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Abstract

Mammalian pregnancy involves tremendous de novo maternal vascular construction to adequately support conceptus development.

In early mouse decidua basalis (DB), maternal uterine natural killer (uNK) cells oversee this process directing various aspects during the

formation of supportive vascular networks. The uNK cells recruited to early implantation site DB secrete numerous factors that act in the

construction of early decidual vessels (neoangiogenesis) as well as in the alteration of the structural components of newly developing and

existing vessels (pruning and remodeling). Although decidual and placental development sufficient to support live births occur in the

absence of normally functioning uNK cells, development and structure of implantation site are optimized through the presence of

normally activated uNK cells. Human NK cells are also recruited to early decidua. Gestational complications including recurrent

spontaneous abortion, fetal growth restriction, preeclampsia, and preterm labor are linked with the absence of human NK cell activation

via paternally inherited conceptus transplantation antigens. This review summarizes the roles that mouse uNK cells normally play in

decidual neoangiogenesis and spiral artery remodeling in mouse pregnancy and briefly discusses changes in early developmental

angiogenesis due to placental growth factor deficiency.
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Introduction

Continuous blood flow to the maternal–fetal interface is
vital for healthy pregnancies. Shortly after implantation,
decidual neoangiogenesis begins. In humans, capillary
growth around the syncytiotrophoblast is reported at
7th–11th day of pregnancy (Zygmunt et al. 2003). In
mice, primary decidualization and angiogenesis around
the embryonic crypt begin at gestation day 5 (GD5),
about 12 h after implantation (Tan et al. 1999, Cha et al.
2012, Croy et al. 2012). Growth of these vessels during
early endometrial decidualization is followed quickly by
vessel linkage, maturation, and pruning. These events
occur well in advance of maturation of the hemochorial
placenta with opening of the utero-placental circulation
occurring about week 12 in humans and about GD9.5–
10.5 in the mouse (Hustin & Schaaps 1987, Adamson
et al. 2002, Aasa et al. 2013).

Embedded within the process of normal human and
mouse placental development is the physiological
modification of the terminal branches from the uterine
artery, called spiral arteries (SA). SA remodeling is
deemed necessary for enlarging the nutrient-enriched
maternal blood supply to the placenta to support the
newly developed and rapidly growing fetus. It is also
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held to make these supplies available on a non-
interrupted basis because remodeling makes the arter-
ioles unreactive to vasoactive substances. Impaired
decidual vascular development during early angio-
genesis, or myometrial SA remodeling, has been linked
with pregnancy complications (recurrent spontaneous
abortion (RSA; Quenby et al. (2009)), preeclampsia
(PE; Lyall et al. (2013)), and fetal growth restriction (FGR;
Williams et al. (2009))). Although these are common
problems (RSA and PE affect w1% of women and
w3–6% of pregnancies respectively), treatment
approaches are limited (Faridi & Agrawal 2011, Ananth
et al. 2013). A thorough understanding of the mechan-
isms underlying these disorders would advance
treatment innovation. As such, understanding the
regulation of early, normal, decidual neoangiogenesis
and vascular remodeling is essential.

The leukocytes represent a large proportion of cells in
decidua basalis (DB), with uterine natural killer (uNK)
cells accounting for 70% of the early decidual
leukocytes (Bulmer et al. 1991, King & Loke 1991,
Erlebacher 2013). uNK cells (also called decidual or
dNK by many authors) were formerly called endometrial
granulocytes in humans and several other species.
DOI: 10.1530/REP-14-0271

Online version via www.reproduction-online.org

http://dx.doi.org/10.1530/REP-14-0271


R92 M T Rätsep and others
In mice, they were known as granulated metrial gland
or GMG cells. The considerable body of literature
developed under the older names should not be ignored.
uNK cells seem relatively analogous between mice and
humans, except for the timing of their recruitment to
the uterus. In each species, recruitment coincides with
induction of decidualization, a pre-implantation event
in humans but post-implantation in mice. Surface
phenotypic markers are also distinctive. In humans,
uNK cells are phenotypically CD56brightCD16K in
contrast to peripheral blood NK cells that are predomi-
nantly CD56dimCD16C. In mice, uNK cells can be
separated into two subsets using the lectin Dolichos
biflorus agglutinin (DBA). There is a unique decidual
DBAC subset that rapidly becomes the dominant
population (Chen et al. 2012) and a splenic-like DBAK

