extensive damage and burning large areas. Our study in...
Article
The importance of phosphorus (P) in regulating ecosystem responses to climate change has fostered P-cycle implementation in land surface models, but their CO 2 effects predictions have not been evaluated against measurements. Here, we perform a data-driven model evaluation where simulations of eight widely used P-enabled models were confronted with...
Article
Live fuel moisture content (LFMC) is a crucial variable affecting fire ignition and spread. Satellite remote sensing has been effective in estimating LFMC over large spatial scales, but continuous sub-daily (e.g., every 10 mins to hourly during daylight) LFMC monitoring from space is yet to be accomplished. Using the geostationary satellite Himawar...
Research Proposal
The importance of phosphorus (P) in regulating ecosystem responses to climate change has fostered P-cycle implementation in land surface models, but their CO 2 effects predictions have not been evaluated against measurements. Here, we perform a data-driven model evaluation where simulations of eight widely used P-enabled models were confronted with...
Article
Full-text available
Understanding the biophysical limitations on forest carbon across diverse ecological regions is crucial for accurately assessing and managing forest carbon stocks. This study investigates the role of climate and disturbance on the spatial variation of two key forest carbon pools: aboveground carbon (AGC) and soil organic carbon (SOC). Using plot‐le...
Article
Full-text available
Background The moisture content of litter and woody debris is a key determinant of fire potential and fire behaviour. Obtaining reliable estimates of the moisture content of dead fine fuels (i.e. 1-h and 10-h fuels) is therefore a critical requirement for effective fire management. Aims We evaluated and compared the performance of five simple mode...
Article
Full-text available
The capacity for terrestrial ecosystems to sequester additional carbon (C) with rising CO2 concentrations depends on soil nutrient availability1,2. Previous evidence suggested that mature forests growing on phosphorus (P)-deprived soils had limited capacity to sequester extra biomass under elevated CO2 (refs. 3–6), but uncertainty about ecosystem P...
Article
Full-text available
With more frequent and intense fires expected under future climate conditions, it is important to understand the mechanisms that control flammability in Australian forests. We followed a systematic review approach to determine which physical traits make eucalypts leaves more or less flammable. Specifically, we reviewed 20 studies that covered 35 eu...
Article
Full-text available
Fire regimes have shaped extant vegetation communities, and subsequently fuel arrays, in fire-prone landscapes. Understanding how resilient fuel arrays are to fire regime attributes will be key for future fire management actions, given global fire regime shifts. We use a network of 63-field sites across the Sydney Basin Bioregion (Australia) to qua...
Article
Aim Increased tree mortality linked to droughts and fires is occurring across temperate regions globally. Vegetation recovery has been widely reported; however, less is known about how disturbance may alter forests structurally and functionally across environmental gradients. We examined whether dry forests growing on low‐fertility soils were more...
Article
Full-text available
Globe-LFMC 2.0, an updated version of Globe-LFMC, is a comprehensive dataset of over 280,000 Live Fuel Moisture Content (LFMC) measurements. These measurements were gathered through field campaigns conducted in 15 countries spanning 47 years. In contrast to its prior version, Globe-LFMC 2.0 incorporates over 120,000 additional data entries, introdu...
Article
Full-text available
Background Simulations of fire spread are vital for operational fire management and strategic risk planning. Aims To quantify burn heterogeneity effects on post-fire fuel loads, and test whether modifying fuel load estimates based on the fire severity and patchiness of the last fire improves the accuracy of simulations of subsequent fires. Method...
Article
Changes to the spatiotemporal patterns of wildfire are having profound implications for ecosystems and society globally, but we have limited understanding of the extent to which fire regimes will reorganize in a warming world. While predicting regime shifts remains challenging because of complex climate–vegetation–fire feedbacks, understanding the...
Article
Full-text available
Background Current assessments of the effects of climate change on future wildfire risk are based on either empirical approaches or fire weather indices. No study has yet used process-based models over national scales to understand how and where will increases in climate aridity affect the likelihood of fire activity through changes in the moisture...
