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Historically, single-beam optical velocimetry has been limited to measuring only the component of veloc-
ity along the beam. However, theoretical work and recent experimental results have shown that laser
speckle dynamics may be exploited to measure lateral motion, thereby gaining information about surface
dynamics across an additional degree of freedom. In the use of photon Doppler velocimetry (PDV), this
new information is considered “free” in that it is already contained within the PDV signal, needing only to
be extracted and interpreted correctly. In this manuscript, we relate speckle dynamics to the lateral
motion of a planar scattering surface in the PDV coordinate system via the space–time correlation
function of the diffracted electric field. Next, we relate the characteristic time scale of speckle intensity
fluctuations in the PDV signal to the rate of lateral surface translation and to parameters characterizing
the optical probe. Analytical results are compared with a numerical simulation and found to be in close
agreement. © 2014 Optical Society of America
OCIS codes: (030.6140) Speckle; (120.7250) Velocimetry; (060.2370) Fiber optics sensors.
http://dx.doi.org/10.1364/AO.53.004661

1. Introduction

Photon Doppler velocimetry (PDV) is an optical diag-
nostic that has recently become popular in shock
physics studies due to its accuracy [1,2], high band-
width, and ease of fielding. The heterodyne tech-
nique measures velocity along a laser beam’s path.
Surface motion along the beam imparts a Doppler-
shift on backscattered light that, when combined
with a reference field, produces a beat frequency
from which axial velocity may be resolved.

Random speckle is produced from the scattering of
coherent light off of an optically rough surface;
conditions that are characteristic of PDV experi-
ments, which employ 1550 nm light. The resulting
de-phased wave fronts extend outward from the sur-
face, combining to form an interference pattern
manifested by regions (or elongated lobes [3]) of vary-
ing light intensity across three-dimensional space.

Speckles are measured in the PDV signal as low
frequency intensity fluctuations that modulate the
amplitude of the desired heterodyne signal. While
typically seen as an undesirable, yet unavoidable
consequence of coherent light interference, theoreti-
cal work and recent experimental results have shown
that the characteristic time scale of these speckle
intensity fluctuations is related to lateral surface
speed.

A surface’s speckle pattern is a random but fixed
property of that surface, reproducible if illuminated
in a consistent manner. As the surface gradually
moves through the illumination, the spatial struc-
ture of the resulting speckle pattern gradually
changes with time. This variation in the speckle pat-
tern’s spatial structure is referred to as speckle dy-
namics. According to our current understanding,
speckle dynamics can be broadly defined by two
behaviors: translation and boiling. Translation refers
to the coherent bulk motion of speckle in a given
geometry, which, in our case, is related to the lateral
motion of the scattering surface. Boiling refers to the
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incoherent behavior of speckles randomly fading in
and out of existence, erratically shifting through
space without favoring any specific geometry.
Speckle intensity fluctuations measured in the PDV
signal may be explained by speckle dynamics, which,
in turn, may be explained by surface motion.

While the spatial structure of speckle is mani-
fested by complex, random patterns of varying light
intensity, the statistical properties of speckle are or-
derly and quantifiable [4,5]. In the same way, speckle
dynamics are governed by statistical properties that
reliably describe variation in a speckle pattern’s spa-
tial structure due to lateral surface motion. A large
body of theoretical and experimental work has ex-
plored the dynamic behavior of speckle for a trans-
mission geometry in which a focusing optic directs
a laser beam through a transparent laterally trans-
lating diffuser onto a detector that lies beyond.
Rather than attempt to review existing works, the
reader is referred to Yoshimura [6], who consolidates
the mathematical concepts of speckle dynamics for
the transmission geometry established by Takai
and co-workers [7–11]. In PDV applications, light
is reflected from the scattering surface rather than
transmitted through it. Since the PDV probe both
focuses the laser beam onto the reflective surface
and acts as a detector by collecting backscattered
light, the PDV geometry has one degree of freedom
rather than two.

Under the strict assumptions of pure speckle
pattern translation, and a point-like detector located
in the far-field of a transparent laterally translating
diffuser, Iwai et al. [12] show that the characteristic
time scale of speckle intensity fluctuations is
given by

τc �
ω0

jv⊥j
; (1)

where ω0 is the radius of the illuminating laser beam
at the focal point and v⊥ is the surface velocity vector,
perpendicular to the laser beam’s optical path. Re-
cent experimental work [13] applied this model to
PDV to simultaneously measure axial velocity and
lateral surface speed with a single probe. Despite
differences in geometry and requisite assumptions,
lateral speed estimates were distributed within
roughly 30% of the ground truth for the tested optical
conditions. Subsequent work [14,15] found that τc
changes depending upon the location of the translat-
ing surface along the laser beam.