subset (Yadi et al. 2008). In studies using adoptive
transfer of normal mouse bone marrow to lymphocyte-
deficient mice followed by mating, only DBAC uNK
cells was shown to differentiate. This indicates that the
specialized, pregnancy-associated uNK cell subset
differentiates from extra-uterine progenitor cells. The
origin of DBAK uNK cells has not been defined (Zhang
et al. 2009, Chen et al. 2012, Felker et al. 2013). In both
humans and mice, the functions of uNK cells differ from
peripheral NK cells. Instead of predominant cytotoxic
actions against virus-infected or cancerous cells, the
uterine subsets show angiogenic and vessel remodeling
activities. This review summarizes recent literature on
uNK cell roles in decidual neoangiogenesis and SA
remodeling. It also briefly discusses DB in mice lacking
placental growth factor (PGF), a factor linking in humans
with a of PE. There is significant information on the
endocrine regulation of uNK cells (Muller et al. 1999,
Henderson et al. 2003, Oh & Croy 2008, Cui et al. 2012,
Li et al. 2013), which was not addressed in this review.
Role of NK cells in normal decidual neoangiogenesis

During early human and mouse pregnancies, decidual
capillaries and arterioles develop by angiogenesis.
Histological studies report that mouse uNK cells are
placed spatially and temporally within the region of active
microvascular development close to the organ-feeding
uterine artery (Wang et al. 2000, 2003, Li et al. 2008,
Degaki et al. 2012). Immunohistological studies revealed
that uNK cells express numerous angiogenic factors.
Human uNK cells express vascular endothelial growth
factor A (VEGFA), VEGFC, PGF, angiopoietin 1
(ANGPT1), ANGPT2, matrix metalloproteinase 2
(MMP2), transforming growth factor beta 1 (TGFb1),
and NKG5 (currently known as granulysin) (Langer et al.
1999, Li et al. 2001, 2008, Hanna et al. 2006, Lash et al.
2011a). Murine uNK cells express VEGFA, VEGFC, PGF,
delta-like ligand 1 (DLL1), TGFb1, MMPs, tumor necrosis
factor A, and inducible nitric oxide synthase (iNOS)
(Chen et al. 1993, Hunt 1994, Burnett & Hunt 2000,
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Wang et al. 2000, 2003, Tayade et al. 2007, Naruse et al.
2009, Chen et al. 2012, Degaki et al. 2012).

Among the angiokines produced by uNK cells, the
VEGF family is of central importance. It encodes seven
distinct proteins (VEGFA, B, C, D, E, F, and PGF) with
VEGFA as the main regulator of angiogenesis in
numerous tissues. VEGFA is highly expressed in the
uteroplacental unit, particularly during early pregnancy,
and is an essential mediator of decidual angiogenesis
(Kim et al. 2013). Indeed, VEGFA is the only family
member characterized as embryonic lethal when
genetically ablated in mice (Bellomo et al. 2000,
Carmeliet et al. 2001, Karkkainen et al. 2004, Haiko
et al. 2008). Furthermore, lethality ensued when only
one allele was deficient (i.e. heterozygote; Ferrara et al.
1996). Three VEGF receptors are characterized: VEGFR1
(FLT1), VEGFR2 (KDR), and VEGFR3 (FLT4). VEGFA
signals through VEGFR1 and VEGFR2. Independent
knockout of each of the three VEGF receptors is lethal
during mouse development (Shalaby et al. 1995, Fong
et al. 1999, Haiko et al. 2008). However, mice lacking
the tyrosine kinase domain but retaining the ligand-
binding portion of VEGFR1 are viable (Hiratsuka et al.
1998). The uNK cells contribute greatly to early
decidual expression of VEGFA, primarily from the
CD56brightCD16K subset in humans (Hanna et al.
2006) and the DBAC subset in mice (Chen et al.
2012). It should be noted, however, that others have
reported less production of VEGFA by uNK cells (Lash
et al. 2006, Wallace et al. 2014). Like angiogenic
processes in other tissues, the expression of VEGFA in
uNK cells is induced by hypoxia (Cerdeira et al. 2013).
Implantation site VEGFA is also contributed to by
trophoblasts, uterine stromal cells, and endothelial
cells; thus, the specific contributions of uNK cell-derived
VEGFA to implantation sites are estimated indirectly and
imprecisely from rodent NK cell depletion and recon-
stitution experiments.

PGF, another member of the VEGF family, is highly
expressed in both human and mouse pregnancies (Torry
et al. 1998, Tayade et al. 2007). Although PGF levels are
highest during mid-pregnancy, and its deficiency in
humans is linked with PE (Levine et al. 2004), genetic
deletion of Pgf in mice is viable and fertile (Carmeliet
et al. 2001). It was initially postulated that PGF functioned
as an angiogenic factor by displacing VEGFA from the
decoy receptor VEGFR1, allowing VEGFA to signal
through VEGFR2 (Park et al. 1994). However, accumu-
lating evidence suggests PGF participates in angiogenesis
by numerous additional mechanisms. PGF upregulates
the expression of angiogenic factors such as VEGFA, basic
fibroblast growth factor, platelet-derived growth factor
beta, and MMPs (Roy et al. 2005, Marcellini et al. 2006).
PGF also stimulates mesenchymal fibroblast proliferation
(Yonekura et al. 1999) and recruits myeloid progenitor
cells (Hattori et al. 2002, Rafii et al. 2003)
www.reproduction-online.org
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and macrophages (Selvaraj et al. 2003) to the sites of
neoangiogenesis.

