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Strain, as an easy and clearly defined concept in continuum mechanics, has no direct counterpart
in atomistic models. Existing methods, relying on the concept of atomic coordination number, do
not provide a complete description of volumetric and deviatoric strains across metallic nanocrys-
talline microstructures. To overcome those limitations a new method is proposed: the Voronoi Cell
deformation (VCD) fully accounts for the local geometry and provides a description of the strain
field independent of the atomic coordination. As a typical case of study, a large atomic cluster of
200 Al grains (ca 2 million atoms) and overall size of 33 cubic nanometres was considered.

Keywords: Strain at the Atomic Level, Nano-Polycrystalline Cluster, Microstrain, Voronoi
Tessellation.

1. INTRODUCTION

Atomistic modelling is increasingly employed to study
properties and behaviour of materials under different
conditions.1 This is particularly valuable in the field of
nanostructured materials where the microstructures can be
created using space filling models2�3 and then simulated by
Molecular Dynamics (MD). Although results do not always
match those of traditional experiments, this approach is
informative and can most frequently capture the main fea-
tures of the physical phenomena of interest.4–7 The limited
extension of the time scale commonly accessible to MD
simulations penalizes some applications, like those con-
cerning plasticity, but is perfectly adequate to represent
thermal and elastic properties.
A major task is extracting models of behaviour compat-

ible both with the macroscopic observation and with the
MD scale. Strain, for example, is not properly defined at
the atomic level because the traditional definition, based
on continuum mechanics, does not apply to discrete sys-
tems on the atomic level. The complexity is even larger if
atomic vibrations are to be considered as well.
Among the available methods, Neighbours Analysis

(NA) studies the local geometrical arrangement of neigh-
bours to detect structural features at the atomic level.8�9

NA is a powerful tool to identify defects and phases in
large systems, but is intrinsically unable to provide strain
values. Therefore, NA is complemented by methods to cal-
culate local pressure and stress,10–12 as those properties are

∗Author to whom correspondence should be addressed.

directly related to the energy of each atom, with no need
to define or calculate strains.
More recently, methods have been proposed to com-

pute the local atomic strain by comparing the arrange-
ment of neighbours with respect to a perfect reference
structure.13�14 A major drawback is the impossibility to
deal with strongly deformed structures, where atoms may
not be fully coordinated. To overcome this limitation we
propose the Voronoi Cell Deformation (VCD) method.
Based on Voronoi Tessellation, the VCD avoids the some-
how arbitrary concept of cut-off radius, required by exist-
ing methods.13�14 Moreover, as it makes no reference to the
atomic coordination, the VCD can be used across heavily
defected regions as well as in the core on nanostructured
domains.

2. METHODS

2.1. Molecular Dynamics Simulation

A nano-polycrystalline aluminium microstructure was cre-
ated by randomly placing 200 centres in a box of 323.96 Å
side length, using a homogeneous Poisson point process
with parameter � = 1.15–17 Cells were identified in the
box using Voronoi Tessellation and considering Period-
ical Boundary Conditions. This microstructure was then
evolved by an inverse Monte Carlo method (Constrained
Voronoi Tessellation18) to obtain a lognormal grain-size
distribution of rounded grains.
Each cell was filled with a randomly oriented ideal fcc

structure (Al unit cell parameter, a0 = 4�0495 Å); atoms
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Fig. 1. Fluctuation of temperature and volume of the cluster during the
equilibration process.

closer than 85% of the minimum distance in the fcc struc-
ture (a0/sqrt(2)) were clipped as suggested in Ref. [19].

The starting crystalline microstructure was equilibrated
at 300 K via the LAMMPS code20 using the Embedded
Atom Method (EAM)21 and the Al potential of Jacobson,
Norskov and Puska.22 Two independent analyses were
done respectively at 1 ns and at 2.3 ns since the begin-
ning of the simulation (Fig. 1). At both times, 150 frames
of the microstructure were sampled with a time inter-
val of 2 ps, chosen to achieve full independency of the
positions from thermal vibrations (other approaches are
possible13�23). The atomic positions were averaged over the
150 frames to obtain models free of any dynamic strain
contribution.