Since PDV is inherently used to gather data from
surfaces moving along the laser beam and through
its focal length, speckle dynamics must be under-
stood, along with how their parametric dependencies
influence lateral speed measurement capabilities.
Furthermore, to make use of speckle dynamics in
PDVapplications, one must consider a surface whose
velocity vector contains both lateral and axial veloc-
ity components. This paper attempts to set up the full
three-dimensional problem by first evaluating

speckle dynamics in the PDV coordinate system for
a surface whose motion is perpendicular to the laser
beam’s optical path. To the best of the authors’
knowledge, this is the first paper to analytically
examine speckle dynamics for the PDV coordinate
system, which is different from the transmission
geometry that has received so much attention in
the past.

In this manuscript, we examine the relationship
between speckle dynamics and lateral surface mo-
tion for the PDV coordinate system, both analytically
and through a simulation approach. Simulation al-
lows us to directly investigate the underlying physics
that are expressed in our analytical equations and to
avoid experimental uncertainties.

2. Theoretical Model

The PDV coordinate system is shown in Fig. 1. An
optical probe, centered in the observation plane
�x; y�, directs a laser beam onto the parallel scatter-
ing surface �α; β�, offset by axial displacement z.
Light is then scattered back onto the observation
plane where a speckle pattern is observed. Data
are measured from the portion of backscattered light
that transmits back into the probe aperture.

For this particular free-space geometry, speckle
formation is modeled by the Fresnel diffraction inte-
gral, which expresses the value of a complex field at
arbitrary point �x; y; z� as the summation of many
random elementary phasors. Using a Huygens
approximation, each phasor may be thought of as
a spherical wavefront extending outward from the
scattering surface with some unique magnitude and
phase. The superposition of these wavefronts at
�x; y; z� produces interference, a random walk in
the complex plane, and a single resultant amplitude.
The complex field produced at the observation plane
A�x; y; z; t� is directly related to the complex field in-
cident on the scattering surface a�α; β; z; t� through

Fig. 1. PDVoptical arrangement and coordinate system. A Gaus-
sian laser beam is directed onto the scattering surface �α; β�; a
measured signal is produced from the portion of scattered light
that returns back through the probe aperture (black circle), cen-
tered at the origin of the observation plane �x; y�. The beam focal
point is located at a fixed distance zf from the observation plane.
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the point spread function of free-space, mathemati-
cally expressed

A�x;y; z; t� � eikz

iλz
e
ik
2z�x2�y2�

×
Z

∞
Z
−∞

a�α;β; z; t�eik
2z�α2�β2�e−

ik
z �xα�yβ�dαdβ;

(2)

where λ is the wavelength of light and k � 2π∕λ. By
considering spatial frequencies �f x; f y� � �x∕λz; y∕λz�,
note that Eq. (2) may be regarded as a Fourier-
transformation [16].

Scattered field a�α; β; z; t� is the product of an illu-
mination function, which describes the distribution
of light incident over the scattering surface, and a
phase variation term that arises from the implicit
roughness of the scattering surface. In PDV experi-
ments, a Gaussian beam is used for illumination
and the scattering surface is typically a diffuse
metal. We assume the scattering surface translates
in-plane in the positive α-direction at arbitrary con-
stant speed v. Under these conditions, a�α; β; z; t� is
given by

a�α; β; z; t� � ω0

ω
exp

�
−�α2 � β2�

�
1

ω2 �
ik
2ρ

�
− ikz

�
|����������������������������������{z����������������������������������}

Gaussian beam illumination

× exp�iϕ�α� vt; β��|���������������{z���������������}
surface-induced phase variation

: (3)

The shape of a Gaussian beam is completely de-
fined by the focal length �zf � and beam waist �ω0�
of its focusing optic. Since the beam originates at
the optical probe centered in the observation plane,
the size of the illuminated beam spot over the scat-
tering surface depends upon the axial displacement z
between the scattering surface and observation
plane, shown in Fig. 1. The radius of the illuminated
beam spot over the scattering surface, defined as the
radial distance from the origin where the intensity
falls to e−2 times themaximum intensity, is expressed

ω � ω0

�
1� �z − zf �2

a2

�1∕2
(4)

with a � πω2
0∕λ. The Gaussian illumination function

is complex-valued and the form of its phase compo-
nent over the scattering surface is determined by
the beam radius of curvature at the point of inci-
dence, given