Article
Full-text available
Bushfire fuel hazard is determined by the type, amount, density and three‐dimensional distribution of plant biomass and litter. The fuel hazard represents a biological control on fire danger and may change in the future with plant growth patterns. Rising atmospheric CO 2 concentration (C a ) stimulates plant productivity (‘fertilisation effect’) bu...
Article
Full-text available
Given the contribution of deforestation and forest degradation to the global carbon cycle, forest resources are critical to mitigating the global climate change effects. Improved forest monitoring across different biomes is important to understand forest dynamics better and improve global projections of future atmospheric CO2 concentration. Better...
Article
Full-text available
Comprehensive forest carbon accounting requires reliable estimation of soil organic carbon (SOC) stocks. Despite being an important carbon pool, limited information is available on SOC stocks in global forests, particularly for forests in mountainous regions, such as the Central Himalayas. The availability of consistently measured new field data en...
Preprint
In the Central Himalayas, where environmental conditions vary greatly, understanding the biophysical limitations on forest carbon is crucial for accurately determining the region’s forest carbon stocks. This study investigates the role of climate and disturbance on the spatial variation of two key forest carbon pools: aboveground carbon (AGC) and s...
Preprint
Full-text available
Bushfire fuel hazard is determined by fuel hazard that represents the type, amount, density, and three-dimensional distribution of plant biomass and litter. The fuel hazard represents a biological control on fire danger and may change in future with plant growth patterns. Rising atmospheric CO2 concentration (Ca) tends to increase plant productivit...
Preprint
Full-text available
Comprehensive forest carbon accounting requires reliable estimation of soil organic carbon (SOC) stocks. Despite being an important carbon pool, limited information is available on SOC stocks in global forests, particularly for forests in mountainous regions, such as the Central Himalayas. To address this knowledge gap, we implemented a comprehensi...
Article
Full-text available
The live fuel moisture content (LFMC) is an important precondition for wildfire activity, yet it remains challenging to predict LFMC due to the dynamic interplay between atmospheric and hydrological conditions that determine the plant's access to, and loss of water. We monitored LFMC and a range of plant water‐use traits (predawn and midday leaf wa...
Article
Full-text available
In 2019, south-eastern Australia experienced its driest and hottest year on record, resulting in massive canopy dieback events in eucalypt dominated forests. A subsequent period of high precipitation in 2020 provided a rare opportunity to quantify the impacts of extreme drought and consequent recovery. We quantified canopy health and hydraulic impa...
Article
Full-text available
Levels of fire activity and severity that are unprecedented in the instrumental record have recently been observed in forested regions around the world. Using a large sample of daily fire events and hourly climate data, here we show that fire activity in all global forest biomes responds strongly and predictably to exceedance of thresholds in atmos...
Article
Full-text available
Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied. An understanding of their climate sensitivities is needed to estimate climate c...
Article
Full-text available
Live Fuel Moisture Content (LFMC) is one of the main factors affecting forest ignitability as it determines the availability of existing live fuel to burn. Currently, LFMC is monitored through spectral vegetation indices or inferred from meteorological drought indices. While useful, neither approach provides mechanistic insights into species-specif...
Article
Full-text available
There is an imperative for fire agencies to quantify the potential for prescribed burning to mitigate risk to life, property and environmental values while facing changing climates. The 2019–2020 Black Summer fires in eastern Australia raised questions about the effectiveness of prescribed burning in mitigating risk under unprecedented fire conditi...
Article
Full-text available
Elevated tree mortality and reduced recruitment of new trees linked to drought and fires has been reported across a range of forests over the last few decades. Forests that resprout new foliage epicormically from buds beneath the bark are considered highly resilient to disturbance, but are potentially at risk of elevated mortality, demographic shif...