Along with VEGF family signaling, NOTCH family
signaling has multiple roles in both normal vascular
development and pathological angiogenesis, including
regulation of VEGFR1 (Jakobsson et al. 2009, Outtz et al.
2010, Krueger et al. 2011). NOTCH is involved in the
differentiation of endothelial tip cells and vascular
smooth muscle cells and regulates cell-fate decisions
in arteriovenous differentiation (Gridley 2010). In
mammals, the NOTCH receptor family has four
members (NOTCH1–4) that bind five ligands encoded
by delta-like (DLL1, DLL3, and DLL4), and Jagged (JAG1
and JAG2) gene families (Gridley 2010). NOTCH
receptors and ligands are expressed throughout the
placenta during pregnancy and play roles in fate
determination of placental cell (De Falco et al. 2007).
These proteins are downregulated in PE placentas
(Cobellis et al. 2007). NOTCH1 and NOTCH2 are
expressed on uNK cells, which secrete interferon gamma
(IFNG) upon NOTCH activation (Manaster et al. 2010).
NOTCH1 is essential for stromal decidualization in mice
and its expression over pregnancy closely parallels the
time course of uNK cell abundance (Afshar et al. 2012).
In mice, only some DBAC uNK cells express DLL1. We
postulate that the DBACDLL1C cells are at the center of
the DB, where they serve as an exogenous DLL1 source
for endothelial tip cell differentiation (Degaki et al.
2012). In humans, PGF is highly expressed by fetal
trophoblasts, and also by CD56brightCD16K uNK cells (Li
et al. 2001, Lash et al. 2006), decidualized stromal cells
(Ghosh et al. 2000), and endothelial cells (Hauser &
Weich 1993). Similarly, mouse DBAC uNK cells express
PGF (Chen et al. 2012) and it is reported essential for
uNK cell cytokinesis (Tayade et al. 2007).
Angiogenic activities of uNK cells in early DB

In addition to angiokine expression by uNK cells, in vivo
angiogenic activities of uNK cells are reported in mice.
Our laboratory used the technique of whole-mount
immunohistochemistry to stain vascular endothelium
(CD31C) in intact viable implantation sites from
alymphoid Rag2K/KIl2rgK/K mice (uNK/NKK; TK;
BK). The onset of angiogenesis in DB was delayed.
Subsequently (GD8.5), impaired angiogenesis in the
lateral vascular sinuses (venous drainage regions) was
seen (Hofmann et al. 2014a). Rag2K/KIl2rgK/K implan-
tation sites were fully normalized by pre-conception
transplantation with Rag2K/K (NKC, TK, BK) bone
marrow (Hofmann et al. 2014a). Using matings that
tagged conceptus-derived cells with green fluorescent
protein (GFP), it was apparent in the reconstituted mice,
as well as in normal mice, that no interactions occurred
between uNK cells and trophoblasts in the live tissues
studied at these early times (Croy et al. 2012, Hofmann
et al. 2014a,b).
www.reproduction-online.org
Despite the early delays in implant site development,
Rag2K/KIl2rgK/K pregnancies are successful. From
studies using ultrasound (Zhang et al. 2011) and chronic
continuous radiotelemetry (Burke et al. 2010a) we
postulate that mice achieve this through mid-to-late
gestational cardiac adaptations of mothers and con-
ceptuses. Of particular note, our Rag2K/KIl2rgK/K

whole-mount studies strongly implicated uNK cells in
the process of pruning newly developed vascular
plexuses into their mature shapes. The cytotoxic
molecules synthesized by uNK cells are likely essential
for pruning; however, to directly address this hypothesis,
angiogenesis in implantation sites from mice deficient in
such products, for example the perforin-null mouse
(Stallmach et al. 1995), must be assessed. Insights gained
from Rag2K/KIl2rgK/K whole-mount studies caused us
to re-interpret one of our widely cited earlier obser-
vations. At the time mice genetically depleted in NK
cells were first reported, we described their decidua as
edematous (Guimond et al. 1998). This is no longer our
interpretation. Now, we interpret the very large anom-
alous spaces that become prominent across the DB from
mid-gestation as larger than normal blood vessels that
failed to develop appropriate levels of fine branching
(Hofmann et al. 2014a).