2.2. Strain at the Atomic Level

In solid mechanics, the local deformation is expressed by
a normalized gradient tensor under the continuum approx-
imation. This assumption is not valid in MD simulations,
as the atomistic nature of matter is intrinsically discrete.
A reference configuration is needed to define the local

strain. If the whole un-deformed microstructure is known,
the local strain matrix can be directly computed from the
minimization of the squared difference between the ana-
lyzed and the ideally deformed structures.24 When the ref-
erence is unknown or have no physical meaning (e.g.,
close to the interface boundary zones in a polycrystalline
system), a local crystallographic structure can be taken in
place of the global one.
Two methods have been recently introduced to com-

pute the strain matrix by comparing the arrangement of
the neighbours with respect to the ideal local configura-
tion. Both start by finding the neighbours and assigning
them a specific order. Then, the method of Stukowsky et al.
involves a linear least-square fitting of a strain matrix to
transform the ideal structure into the observed (deformed)
one.13 As an alternative, the Crystallography Cell Defor-
mation method (CCD)14 estimates the significant geometric

deformation of the local structure by identifying the prin-
cipal crystallographic axes and lengths. Hence, the strain
matrix is built by computing the direct and cross deforma-
tion coefficients.
Those methods are characterised by three principal

features:
(i) neighbours are identified by considering an arbitrary
cut-off radius.
(ii) deformation is computed by exploiting some topolog-
ical properties of the local structure (e.g., symmetry).
(iii) deformation at the atomic level is linked to the
arrangement of the whole set of near neighbours and so a
fully coordinated structure is needed.

Those assumptions, unfortunately, limit the applicability
of the corresponding methods and in particular do not
allow the strain in the core of the deformation field to be
computed.

2.2.1. The Voronoi Cell Deformation Method �VCD�

The Voronoi Tessellation (VT) method is a suitable tool to
investigate the arrangement of the neighbours.25

As shown in Figure 2, each atom is the generator of a
Voronoi Cell (VC) dual to the neighbours’ arrangement.
The geometric properties of the VC can be therefore anal-
ysed in place of the unit crystal structure. As a matter of
fact, the strain at the atomic level affects the VC geometry,
and thus the moments of mass. If the density of mass is
assumed uniform in space, the moments of mass can be
replaced by the moments of volume (see Appendix A).
The strains at the atomic level along the principal direc-

tions are easily estimated by the ratio of the principal iner-
tia of the deformed and reference structures. Linking the
inertia values of the VCs to the equivalent parallelepiped
solids, the three stretch ratios (0 < � < �) can be fully
defined. From them, the strain can be computed as:

�= 1
k
��k−1� (1)

where �= 1 or �= 2 allow, respectively, the engineering
and Lagrange strain to be obtained. In the end, the strain
matrix can be written in terms of the principal strain asso-
ciated to the principal inertia.
The space-filling nature of the VT ensures the congru-

ence of the resulting strain values. The volumetric strain
at the atomic level can be measured directly from the first
moment of mass or it can be computed by the product of
the stretch ratios. In both cases the macro-scale deforma-
tion is consistent with the local deformation. Therefore,
a discrepancy is detected between measured and real crys-
tal deformation, which is due to the assumption of the
equivalent inertia of a parallelepiped solid involved.
A variant of the VCD can be introduced to better take

the geometric positions of the neighbours into account: the
VT is again employed to identify the neighbours accord-
ing to the procedure proposed by O’Keeffe.26 The strain
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Fig. 2. Voronoi tessellations for a perfect (a) and for a distorted (b) fcc structure.

at the atomic level is then computed from the fluctua-
tion of the moments of mass (see Appendix B). Contrary
to the above, the atomistic nature is fully exploited here:
the mass is therefore considered as concentrated at each
atom position (Voronoi moment of mass Cell Deforma-
tion method (VmmCD)). Without losing in generality, each
atomic position is assigned a unitary mass: in agreement
with the geometric nature of the deformation, each Voronoi
neighbour contributes to the local structure with a magni-
tude related to the size of the linked VC face. The point
masses need thus being weighted by the relative VC-side
surface area (weighted VmmCD method).