Article
Full-text available
In rapidly urbanizing areas, natural vegetation becomes fragmented, making conservation planning challenging, particularly as climate change accelerates fire risk. We studied urban forest fragments in two threatened eucalypt-dominated (scribbly gum woodland, SGW, and ironbark forest, IF) communities across ~2000 ha near Sydney, Australia, to evalua...
Article
Large forest fires generally occur when the moisture content of fuels is low. For live fuels, our understanding of the physiological basis of variation in moisture content has recently advanced. However, process-based models of live fuel moisture content (LFMC) remain elusive. Here, we aim to further our understanding of the role of physiological m...
Article
Increases in tree mortality linked to drought and fires have been reported across a range of forests globally over the last few decades. Forests that resprout epicormically/aerially should be the most resistant and resilient to changes in fire regime, yet they may be at risk of increased mortality, demographic shifts and changes to species composit...
Article
Elevated atmospheric [CO 2 ] (‘eCO 2 ’) may alter species composition within vegetation types by favouring the growth of some species over others. However, other related changes in climate conditions, such as increased frequency and severity of drought, may reduce eCO 2 fertilisation effects on plant growth. For many species, it is not known if res...
Article
Accurate quantification of fine fuel loads (e.g. foliage and twigs) in forests is required for many fire behaviour models, and for assessing post-fire changes in carbon stocks and modelling smoke emissions. Fine fuels burn readily and are thus often targeted for fuel load assessments. Estimates of fine live fuel loads often rely on visual assessmen...
Preprint
Full-text available
Animals, such as termites, have largely been overlooked as global-scale drivers of biogeochemical cycles 1,2 , despite site-specific findings 3,4 . Deadwood turnover, an important component of the carbon cycle, is driven by multiple decay agents. Studies have focused on temperate systems 5,6 , where microbes dominate decay ⁷ . Microbial decay is se...
Article
Full-text available
The 2019/20 Black Summer bushfire disaster in southeast Australia was unprecedented: the extensive area of forest burnt, the radiative power of the fires, and the extraordinary number of fires that developed into extreme pyroconvective events were all unmatched in the historical record. Australia’s hottest and driest year on record, 2019, was chara...
Preprint
Full-text available
Elevated tree mortality and reduced recruitment of new trees linked to drought and fires has been reported across a range of forests over the last few decades. Forests that resprout new foliage epicormically from buds beneath the bark are considered highly resilient to disturbance, but are potentially at risk of elevated mortality, demographic shif...
Article
Fuel moisture limits the availability of fuel to wildfires in many forest areas worldwide, but the effects of climate change on moisture constraints remain largely unknown. Here we addressed how climate affects fuel moisture in pine stands from Catalonia, NE Spain, and the potential effects of increasing climate aridity on burned area in the Pyrene...
Article
Wildfires are becoming an increasing threat to many communities worldwide. There has been substantial progress towards understanding the proximal causes of increased fire activity in recent years at regional and national scales. However, subcontinental scale examinations of the commonalities and differences in the drivers of fire activity across di...
Article
Mistletoes are important co-contributors to tree mortality globally, particularly during droughts. In Australia, mistletoe distributions are expanding in temperate woodlands, while their hosts experienced unprecedented heat and drought stress in recent years. We investigated whether the excessive water use of mistletoes increased the probability of...
Article
Full-text available
Non‐forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change t...
Article
Full-text available
Mistletoes are emerging as important co-contributors to tree mortality across terrestrial ecosystems, particularly when infected trees are stressed by water limitations during drought. While the mechanistic effects of mistletoe infection on host physiology are reasonably well understood, quantifying the effects of mistletoe infection on stand produ...
Article
Full-text available
Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die‐back in eucalypt forests. The role of hydraulic failure and tree size on canopy die‐back in three eucalypt tree species during this drought was examined. We measured pre‐dawn and midday leaf water potential (Ψleaf), pe...
Article
Full-text available
The distribution of fire on Earth has been monitored from space for several decades, yet the geography of global fire regimes has proven difficult to reproduce from interactions of climate, vegetation, terrain, land use and other human activities by empirical and process-based fire models. Here, we propose a simple, yet robust, model for the global...