ρ � �z − zf �
�
1� a2

�z − zf �2
�
: (5)

Light scattering is complicated, involving shadow-
ing, masking, volume scattering, and specular reflec-
tion components. We adopt a simplified model in

which light propagating to the surface changes phase
as a function of surface-height and the wavelength of
light, according to

ϕ�α; β� � 2π
λ
h�α; β�; (6)

for zero mean surface-height function h�α; β�. We use
a common idealization of a rough surface called the
deep random-phase screen: a white noise process for
which ϕ�α; β� is a random distribution that is uniform
over the primary interval �−π; π�, and which ensures
the formation of a fully developed speckle pattern.

In application, one must employ a detecting
element of finite size to receive backscattered light;
for PDV applications, this detecting element is the
aperture of the optical probe. It follows that the
PDV signal is produced by integrating the diffracted
intensity field I�x; y; z; t� over a finite region of the
observation plane, given by

W�z; t� �
Z

∞
Z
−∞

D�x; y�I�x; y; z; t�dxdy; (7)

for aperture function D�x; y�. The intensity of the
backscattered field is given I � AA�, where ��� de-
notes the complex conjugate. For a circular probe
of radius R centered in the observation plane, the
aperture function is defined

D�x; y� �
�
1 if

����������������
x2 � y2

p
≤ R

0 otherwise
: (8)

We assume that our photodetector is ideal, in that
a signal is produced from light collected over an
infinitesimal period of time. Our assumption is jus-
tified if the photodetector integration time is much
smaller than the time scale of speckle intensity
fluctuations in the measured signal, which holds
strongly for PDV applications.

3. Simulation

A. Static Speckle

We begin by describing the methods used to simulate
a speckle pattern for the static case, when the scat-
tering surface is not in motion. This is accomplished
by specifying z, zf , ω0, and λ for the Gaussian beam
illumination function and generating a random-
phase screen ϕ�α; β� from white noise that is uni-
formly distributed over the primary interval �−π; π�.
Each constituent function is discretized into a 4000 ×
4000 matrix where, depending on the propagation
distance to the observation plane, individual discre-
tized areas measure between 1 and 4 μm on a side.
The element-wise product of these functions consti-
tutes the scattered field, given in Eq. (3). After factor-
ing in the quadratic phase terms from Eq. (2), which
are inherent to Fresnel diffraction, the scattered field
is propagated out to the observation plane at offset
distance z via a Fourier-transform [17, p. 370].
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Two optical probes are implemented in the simu-
lation to investigate the parametric dependencies of
speckle dynamics on the shape of the laser beam.
Both focusing and collimating probes are tested and
their parameters given in Table 1. Wavelength λ is
set to 1550 nm, which is typical for PDV. Figure 2
provides a visual representation of the constituent
functions and speckle pattern that is produced in
the simulation for Probe 1 at z � 40 mm.

B. Speckle Dynamics

Speckle dynamics describe variation in a speckle
pattern’s spatial structure with respect to time.
For lateral surface motion, speckle dynamics are
characterized by translation and boiling. While we
are ultimately interested in predicting lateral sur-
face motion from speckle intensity fluctuations mea-
sured in the PDV signal, it is useful to understand
the general relationships between scattering surface
motion and speckle dynamics. Our motivation in this
section is twofold: to gain an intuitive understanding
for the behavior of dynamic speckles and to verify
that our simulation reproduces this behavior. To this
end, we will focus on answering two primary
questions:

• If the scattering surface is translating in a given
orientation, does the resulting speckle pattern trans-
late in the same orientation and at the same rate?
• How far must the scattering surface translate

before the resulting speckle pattern decorrelates, ef-
fectively becoming unrecognizable?

We quantify the above questions analytically and
numerically by evaluating the space–time cross-
correlation function of the diffracted electric field, ef-
fectively measuring the similarity between intensity

field I1 produced at time t, and intensity field I2 pro-
duced at arbitrary time �t� τ�, expressed

hI1I2i � hI�x; y; z; t�I�x� Δx; y� Δy; z; t� τ�i; (9)

where h…i indicates an ensemble average. We nor-
malize the correlation function to the range [0,1],
where 1 indicates that two speckle patterns are iden-
tical and a value below e−1 indicates that the two
speckle patterns are effectively uncorrelated. The
normalized correlation function [6] is given by