2.2.2. The Evolutional Voronoi Cell
Deformation Method �eVCD�

The VCD method solves the strain matrix by assuming a
link between inertia values of the VCs and of the equiva-
lent parallelepipeds. This is true only in some crystal struc-
ture, e.g., the simple cubic. An evolutional algorithm has
to be used to avoid any link to a specific crystallographic
VC shape.
The principal directions, the inertia and the true vol-

umetric deformation at the atomic level were computed
on a given cluster by using the VCD method. Starting
from applied deformations (�i, �j and �k�, the agreement
of the deformed reference structure with the configura-
tion detected in the model is evaluated by a likelihood
function 	2:

	2 =
3∑

i=1

(
IMODEL
i − IREALi

)2
(2)

which is equal to the sum of the squared difference
between the inertia of the real and of the refined structure
(model). The deformations that provide the best matching
between data and model are selected as principal strains at
the atomic level.
The efficiency of the procedure can be optimized by

suitable algorithms. For instance, the true volumetric
deformation, computed by the VCD method, is exploited

to decrease the number of degrees of freedom of the prob-
lem. In fact, one of the stretch ratios can be computed
from the volumetric strain as:

�vol = �i�j�k ⇐⇒ �i =
�vol

�j�k

i �= j �= k (3)

Although computationally time consuming, the eVCD
can be used with highly distorted structures or with atoms
that are not fully coordinated, giving values of the princi-
pal strains comparable to the real ones.

3. RESULTS AND DISCUSSION

3.1. Isotropic and Anisotropic Strains

The deformation field in the atomistic models was char-
acterized by the most significant isotropic and anisotropic
tensor components. The local structure, surrounding each
atomic position, was defined. Then, the principal strain
tensor (�I, �II and �III� and thus the volumetric and
deviatoric components were computed by the following
equations:27

�vol=�I+�II+�III+�I�II+�I�III+�II�III+�I�II�III (4)

�dev=
2
3

√
��I−�II�

2+��I−�III�
2+��II−�III�

2 (5)

The distribution of those two scalars were checked in the
case of an elementary deformation field. A square paral-
lelepiped cell was filled with a periodic fcc crystal struc-
ture; then, every atomic position was displaced accordingly
to the local strain components (Fig. 3).
Periodical Boundaries Conditions (PBCs) were applied,

achieving fully coordinate structures at each atomic posi-
tion. That assumption allowed the CCD method to estimate
the strain at the atomic level everywhere in the model. At
the same time, the local detectable structures were geo-
metrically affine to the reference crystal structure. The real
and estimated local volumetric and deviatoric strain fields
obtained with different computing methods, are shown in
Figure 4.

8548 J. Nanosci. Nanotechnol. 12, 8546–8553, 2012
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Fig. 3. Strain field diagrams in the square parallelepiped cell model.

The absolute values of the volumetric strain computed
by all methods are close to the expected (true) ones. Only
the weighted VmmCD method slightly changes the pattern
of the strain field in a non-linear way. Conversely, the val-
ues of the deviatoric strain have a strong dependence on the
computing method. Again, the CCD and the unweighted
VmmCD methods gave results close to the real. The VCD
and the weighted VmmCD methods are close, but the pat-
terns are stretched and the absolute values are significantly
different from the real ones. Moreover, if the local struc-
ture would be highly distorted or not fully coordinated, the
CCD method would be unable to work. Also an unweighted
VmmCD would be affected by an incomplete coordination.
The weighted VmmCD, the VCD and the eVCD meth-

ods can always be used, either in the core of the defects
and through the grain boundaries in a polycrystalline
microstructure. The mismatch of the deviatoric strain com-
puted by those methods is due to the underlying assump-
tions and to their capability to assess the distortion of the
crystallographic symmetries (Fig. 5). The assumption of
the equivalent inertia of the parallelepiped solid in place of
the real VC, which is employed in VCD method, could be
replaced by more sophisticate functions. Further improve-
ments are needed to fully solve the deformation at the
atomic level through the VCD method.