Conference Paper
Full-text available
Australia's rangeland communities, industries, and environment are under increasing pressures from anthropogenic activities and global changes more broadly. We conducted a horizon scan to identify and prioritise key challenges facing Australian rangelands and their communities, and outline possible avenues to address these challenges, with a partic...
Article
Full-text available
Australia’s rangeland communities, industries, and environment are under increasing pressures from anthropogenic activities and global changes more broadly. We conducted a horizon scan to identify and prioritise key challenges facing Australian rangelands and their communities, and outline possible avenues to address these challenges, with a partic...
Article
Predicting the impact of wildfires on ecosystem services and habitat values requires quantifying rates of post-fire tree mortality and topkill. For those species that resprout epicormically (i.e. from above-ground buds), rates of post-fire topkill (death of aboveground biomass) can vary considerably. Laboratory studies indicate that bark attributes...
Article
Full-text available
Globally, fire regimes are being altered by changing climatic conditions. New fire regimes have the potential to drive species extinctions and cause ecosystem state changes, with a range of consequences for ecosystem services. Despite the co-occurrence of forest fires with drought, current approaches to modelling flammability largely overlook the l...
Preprint
Full-text available
Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, yet are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely-sensed biomass products and are undersampled by in-situ monitoring. Current global change t...
Article
Full-text available
Fire management agencies undertake a range of fire management strategies in an attempt to reduce the risk posed by future wildfires. This can include fuel treatments (prescribed burning and mechanical removal), suppression and community engagement. However, no agency has an unlimited budget and numerically optimal solutions can rarely be implemente...
Article
Full-text available
Resprouting is an ancestral trait in angiosperms that confers resilience after perturbations. As climate change increases stress, resprouting vigor is declining in many forest regions, but the underlying mechanism is poorly understood. Resprouting in woody plants is thought to be primarily limited by the availability of non‐structural carbohydrate...
Article
In a response to our Letter on the causes and consequences of the 2019‐20 forest fires in eastern Australia (Nolan et al. 2020), Adams et al. (XXXX) argued that fuel loads were causal to the occurrence and size of the fires, along with antecedent dryness. They state that fuel levels were ‘extreme everywhere’, resulting from a lack of fuel reduction...
Article
Full-text available
Variations in global patterns of burning and fire regimes are relatively well measured, however, the degree of influence of the complex suite of biophysical and human drivers of fire remains controversial and incompletely understood. Such an understanding is required in order to support current fire management and to predict the future trajectory o...
Article
Full-text available
Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1–5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration⁶. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on bio...
Article
Full-text available
The 2019‐20 fire season in eastern Australia is attracting considerable national and international attention. At the time of writing c. 3.8 million ha of mainly temperate forest have burnt in the state of New South Wales (NSW; NSW Rural Fire Service, 29/12/2019; Fig. 1a). Major blazes are also occurring in other states, including over 0.5 million h...
Article
Full-text available
Fire agencies are moving towards planning systems based on risk assessment; however, knowledge of the most effective way to quantify changes in risk to key values by application of prescribed fire is generally lacking. We present a quantification and inter-regional comparison of how risk to management values responds to variations in prescribed bur...
Article
Spore size, colour and melanin content are hypothesised to be functional in relation to environmental stress. Here, we studied AM fungal spores in arid environments of Australia and in an experimental platform simulating altered rainfall. We used microscopy and image analysis to measure spore colour and size, and a quantitative colorimetric assay t...
Article
Full-text available
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Preprint
Full-text available
Abstract. The distribution of fire on Earth has been monitored from space for several decades, yet the geography of global fire regimes has proven difficult to reproduce from interactions of climate, vegetation, terrain and land use by empirical and process-based fire models. Here, we propose a simple, yet robust, model for global fire potential ba...