μI�Δx;Δy; z; τ� �
hI1I2i
hI1ihI2i

� 1� hA1A�
2i

�hjA1j2ihjA2j2i�1∕2
:

(10)

Substituting Eqs. (2) and (3) into Eq. (10) and
evaluating the integrals yield

μI�Δx;Δy;z;τ�−1�exp
�
−

v2τ2

ω2

�

×exp

8<
:−

h
Δx−

�
1� z

ρ

	
vτ
i
2�Δy2

r2s

9=
;;

(11)

in the vicinity of the optical axis. In Eq. (11), rs sig-
nifies the speckle pattern’s linear correlation length
over the observation plane, whichmay be interpreted
as the average radius of an individual speckle lobe,
given

rs �
λz
πω

: (12)

Equation (11) is almost identical to the expression
given by Yoshimura [6] and Takai et al. [7] for a
transmission coordinate system. While not immedi-
ately apparent, there is a major difference for PDV’s
single degree of freedom geometry, in that the values
of ρ, ω, and rs are coupled to the axial displacement z
according to Eqs. (4), (5), and (12). As we will see in

Fig. 2. To numerically simulate a speckle pattern, we first generate a discretized Gaussian illumination function and random-phase
screen, which are superimposed to yield the scattered field a�α; β; z; t�. The scattered field is then propagated out to the observation plane
via a Fourier-transformation.

Table 1. Beam Shape Parameters for the Focusing (1) and
Collimating (2) Optical Probes Used in PDV Experiments

Probe Focal Length Beam Waist

�zf � (mm) �ω0� (μm)
1 20 23
2 100 50
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the following analysis, this coupling results in vastly
different speckle dynamics.

Simulating speckle dynamics is relatively straight
forward. For each iteration or time step, the discre-
tized random-phase screen ϕ�α; β� is shifted by one
discrete step in the positive α direction with respect
to the illumination, and a new speckle pattern is
produced. As the iteration number increases, so does
the cumulative displacement of the random-phase
screen from its original position. Figure 3 shows
how the correlation function is numerically gener-
ated by convolving the speckle pattern produced
for τ � 0, with subsequent speckle patterns produced
when τ > 0. In addition, Fig. 3 shows how correlation
and translation measurements are extracted from
the simulation by finding the coordinates and value
of the correlation function’s global maximum.

Intuitively, it makes sense that, as the scattering
surface is gradually displaced from its original posi-
tion at vτ � 0, the resulting speckle pattern will
gradually diverge from its original spatial structure,
becoming less correlated. The physical basis for this
decorrelation is the substitution of new surface scat-
terers into the illuminated beam spot in place of the
original population. It follows that the degree to
which a speckle pattern remains correlated is in di-
rect proportion to the ratio of original surface area
that remains within the illuminated beam spot.
Evaluating the first term of Eq. (11), we see that
the speckle pattern loses coherence (that is to say,
the correlation drops to e−1) once the scattering sur-
face displacement satisfies

vτt � ω; (13)

at which point the ratio of original surface area re-
maining within the illuminated beam spot is also
e−1. We refer to vτt as the surface translation length.
This provides some insight into why a greater degree
of boiling is observed when the scattering surface is
located at the laser beam focal point: the illuminated
beam spot is at its smallest size. Theoretical and sim-
ulation results for the surface translation length are
shown in Fig. 4. Some of the simulation results show
surface translation lengths that are smaller than the
analytical model predicts, likely due to quantization
errors in the simulation.

Values of �Δx;Δy� maximizing the second term of
Eq. (11) correspond to the translation vector of the
speckle pattern as a function of scattering surface
displacement. Setting vτ � ω, we find the total trans-
lation vector of the speckle pattern at the instant it
loses coherence is given

Δxt �
�
1� z

ρ

�
ω Δyt � 0; (14)

which confirms that the speckle pattern’s translation
is along the same linear axis as the scattering sur-
face. We define the magnitude of vector �Δxt;Δyt�
as the speckle translation length. Simulation results
are shown in Fig. 5. Equations (13) and (14) show
that the speckle and surface translation lengths
are not equivalent. Recognizing that these displace-
ments take place over the same amount of time, we
solve for the speckle pattern translation rate Vs
relative to surface speed v as the quotient of the
displacements, yielding

Vs

v
�

�
1� z

ρ

�
: (15)

As shown in Fig. 6, the speckle pattern translation
rate widely varies from that of the scattering surface,

Fig. 3. Simulated speckle patterns and correlation functions gen-
erated for a surface translating in the positive α direction, illumi-
nated by Probe 1 with z � 30 mm. It is evident by looking at the
sequential snapshots of the speckle pattern that its bulk motion is
in the positive x direction (toward the right side of the page) and
this is reflected by the location of the correlation function’s peak
value as it is displaced in the positive Δx-direction. As the scatter-
ing surface moves further from its original position at vτ � 0, the
speckle pattern becomes less correlated, reducing the correlation
function’s peak value.