Not only is frequency of uNK cells of importance in
angiogenic processes but also activation status. NK cells
are activated by a variety of ligands, ranging from viral
proteins to major histocompatibility complex 1 (MHC1)-
like and self MHC1 molecules. NK cells of natural
cytotoxicity receptor 1 (Ncr1) gene disrupted mice
(Ncr1Gfp/Gfp) do not express a functional NCR1 (NKp46
in humans), and thus have poorly activated NK cells
with reduced function. NCR1 is an activating receptor
that ligates non-MHC-related molecules. Implantation
sites in Ncr1Gfp/Gfp have normal uNK cell numbers, but
whole-mount staining for CD31 shows less angiogenesis
at GD6.5, absence of elevated protein expression
around the embryonic crypt and delayed development
of GFP-expressing conceptuses. Unexpectedly, although
uNK cells are only present on the mesometrial side
of the uterus, the GD8.5 anti-mesometrial vessels in
Ncr1Gfp/Gfp mice were narrower than that in controls and
their branching was disorganized (Felker et al. 2013).
By GD8.5, Ncr1Gfp/Gfp DBAC uNK cells had greater
immunoreactivity for VEGFA than controls (Felker, Lima
and Croy, unpublished data).

Others studied GD8.5 implantation sites in mice
treated with anti-NKG2D on GD6.5 and 7.5. NKG2D is
an NK cell activation receptor that recognizes MHC class
I-related molecules but not MHC itself (Raulet et al.
2013). Although flow cytometric studies report that
NKG2D is more weakly expressed by angiogenic DBAC

than by DBAK uNK cells (Yadi et al. 2008), anti-NKG2D
antibody treatment depleted DBAC uNK cells, decreased
vessel density, and prevented vascular sinus formation in
the central mesometrial decidua (Kim et al. 2013).
Reproduction (2015) 149 R91–R102
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The processes promoting uterine lumen closure and
anti-mesometrial angiogenesis were unaffected by
NKG2D antibody depletion, but might have been
affected if treatment had been started earlier in gestation
or if the uNK cell depletion had been as absolute as
achieved genetically.

The mouse LY49 receptor family contains NK cell
activating and inhibiting receptors; LY49 receptors use
classical MHC class I molecules as ligands. We assessed
the overall contribution of LY49 receptor signaling to
pregnancy in pan-knockdown LY49 mice (Lima et al.
2014). uNK cell numbers were not reduced, but
knockdown of the gene family had a greater effect on
the angiogenic DBAC uNK cell subset, reducing LY49
expression from 80% (controls) to 6% (GD9.5 pan-
knockdown genotype). In contrast, LY49 expression by
DBAK uNK cells was reduced from 90% (controls) to
50% (pan-knockdown). Phenotypically, LY49-knock-
down mice were infertile. This was characterized as
frequent failure of well-developed blastocysts to implant.
If pregnancy was established, LY49 knockdown resulted
in lagging decidual angiogenesis and, in contrast to mice
lacking NCR1, significantly reduced uNK cell production
of VEGFA. Of interest, neither IFNG (intracytoplasmic
FACS analysis) nor perforin immunohistochemistry
(IHC analysis) was reduced in LY49 knockdown uNK
cells (Lima et al. 2014). Thus, MHC recognition appears
to be important for VEGF regulation, while recognition
by other receptor pathways must be responsible for
IFNG and perforin induction. Consistent between all
of these mouse model studies is the importance of
uNK cell function from the earliest stages of decidual
angiogenesis.

In humans, in vitro assays using isolated, first trimester
uNK cells substitute for early implantation site studies.
These have elucidated angiogenic properties of early
human decidual cells. One important study reported
increased human umbilical vein endothelial cell
(HUVEC) migration and tube formation in response to
uNK cell supernatants (Hanna et al. 2006). Similarly, the
vascularization of JEG3 choriocarcinoma tumors
injected into mice was greater when uNK cells were
co-transplanted (Hanna et al. 2006). VEGF and PGF
were identified as important signalling molecules in
these studies (Hanna et al. 2006). Using a carefully
defined time course approach to study specimens from
early elective terminations (Lash et al. 2006), Lash et al.
reported that human uNK cells produced higher levels of
the angiogenic factors VEGFC and ANGPT1 at 8–10
weeks gestation than at 12–14 weeks; the levels of PGF
and TGFb1 were low and did not differ significantly
between these two times. A more recent study has
suggested that the angiogenic functions of uNK cells are
regulated by sphingosine-1-phosphate (S1P), a circulat-
ing bioactive lipid which modulates vascular tone and
immune cell behaviour (Cyster & Schwab 2012, Kerage
et al. 2014). uNK cells express S1P receptor 5 and
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respond to S1P signaling by altering their angiogenic
functions (Zhang et al. 2013). HUVEC tube formation in
response to uNK cells or uNK cell-conditioned media
was decreased if the uNK cells were pre-treated with an
inhibitor of S1P signalling (Zhang et al. 2013). Although
Zhang et al. (2013) suggest that a single mechanism
regulates angiogenic functions of uNK cells, more
research is needed to address this question. Kim et al.
(2013) conclude from studies using a VEGF-trap
approach that hypoxia is not a regulator of angiogenesis
in early mouse decidua.
Roles of NK cells in physiological changes to
maternal SA