Article
Full-text available
Globe-LFMC is an extensive global database of live fuel moisture content (LFMC) measured from 1,383 sampling sites in 11 countries: Argentina, Australia, China, France, Italy, Senegal, Spain, South Africa, Tunisia, United Kingdom and the United States of America. The database contains 161,717 individual records based on in situ destructive samples...
Article
The critically endangered Cumberland Plain woodland within the greater Sydney metropolitan area hosts a dwindling refuge for melaleuca trees, an integral part of Australia's native vegetation. Despite their high carbon stocks, melaleucas have not explicitly been targeted for studies assessing their carbon sequestration potential, and especially lit...
Preprint
Full-text available
Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration. While evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass gr...
Article
Full-text available
Some of the remnants of the Cumberland Plain woodland, an endangered dry sclerophyllous forest type of New South Wales, Australia, host large populations of mistletoe. In this study, the extent of mistletoe infection was investigated based on a forest inventory. We found that the mistletoe infection rate was relatively high, with 69% of the Eucalyp...
Article
Full-text available
The ratio of leaf intercellular to ambient CO2 (χ) is modulated by stomatal conductance (gs). These quantities link carbon (C) assimilation with transpiration, and along with photosynthetic capacities (Vcmax and Jmax) are required to model terrestrial C uptake. We use optimization criteria based on the growth environment to generate predicted value...
Article
Full-text available
A trend of increasing woody plant density, or woody thickening, has been observed across grassland and woodland ecosystems globally. It has been proposed that increasing atmospheric [CO2] is a major driver of broad scale woody thickening, though few field-based experiments have tested this hypothesis. Our study utilises a Free Air CO2 Enrichment ex...
Article
Full-text available
Predicting the seasonal dynamics of ecosystem carbon fluxes is challenging in broadleaved evergreen forests because of their moderate climates and subtle changes in canopy phenology. We assessed the climatic and biotic drivers of the seasonality of net ecosystem–atmosphere CO2 exchange (NEE) of a eucalyptus-dominated forest near Sydney, Australia,...
Article
Full-text available
En los últimos 15 años, 3 millones de hectáreas de bosques se han convertido en matorrales o pastizales en los países mediterráneos de la Unión Europea, siendo el fuego y la sequía los principales motores de esa deforestación. Se analiza la deforestación inducida por los efectos conjuntos del fuego y la sequía en tres escalas jerárquicas: resistenc...
Article
Full-text available
1.Plant species show considerable leaf trait variability that should be accounted for in dynamic global vegetation models (DGVMs). In particular, differences in the acclimation of leaf traits during periods more and less favourable to growth have rarely been examined. 2.We conducted a field study of leaf trait variation at seven sites spanning a r...
Article
Full-text available
Over the past 15 years, 3 million hectares of forests have been converted into shrublands or grasslands in the Mediterranean countries of the European Union. Fire and drought are the main drivers underlying this deforestation. Here we present a conceptual framework for the process of fire-induced deforestation based on the interactive effects of fi...
Article
Full-text available
Over the past 15 years, 3 million hectares of forests have been converted into shrublands or grasslands in the Mediterranean countries of the European Union. Fire and drought are the main drivers underlying this deforestation. Here we present a conceptual framework for the process of fire-induced deforestation based on the interactive effects of fi...
Article
Rising atmospheric [CO2] and associated climate change are expected to modify primary productivity across a range of ecosystems globally. Increasing aridity is predicted to reduce grassland productivity, though rising [CO2] and associated increases in plant water use efficiency may partially offset the effect of drying on growth. Difficulties arise...
Article
Full-text available
Predicting the seasonal dynamics of ecosystem carbon fluxes is challenging in broadleaved evergreen forests because of their moderate climates and subtle changes in canopy phenology. We assessed the climatic and biotic drivers of the seasonality of net ecosystem-atmosphere CO2 exchange (NEE) of a eucalyptus-dominated forest near Sydney, Australia,...
Presentation
Mistletoe is a globally distributed group of parasitic plants that infiltrates the vascular tissue of its host trees to acquire water, carbon and nutrients, making it a leading agent of biotic disturbance. Many mistletoes occur in water-limited ecosystems, thus mistletoe infection in combination with increased climatic stress may exacerbate water s...