Fig. 4. Total translation length vτt of the surface at the instant in
which the correlation between I1 and I2 drops to e−1, normalized
against the beam waist ω0. We may think of the surface transla-
tion length as the length-scale associated with boiling.
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depending upon the location of the surface along the
laser beam. Naturally, in the limit of z � 0, complex
field A is incident on the surface where it translates
in parallel, yielding Vs∕v � 1. As the scattering sur-
face approaches the focal point of Probe 1, there is a
regime where speckle pattern translation is in the
opposite direction to that of the scattering surface.
In general, we find that scattering surface transla-
tion is magnified in the speckle pattern for optical
probes with greater relative convergence.

By now, it should be clear that speckle pattern
motion does not simply mirror scattering surface mo-
tion. Instead, there are strong parametric dependen-
cies on the laser beam used for illumination as well
as the offset distance between the scattering surface
and observation plane. Although speckle is a random
process, speckle dynamics are predictable in the stat-
istical sense and have been fully characterized for
the PDV coordinate system and optical configura-
tion. Boiling is a consequence of surface translation
and has an associated length-scale determined by
the radius of the illuminated beam spot ω, and

results in speckle pattern decorrelation. Speckle
translation rate with respect to the scattering sur-
face is determined by the location of the surface along
the beam, as well as the relative convergence of
the beam.

C. Speckle in the PDV Signal

In the previous section, we examined the normalized
correlation function of the diffracted electric field,
which relates bulk properties of speckle motion to
that of the scattering surface. PDV does not provide
the full-field observation capability required to ob-
serve bulk speckle motion. Instead, intensity mea-
surements are taken at a small, finite-sized point
in the diffracted electric field and we are left to infer
surface motion from the speckle intensity fluctua-
tions that take place within this locale. Rather than
observing a detailed video of the speckle pattern
changing in time, the PDV probe is akin to a single
enlarged pixel.

Fortunately, for any given illumination geometry
and set of optical parameters, there exists a linear
relationship between the average time scale of local
intensity fluctuations at the PDV probe and the rate
of scattering surface translation. If we adopt the
assumption of pure speckle translation, then this re-
lationship is relatively straight forward: the average
time scale of speckle intensity fluctuations corre-
sponds to the average amount of time required for
a speckle to pass over our probe. In application,
the time scale of local intensity fluctuations is also
related to the rate at which boiling modifies the spa-
tial structure of the speckle pattern.

To evaluate analytically the time scale of local in-
tensity fluctuations that are produced and spatially
integrated in the observation plane by our circular
PDV probe, we must consider the normalized
correlation function of spatially integrated speckle,
expressed

μW�z; τ� � hW�z; t�W�z; t� τ�i
hW�z; t�2i ; (16)

where W�z; t� is the instantaneous integrated inten-
sity defined in Eq. (7). While an exact solution for this
expression has not been found due to mathematical
complexity, Iwai et al. show that the circular aperture
function we introduce in Eq. (8) is well approximated
by a soft Gaussian aperture [18]. Adopting the soft
Gaussian aperture approximation and evaluating
Eq. (16), the normalized correlation function of
spatially integrated speckle takes the form

μW�z; τ� � exp
�
−

v2τ2

ω2

�
× exp

�
−v2τ2

�1� z∕ρ�2
R2 � r2s

�
;

(17)

where the average time scale of speckle intensity
fluctuations, measured by a Gaussian aperture of
radius R, is expressed

Fig. 5. Total translation length of speckle along the x-axis of the
observation plane at the instant in which the correlation between
I1 and I2 drops to e−1. Both analytical predictions and simulation
results found that Δyt � 0 for all values of z∕zf .