Once the interval of decidual angiogeneis and embryo-
nic development is complete, pregnancies enter the
gestational interval of rapid fetal growth. This phase
places even greater demands upon the maternal
cardiovascular system. In both humans and mice,
transition to the growth phase coincides with opening
of the placental circulation. This is achieved through
mechanisms that include SA remodeling, the terminal
branches of the major maternal uterine artery (Leonard
et al. 2013). In humans, a large numbers of SA supply the
intervillous space; most but not all are typically
remodeled. Scoring of remodeling in placental bed
biopsies depends upon gestational time, relative position
along the length of the vessel as well as position relative
to the placental midline with the vessels most distal to the
conceptus the last to be remodeled (Brosens et al. 2002).
SA remodeling normally occurs between weeks 7 and 18
in human pregnancy (Lash et al. 2006, Pijnenborg et al.
2006). In mice, 5–10 SA converge at the layer of the
trophoblast giant cells to form a small number of central
arterial canals leading to the exchange area of the
placental labyrinth (Adamson et al. 2002). SA remodeling
accompanies opening of the placental circulation at
wGD9.5 in mice (Adamson et al. 2002, Burke et al.
2010b, Croy et al. 2012, Leonard et al. 2013).

While fetal extravillous trophoblasts (EVTs) contribute
to SA remodeling in both humans and mice, earlier
preparation of the vessels is mediated by immune cells,
especially uNK cells. It is now held that both maternally-
derived and conceptus-derived mechanisms and physi-
cal properties, such as mechano-sensing by endothelial
cells (James et al. 2012), contribute to the apoptosis in
vascular smooth muscle cells and endothelial cells lining
these high-resistance vessels (Ashton et al. 2005,
Wallace et al. 2012). This phase is becoming known as
‘trophoblast-independent remodeling’ (Smith et al.
2009, Robson et al. 2012, Wallace et al. 2012). In
humans, loss of vascular smooth muscle cells is
accompanied by the influx of EVTs to envelope the
arteries. These vessel-associated EVTs deposit extra-
cellular matrix called fibrinoid that stabilizes the dilated,
www.reproduction-online.org
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venous-like vessels (Smith et al. 2009, Hazan et al. 2010,
Croy et al. 2011, Cerdeira & Karumanchi 2012, Robson
et al. 2012, Wallace et al. 2012). The dogma currently
held is that modified SAs are no longer under maternal
vasomotor control. Our intravital microscopic studies
comparing SA responses in mice with vasoactive
compounds before (GD8) and after (GD12) modification
challenge this idea because vasoconstrictive responses
were unaltered by modification despite much larger
arterial lumen diameters and the absence of detectable
(by IHC) vascular smooth muscle (Leonard et al. 2013).
Interestingly, intravital microscopy studies on mouse
brain vessels in an Alzheimer’s model implicate
monocytes in the deposition of extracellular matrix
around arteries (Michaud et al. 2013). With simul-
taneous use of three different fluorescent gene tags, these
authors observed normal continuous clearance of
vascular debris by monocytes in veins. In pathology,
this mechanism is overwhelmed and extracellular
material is deposited in excess around arteries. Venous
monocyte clearance might be a physiological mechan-
ism in decidua with the gain in SA amyloid as a parallel,
oversupply process. Amyloid deposition may be a
mechanism for strengthening dilated vessels to accom-
modate the increased systemic maternal cardiovascular
output needed to support mid pregnancy (Hunter &
Robson 1992, Collins et al. 2012). This amyloid
deposition process may occur in a transient fashion,
making detection by traditional histological techniques
difficult. The continued adaptation and use of live
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imaging systems to address questions surrounding
vascular, immune cell, and trophoblast interactions in
mice and in human cell cultures hold great promise for
refining, modifying, and improving current understand-
ing of the maternal–fetal interface (Schmerse et al. 2014).