Article
Full-text available
Changing frequencies of extreme weather events and shifting fire seasons call for enhanced capability to forecast where and when forested landscapes switch from a non-flammable (i.e. wet fuel) state to the highly flammable (i.e. dry fuel) state required for catastrophic forest fires. Current forest fire danger indices used in Europe, North America...
Article
Full-text available
Most studies of climate change effects on fire regimes assume a gradual reorganization of pyrogeographic patterns and have not considered the potential for transformational changes in the climate-vegetation-fire relationships underlying continental-scale fire regimes. Here, we model current fire activity levels in Australia as a function of mean an...
Article
The occurrence of large, high-intensity wildfires requires plant biomass, or fuel, that is sufficiently dry to burn. This poses the question, what is "sufficiently dry"? Until recently, the ability to address this question has been constrained by the spatiotemporal scale of available methods to monitor the moisture contents of both dead and live fu...
Article
We present two comprehensive data sets that describe xylem vessel diameters and related sapwood traits for species of Eucalyptus from arid and semi-arid woodlands and forests in Australia. Between 2009 and 2014, sapwood of mature trees was sampled in south-western, south-eastern and eastern Australia. One additional species was sampled from tropica...
Article
Spatially explicit predictions of fuel moisture content are crucial for quantifying fire danger indices and as inputs to fire behaviour models. Remotely sensed predictions of fuel moisture have typically focused on live fuels; but regional estimates of dead fuel moisture have been less common. Here we develop and test the spatial application of a r...
Article
In this millennium, global drylands face a myriad of problems that present tough research, management, and policy challenges. Recent advances in dryland development, however, together with the integrative approaches of global change and sustainability science, suggest that concerns about land degradation, poverty, safeguarding biodiversity, and pro...
Article
Full-text available
Canopy leaf area, quantified by the leaf area index (L), is a crucial driver of forest productivity, water use, and energy balance. Because L responds to environmental drivers, it can represent an important feedback to climate change, but its responses to rising atmospheric [CO2 ] and water availability of forests have been poorly quantified. We st...
Article
AimPrescribed fire is a common land management for reducing risks from unplanned fires. However, the universality of such effectiveness remains uncertain due to biogeographical variation in fuel types, climatic influences and fire regimes. Here, we explore biogeographical patterns in the effectiveness of prescribed fire by calculating leverage (the...
Article
The moisture content of vegetation and litter (fuel moisture) is an important determinant of fire risk, and predictions of dead fine fuel moisture content (fuel with a diameter <25.4 mm) are particularly important. A variety of indices, as well as empirical and mechanistic models, have been proposed to predict fuel moisture, but these approaches ha...
Article
Full-text available
We aimed to characterize the size distribution of naturally occurring wildfires and to determine how fuel characteristics influence wildfire size in a vegetation mosaic of shrublands and woodlands in semi-arid southwest Australia. The shape of frequency-size distributions of fires can be used to elucidate shifts in the dominant drivers or constrain...
Article
The response of fire to climate change may vary across fuel types characteristic of differing vegetation types (i.e. litter versus grass). Models of fire under climatic change capture these differing potential responses to varying degrees. Across south-eastern Australia, an elevation in the severity of weather conditions conducive to fire has been...
Article
The role of the circadian clock in controlling the metabolism of entire trees has seldom been considered. We tested whether the clock influences nocturnal whole-tree water use. Whole-tree chambers allowed the control of environmental variables (temperature, relative humidity). Night-time stomatal conductance (gs ) and sap flow (Q) were monitored in...
Article
Aim Comparative analyses of fire regimes at large geographical scales can potentially identify ecological and climatic controls of fire. Here we describe A ustralia's broad fire regimes, and explore interrelationships and trade‐offs between fire regime components. We postulate that fire regime patterns will be governed by trade‐offs between moistur...

Network

Cited By