Fig. 6. Speckle translation rate Vs normalized against the sur-
face translation rate v. Speckle translation is greatly magnified
when the scattering surface is located near the focal point of Probe
1, and actually moves in the opposite direction for z∕zf ∈ �0.5;1�.
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τc �
1

v
h
1
ω2 � �1�z∕ρ�2

R2�r2s

i
1∕2 : (18)

If we evaluate vτc, referred to as the dynamic
length, then we end up with the characteristic
length-scale of scattering surface displacement re-
quired for the aperture to see new, uncorrelated
speckles. The dynamic length is valuable to consider
because it is invariant to the rate of surface transla-
tion; instead, exposing the underlying parametric
dependencies of speckle intensity fluctuations in
the PDV signal. In Fig. 7, there is a clear drop in dy-
namic length when the scattering surface is located
at the laser beam focal point, which is in agreement
with recent experimental observations [14].

For an aperture of infinite surface area,R → ∞ and
the aperture function D�x; y� goes to unity. In this
case, we essentially cross-correlate the full spatially-
integrated diffracted field; as a result, all speckle
dynamics are captured by the aperture, and the dy-
namic length vτc reaches its maximum possible value
of ω. For smaller apertures, it becomes possible for
the speckle translation length j�Δxt;Δyt�j to exceed
the length-scale of the aperture, effectively resulting

in a pure translation measurement. When this is
true, the dynamic length becomes sensitive to the
length-scale of both the aperture and individual
speckles. In Fig. 7, we see the dynamic length
decrease with the size of the aperture except for at
points z∕zf � f0.5; 1g, where it remains constant
for all apertures shown. At these points, the speckle
translation rate Vs goes to zero for nonzero surface
speed v (see Probe 1 in Fig. 6). Under this pure
boiling condition, an aperture of any size will observe
the speckle pattern descend into disorder at the
same rate.

Simulated PDV signals were produced by numeri-
cally integrating the circular aperture function in
Eq. (8) over the diffracted intensity field in the obser-
vation plane for a series of speckle patterns, yielding
an instantaneous integrated intensity time-series.
Ten thousand speckle patterns were produced and
spatially integrated for each tested set of parame-
ters. Typically, the radius of a circular PDV probe
aperture is around 1 mm, so simulations were car-
ried out for apertures with radii of 0.25, 0.5, and
1 mm. Figure 8 provides a visualization of the proc-
ess we used to simulate PDV time-series and gener-
ate the correlation function of spatially integrated
speckle via numerical autocorrelation.

Simulation results closely approximate their pre-
dicted values with a few exceptions; the exceptions
are likely due to our use of a 10,000 data point time-
series in the numerical autocorrelation. In PDV
applications, it is common to use in the range of
25,000–50,000 data points to generate a more sta-
tistically robust autocorrelation curve, but this was
impractical from the simulation standpoint, where
computational resources were limited.

4. Conclusions

The characteristic time scale of speckle intensity fluc-
tuations in the PDV signal is directly related to
speckle dynamics, which, in turn, are related to lat-
eral surface speed. Various parametric dependencies
exist between the shape and geometry of the illumi-
nating laser beam and the resulting speckle dynam-
ics; we characterized these dependencies analytically
via the space–time correlation function of the dif-
fracted electric field and substantiated them through

Fig. 7. Solid curves correspond to theoretical dynamic lengths for
spatially integrated speckle using a focusing probe (Probe 1) and
Gaussian soft apertures of different radii. Simulated data points
correspond to identical optical conditions and hard circular
apertures.

Fig. 8. PDV signalW�z; t� is simulated by numerically integrating our aperture function D�x; y� over the intensity field in the observation
plane (three aperture functions are shown above). After 10,000 iterations, we build up a time-series (center), where the vertical axis rep-
resents instantaneous integrated intensity and the horizontal axis corresponds to cumulative displacement of the scattering surface.
Numerical autocorrelation is performed on the signal yielding μW�z; τ� (right) and the dynamic length is given by the value of vτ, where
the correlation function drops to e−1. For the particular optical arrangement used in this example, dynamic length increases with the
radius of our circular aperture function.
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numerical simulation. By evaluating the normalized
correlation function of spatially integrated speckle,
we related the size of a detecting aperture to the char-
acteristic time-scale of speckle intensity fluctuations
in the PDV signal. Analytical and simulation results
show close agreement andqualitatively agreewith re-
cent experimental findings.

This work holds immediate relevance to PDV and
other single-beam optical velocimetry applications
where speckle is observed, potentially providing a
basis for simultaneously measuring a surface’s axial
velocity and lateral speed with a single probe. Future
work must examine how dynamic speckle manifests
in the PDV signal when an axial velocity component
is included in the surface velocity vector. Such a sol-
ution could be directly applied to PDV data, allowing
experimentalists to extract axial velocity via conven-
tional Fourier-analysis and lateral speed via analysis
of speckle intensity fluctuations.
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