Our studies in multiple strains of NK cell-deficient mice
without and following NK cell lineage reconstitution
were the first to identify uNK cells as the agents of
trophoblast-independent SA remodeling (Croy et al.
2011). Although many factors secreted by uNK cells
around the time of remodeling have been implicated as
possible triggers of these changes in vascular structure,
we focused on the role of uNK cell-produced IFNG
(Ashkar et al. 2000). Results from alymphoid mice treated
with mrIFNG and confirmed in mice with uNK cells
lacking the genetic ability to produce IFNG indicated that
IFNG alone, independent of the presence of uNK cells, is
sufficient to induce SA remodeling (Ashkar et al. 2000,
Ashkar & Croy 2001). IFNG synthesis by uNK cells is
induced in vivo by interleukin 12 (IL12) and enhanced by
IL18 (Zhang et al. 2003, Murphy et al. 2009). In mouse
mesometrial decidua, IFNG increases from negligible,
nonpregnant values to detectable levels at GD6.5. The
levels increase four- to sixfold to a peak at GD10.5, then
drop at GD12.5–14.5, the period after SA remodeling
(Ashkar et al. 2000, Zhang et al. 2003, Murphy et al.
2009). Although rising IFNG levels correspond with
increasing total uNK cell numbers, the DBAK subset that
is proportionally diminished during this interval is the
primary IFNG source (Chen et al. 2012).
D18.5

Pgf +/+

day

18.5

Pgf –/–

Figure 1 Decidual SA remodeling is delayed in
PgfK/K!PgfK/K compared with PgfC/C!PgfC/C

implantation sites. PgfC/C!PgfC/C and PgfK/K!

PgfK/K mice at GD12.5, 15.5, and 18.5 were
anesthetized with sodium pentobarbital and trans-
cardially perfused with 4% paraformaldehyde.
Placentas were harvested, processed for paraffin
embedding, sectioned at 6 mm, and stained with
hematoxylin and eosin. Photomicrographs in the
DB region were taken and SA wall thicknesses and
lumen diameters were quantified. Upper panels
display representative sections of DB from mice of
each genotype and timepoint. Lower panels display
quantification of SA wall thickness (left) and wall:
lumen ratio (right). Three implantation sites from
each of three pregnancies/genotype/GD were
studied. For each implantation site, three to five
sections were measured. Photomicrographs were
captured using a Zeiss epifluorescence microscope
with Axiovision SE64 Rel 4.8 (Carl Zeiss,
Oberkochen, Germany) and analyzed using ImageJ
Software (NIH, Bethesda, MD, USA). **P!0.01 vs
PgfC/C genotype at the corresponding timepoint.
Scale bars represent 100 mm.
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IFNG is responsible for regulating the expression
of O0.5% of the mouse genome, including genes
important for vascular smooth muscle cell proliferation,
cell adhesion, regulation of vascular contractility, and
cellular apoptosis (Ashkar & Croy 2001, Murphy et al.
2009). We postulate that IFNG acts indirectly by altering
gene expression differentially within the cell types that
comprise and support vessels. IFNG-regulated VEGF,
iNOS, and alpha 2-macroglobulins, a family of IFNG-
regulated protease inhibitors, are among the most
differentially upregulated genes at mid-gestation in
mice (He et al. 2005). Alpha 2-macroglobulins limit
the rate of EVT invasion and bind molecules, including
VEGF, that affect SA dilation and elongation (Ashkar &
Croy 2001, Croy et al. 2003, Esadeg et al. 2003).

In human uNK cells, ANGPT1 and ANGPT2 are
expressed to a high degree and regulate normal SA
remodeling and placentation (Li et al. 2001, Lash et al.
2006). Isolated uNK cells express more ANGPT1 and
ANGPT2 at 8–10 weeks of gestation compared with
12–14 weeks; however, ANGPT2 is expressed signifi-
cantly more than ANGPT1 (Lash et al. 2006). In vitro
models, placental angiogenesis suggest that ANGPT1
and ANGPT2, along with IFNG and VEGFC, disrupt
vascular smooth muscle cell integrity to contribute to
early angiogenesis and SA remodeling (Robson et al.
2012). In other tissues and models of angiogenesis,
ANGPT1 and ANGPT2 act by stabilizing endothelial
cell tight junctions, and may counteract vascular
leakage induced by VEGFA (Suri et al. 1996, Fukuhara
et al. 2008, Koh 2013). This function of ANGPT1 and
ANGPT2 has yet to be validated in mouse or human
uteroplacental angiogenesis.
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Figure 2 PgfK/K!PgfK/K placentas are deficient in labyrinthine
vascular branching. PgfC/C!PgfC/C and PgfK/K!PgfK/K mice at
GD12.5, 15.5, and 18.5 were anesthetized with sodium pentobarbital
and transcardially perfused with 4% paraformaldehyde. Placentas were
harvested, processed for paraffin embedding, sectioned at 6 mm, and
stained with hematoxylin and eosin. Photomicrographs were taken and
vascular spaces in the labyrinth region quantified. Top panels display
representative sections of the labyrinth region from mice of each
genotype and timepoint. Bottom panels display quantification of the
vascular space area. Three implantation sites from each of three
pregnancies/genotype/GD were studied. For each implantation site,
three to five sections were measured. Photomicrographs were captured
using a Zeiss epifluorescence microscope with Axiovision SE64 Rel 4.8
(Carl Zeiss) and analyzed using ImageJ Software (NIH). ***P!0.001 vs
PgfC/C genotype at the corresponding timepoint. Scale bars
represent 50 mm.
uNK cells and pregnancy complications

