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N-Acetylglucosamine (O-GlcNAc) modification of proteins
provides a mechanism for the control of diverse cellular
processes through a dynamic interplay with phosphorylation.
UDP-GlcNAc:polypeptidyl transferase (OGT) catalyzes
O-GlcNAc addition. The structure of an intact OGT homolog
and kinetic analysis of human OGT variants reveal a contiguous
superhelical groove that directs substrates to the active site.

O-GlcNAc modification of the serine and threonine residues of
nucleocytoplasmic proteins is believed to be a crucial intracellular
signaling event. Unlike glycosylation within the secretory pathway,
O-GlcNAc is a dynamic modification that is processed more rapidly
than the polypeptides it decorates1,2. Thus, O-GlcNAc is akin to
phosphorylation, and there is an intriguing reciprocal relationship
between these modifications (Supplementary Fig. 1 online). Accord-
ingly, O-GlcNAc has been implicated in various signaling pathways1,3.
Two enzymes are responsible for O-GlcNAc cycling in Homo sapiens,
but the molecular mechanisms regulating these O-GlcNAc–processing
enzymes are unclear.

The glycosyltransferase OGT catalyzes O-GlcNAc addition to
proteins4. The absence of structural insights into OGT catalysis has

slowed efforts both to engineer the enzyme5,6 and to develop inhibi-
tors7. There is also a confounding lack of an apparent consensus
sequence directing which proteins are glycosylated1. OGT seems to
recognize protein substrates through interactions with its N-terminal
region, which comprises a series of tetratricopeptide repeat (TPR)
domains5,8. Highlighting the role of the TPR domain, these previous
studies have found that OGT constructs with different numbers of
TPRs have different specificities for protein substrates, and constructs
lacking the majority of TPRs are inactive against protein substrates but
do modify peptide substrates8. The TPR region of human OGT
(HsOGT) forms a superhelical structure9 that is common to other
TPR-containing proteins. How the topographical arrangement of the
C-terminal glycosyltransferase domain and its N-terminal TPR region
enables protein modification is unclear. Here we present the full-
length structure of a homolog of OGT from the plant pathogen
Xanthomonas campestris that comprises the catalytic and TPR
domains (Fig. 1; see Supplementary Methods for experimental
details). The catalytic center of XcOGT shows high similarity to
eukaryotic OGTs (Supplementary Fig. 2 online).

XcOGT is one of more than 130 TPR-containing bacterial OGT
GT41 homologs, all of whose substrates are undefined. Like OGT,
XcOGT catalyzes the transfer of UDP-GlcNAc to water in vitro
(Supplementary Fig. 3 online), a reaction that is inhibited by excess
UDP, suggesting that XcOGT uses UDP-GlcNAc or a structurally
similar donor sugar substrate. The three-dimensional structure of
XcOGT, solved using single-wavelength anomalous dispersion meth-
ods and refined at 2.75 Å using data from the UDP complex of the
enzyme (Supplementary Table 1 online), enabled us to generate a
model of HsOGT. The structure of XcOGT in complex with the UDP
product reveals that residues highly conserved among eukaryotes are
involved in recognition of the UDP-GlcNAc donor (Fig. 1). The
organization of XcOGT (Fig. 1 and Supplementary Movie 1 online)
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parallels that of HsOGT, containing 5.5 TPRs (residues 1–202) and a
C-terminal glycosyltransferase moiety (residues 203–568) that has the
GT-B topology (one of two folds found in nucleotide-sugar glycosyl-
transferases10). Notably, XcOGT lacks a 120-residue insertion between
the N- and C-terminal domains of the GT-B fold in mammalian
OGTs; this insertion may thus mediate HsOGT-specific interactions. A
putative phosphatidylinositol trisphosphate binding site on the
human enzyme11 maps to the C terminus of XcOGT (Supplementary
Fig. 2).