Human

Direct links have been suggested between improper uNK
cell-promoted decidual angiogenesis and human repro-
ductive health. High uNK cell numbers (O5%) in
secretory phase endometrial biopsies are linked with
an increase in decidual vessel density in women
suffering from RSA (Quenby et al. 2009). Excessive
decidual angiogenesis in early pregnancy is postulated
to lead to increased oxidative stress in the conceptus as a
mechanism underlying RSA. Rather than number of
vessels, it may be vessel maturity and differentiation that
are important for blood flow. In both normal women and
those with RSA, uNK cell numbers are inversely
correlated with the number of vessels surrounded by
mature myosin-expressing vascular smooth muscle cells.
These vessels lead to high-resistance indices upon
ultrasound examination (Quenby et al. 2009). Clinical
trials were initiated to examine prednisolone as an
intervention to decrease uNK cell number and conse-
quently RSA (Lash et al. 2011b). Prednisolone decreased
Reproduction (2015) 149 R91–R102
uNK cell number in certain women and, in treated
women who subsequently had a successful pregnancy,
secretory endometrial vessel density was decreased
(Lash et al. 2011b).

In another report on human pregnancy termination
specimens (mean 7 weeks gestation), decidua from
patients electing termination was compared with that
from terminations for fetal demise (missed abortions).
In the latter, lower vessel density was found in decidua
www.reproduction-online.org
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parietalis and DB, although VEGFA and ANGPT2
expression were higher in DB (Plaisier et al. 2009).
CD56brightCD16K uNK cells were increased in aspi-
rated, decidua-associated endometrium that morpho-
logically resembled secretory-phase endometrium of the
missed abortion patients, but not decidua parietalis or
DB (Plaisier et al. 2009). The interpretation of the results
from this study highlight the difficulties of addressing
cause, effect, or compensatory responses of uNK cells in
patients and the value of animal models in studies of
early implantation site angiogenesis.

Remodeling of SA has been deemed essential for
healthy human pregnancy, as deficits in this process are
linked with pregnancy complications including PE, FGR,
and preterm labor (Robson et al. 2012). In a clinical
study examining placental beds obtained during elective
caesarean section, major defects, absent in normal
pregnancy, were seen in SA in samples from PE and
FGR pregnancies (Lyall et al. 2013). Mechanistically,
IFNG levels are elevated in the plasma, peripheral
leukocytes, and decidua of women with pregnancies
complicated by PE (Murphy et al. 2009). Although IFNG
is important in SA remodeling, overabundance may
impair EVT invasion and disturb normal angiogenic
processes. Our studies in NK/uNK cell deficient mice
give results inconsistent with currently accepted ideas
concerning SA remodeling (Croy et al. 2011). Our data
suggest that additional mechanisms must be super-
imposed upon the nonremodeled SA phenotype to result
in hypertension or other major adverse gestational
outcomes. Through the use of continuous radiotelemetry
or daily ultrasound studies to monitor mouse cardiovas-
cular systems, we now hypothesize that the key outcome
from SA remodeling is cardiac protection of the mother.
Furthermore, when SA do not modify, the placental and
fetal cardiovascular systems become compromised,
resulting in conceptus compensations and adaptions
that persist to term and likely postnatally as fetal
programming effects (Burke et al. 2010b).
Figure 3 Resin casts of the cerebral arterial system. Nonpregnant adult
PgfC/C and PgfK/K females were anesthetized with sodium pento-
barbital and transcardially perfused using 140 mM NaCl, 10 mM KCl,
and 5 mM EDTA solution (pH 7.5) to remove intravascular blood. Mice
were subsequently injected through the thoracic aorta with 2 ml
Batson’s #17 polymer (Polysciences, Inc., Warrington, PA, USA) which
was allowed to polymerize for 24 h. The surrounding tissue was
subsequently digested away in 1 M NaOH and 5% Contrad 70
detergent (Fisher Scientific, Pittsburgh, PA, USA) for w8 weeks. The
resulting vascular casts (seven per genotype) were photographed using
a Zeiss dissecting microscope (Carl Zeiss). PgfK/K brain vasculature
was disorganized and deficient in fine branching compared with
controls. Commonly (O80%) PgfK/K brain vasculature had incomplete
Circle of Willis (compare between the line drawings representing the
major vessels in each cast to the right). The PgfK/K vascular field is
narrower and more elongated than PgfC/C, suggesting alterations in
normal brain anatomy and in skull shape. PgfK/K casts show an
unusual central prominence of large vessels. Scale bars represent 1 cm.
ACA, anterior cerebral artery; BA, basilar artery; IC, internal carotid;
MCA, middle cerebral artery, PCA, posterior cerebral artery;
SCA, superior cerebellar artery; VA, vertebral artery.
Mice: PGF deficiency