On the basis of the XcOGT UDP complex (Supplementary Fig. 4)
and the HsOGT model, we predicted active-site mutants of HsOGT
and assayed the enzyme activity of soluble variants (Fig. 2; Supple-
mentary Table 2). Mutants of Lys842 (HsOGT numbering) or
Gln839, which interact with the pyrophosphate, showed low specific
activities of E1%, whereas the Thr921 mutant showed 18% of the
specific activity. Mutation of His920 was deleterious, whereas muta-
tion of Tyr841 (both in the putative donor binding site) lowered
specific activity to 24%. Mutation of Lys898, which is involved in
uracil binding, resulted in a protein with no apparent activity. The
XcOGT structure also suggests that His558 is likely to be the catalytic
general base that facilitates nucleophilic attack of the serine/threonine
hydroxyl group on UDP-GlcNAc, on the basis of its orientation and
three-dimensional position within the HsOGT model relative to
histidine general bases in other GT-B enzymes10. His558 mutations
showed no apparent activity.

In addition to these insights into the catalytic center of OGT, the
XcOGT structure reveals its spatial relationship to the substrate-
binding TPRs. The XcOGT TPRs are arranged around a central
axis, making a single turn of approximately 2601 that is approximately
32 Å wide and 45 Å long, forming a near complete superhelical turn
with similar dimensions to the equivalent region of HsOGT9. Notably,
the last TPR domain of XcOGT is atypical; helix A is shorter and helix
B longer than canonical TPR helices. These two helices, together
with helix A of the third TPR domain, form an intimate inter-
face (B1,500 Å2) with the GT domain. Sequence and structural

comparisons reveal no conserved patterns of surface-exposed residues
between XcOGT TPR domains and other OGT homologs, although,
similarly to the HsOGT TPR complex, several asparagine, arginine
and glutamine residues line the inner surface of the superhelix.
Overlays of the XcOGT and the human TPR domains (Fig. 1c)
indicate that the overall length of the composite superhelix is
4130 Å, which may explain how OGT accommodates myriad protein
partners. The dimensions of the groove, with a width of B17 Å and a
depth of B25 Å, suggest that HsOGT may recognize both linear
peptide substrates and secondary-structural elements and explain the
lack of an apparent consensus sequence governing which proteins are
O-GlcNAc modified1,5,8. Furthermore, the remarkable length and
broad, concave inner face of the superhelical groove of HsOGT
provides a large surface area to which different protein partners may
bind. Substrates need not bind along the entire length of the groove;
indeed, the specific binding of protein substrates could occur anywhere
along the superhelix. Binding of the substrate to the TPR domain may
simply serve to direct the region bearing the target residue to the active
site and orient the acceptor hydroxyl group within the active site. The
efficiency with which substrates are modified with O-GlcNAc may
therefore be governed by their affinity for the TPR domains, their
affinity to other protein partners, as well as their propensity to be
bound within the active site in a productive orientation. Notably, the
atypical TPR domains mediating the tight interface orient the catalytic
domain and enable the superhelical groove of the TPR domains to
continue smoothly into the catalytic machinery. Thus, binding in the
TPR twist may allow polypeptide substrates to extend on into the
active-site cleft where catalysis occurs. The three-dimensional structure
also shows how OGT may be regulated by other proteins having
affinity for the TPR domain. Binding of partners along the TPR
provides a mechanism to prevent, or enhance, the binding of cognate
proteins for O-GlcNAc modification.

Accession codes. Protein Data Bank: Coordinates for XcOGT have
been deposited with accession code 2VSN.

Note: Supplementary information is available on the Nature Structural & Molecular
Biology website.
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Figure 2 Kinetics of human OGT and its active center variants. (a) Western

blot showing expression levels of OGT variants compared to wild type (WT).

(b) Michaelis-Menten kinetics (s.d. shown) for WT and selected mutant OGTs

(Supplementary Table 2 and Supplementary Methods online).
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