Low plasma PGF in early to mid-pregnancy was recently
postulated to be the central marker for distinguishing
between two distinct pathogenic processes leading to
clinical PE presentation (Powers et al. 2012, Staff et al.
2013). Although deficiency in PGF during pregnancy is
implicated in the more severe PE phenotype, the
mechanisms by which low PGF contributes to these
effects remain unclear (Levine et al. 2005, Verlohren
et al. 2010). Also unclear are potential roles for low
gestational PGF in the elevated postpartum cardiovas-
cular risks seen in women and children who experienced
PE pregnancies (Davis et al. 2012, Ray et al. 2012,
McDonald et al. 2013, Tuovinen et al. 2013). Our studies
of pregnancies in PgfK/K mice found that PGF regulates
uNK cell cytokinesis (Tayade et al. 2007). Ultrastructural
www.reproduction-online.org
analyses of GD8.5 PgfK/K uNK cells additionally
identified aberrant features such as irregularly shaped
granules and looping endoplasmic reticulum (Rätsep
et al. 2014). Importantly, the ultrastructural appearance
of PgfK/K uNK cells differs from that of mature,
senescent secretory NK and uNK cells which promote
angiogenesis (Paffaro et al. 2003, Rajagopalan & Long
2012). Deficient vascular branching is present at
GD6.5–9.5 in PgfK/K!PgfK/K decidua (Rätsep et al.
2014) and SA remodeling is delayed until GD14 (Fig. 1).
Less vascular branching is present in the PgfK/K!
PgfK/K placental labyrinth at GD15.5–18.5, which
would limit surface area for maternal–fetal nutrient and
waste exchanges (Fig. 2).

Efforts to measure gestational blood pressures in
PgfK/K mice by radiotelemetry were unsuccessful due to
CNS pathologies that developed after the carotid arterial
surgery required for radiotransmitter placement. Resin
casting of the PgfK/K brain arterial system revealed that
PGF has a major role in the optimization of fetal
brain angiogenesis. PgfK/K brain arteries were highly
disorganized and abnormally patterned. Furthermore,80%
of animals had an incomplete circle of Willis (Fig. 3) that
Reproduction (2015) 149 R91–R102
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combined with additional anomalies of the internal carotid
artery (MT Rätsep, N Peterson, AY Jin & BA Croy,
unpublished data), account for our poor surgicaloutcomes.
These data may aid in explaining the increased tendency to
suffer strokes, the reduction in cognitive ability, and
vulnerability to depression reported in children born from
a preeclamptic gestation (Hakim et al. 2013). Thus,
although PGF expression is not necessary to initiate
placental and fetal angiogenesis, its deficiency clearly
results in sub-optimal vascular development of great
importance during pregnancy.
Conclusions

Intricate linkages exist between early decidual angio-
genesis, mid-pregnancy SA remodeling, and normalcy of
pregnancy outcome. We argue that uNK cells are pivotal
players in normal decidual angiogenesis and SA
remodeling as summarized in Fig. 4. They act as
supervisors for building the early decidual vasculature,
ensuring the spatial and temporal coordination of many
cell types and products to produce a well-supported
placenta. While others using mouse decidual microarray
Reproduction (2015) 149 R91–R102
analyses have reached a different conclusion (Bany et al.
2012), we find the morphological and genetic data
reviewed here to be convincing. Our recent work
(Hofmann et al. 2014a) and previous histological studies
(Greenwood et al. 2000, Ashkar et al. 2003, Degaki et al.
2012, Lima et al. 2012) have highlighted the role of uNK
cells in regulating the optimal timing and progression
of decidual angiogenesis, a process that would not be
detected through microarray analysis. Gaps still remain
in our knowledge of the angiogenic processes occurring
at the maternal–fetal interface and how these local
processes are integrated into the systemic physiological
changes to the pregnant female’s cardiovascular system.
With such knowledge, much of which can be gained
from in vivo studies of mouse models using newer live
tissue and intravital approaches, we will advance toward
greater understanding of and hopefully improved
clinical management for pregnancy disorders such as PE.
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