3.2. Strain at the Atomic Level in a Nano-
Polycrystalline Microstructure from MD

The strain at the atomic level was computed in the numer-
ical model of an Al nano-polycrystalline microstructure
using the discussed analysis methods and an fcc crystal
structure as a reference (unit cell size of 4.04950 Å).
The deformation field was characterized in the

microstructure equilibrated using the Embedded Atom
Method potential, respectively after 1 ns and after 2.3 ns
from the start of the simulation (Fig. 6). No significant
differences were detected in the strain fields computed at
the two equilibration times.28 In particular, a Single Frame
(SF) and the system Averaged over 150 Frames (AF) were
investigated. Figure 7 shows the strain at the atomic level
on a planar cross-section of the model at an equilibration
time of 2.3 nano seconds.
It is quite evident that the CCD, as well as any method

based on the crystallographic geometry, can provide results

Fig. 4. Strain field computed by the applied deformation (a), (g) and
estimated by several methods: CCD (b), (h), non-weighted VmmCD (c),
(i), weighted VmmCD (d), (j), VCD (e), (k), eVCD (f), (l). The volumet-
ric (a)–(f) and deviatoric (g)–(l) strain at the atomic level in the model
are showed as the most significant deformation properties.

only in regions where atoms are fully coordinated and the
local structure is not too much distorted. This condition is
commonly not satisfied at the grain boundary, and in the
core of the defects. Hence, only a fraction of the strain
field can be investigated by CCD and gaps in the strain
maps appear (white regions in Fig. 7). Moreover, a semi-
stochastic fluctuation of the strain in the model, caused by

J. Nanosci. Nanotechnol. 12, 8546–8553, 2012 8549
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Fig. 5. Voronoi tessellations of a deformed fcc structure made by dis-
placing uniformly the positions of a wall side.

the diffuse dynamic contribution, is clearly evident in the
single frames and tend to be cancelled out in the model
averaged over a long time period.
The VCD method, being unaffected by the local crys-

tallography, is able to provide a strain value associated to
each and all atomic positions. A smooth increase in local
strain close to the boundaries appears in Figure 7. The
boundary embodies several local distorted configurations,
allowing the structures of neighbour grains to be joined
together. The quick increase of the strain intensity near
the grain boundaries is due to the small dimensions of the
grains (about 6 nm), causing a steep change from core to
boundary regions.
Figure 8 shows the volumetric strain distributions for the

whole cluster computed using the CCD and VCD methods
on the single and on the averaged frame. Accounting for
the intense deformation at the grain boundary has a dra-
matic effect on the distribution of the local strain over the
whole cluster. The asymmetry in the distributions is caused
by the overlapping of the contributions from core and
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Fig. 7. Volumetric strain at the atomic level in a cross-section of the
numerical model computed by CCD (a), (c) and VCD (b), (d) methods
for the Single Frame (a), (b) and Averaged Frame (c), (d) cases.

boundary regions. The time average (AF) leads to sharper
distributions as the smearing effect of the dynamic contri-
butions is removed. Again, the semi-stochastic nature of
the local deformation due to the thermal movement leads
to more symmetric distribution functions.
The deviatoric strain is more deeply affected by

the dynamic contribution than the volumetric strain
(cf. Fig. 9). In SF, the local structure is constantly distorted
due to the thermal movement. The time dependent distor-
tion is removed by the average of a suitable sequence of
frames. The more uniform behaviour of the atoms in the
core of the grains allows the averaged local structure to be
less affected by a spread anisotropic deformation. Hence,
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Fig. 9. Frequency distributions of the local deviatoric strain in the
numerical model computed by VCD method for the Single Frame (open
symbol) and Averaged Frame (full symbol) cases.

a strong asymmetry in the distribution of the deviatoric
strain can be linked to a difference in behaviour of core
versus boundary. This pronounced difference allows us to
clearly identify the boundary region.

Fig. 10. Frequency distributions of the local volumetric (a) and deviatoric (b) strains in the numerical model computed by VCD for the Averaged
Frame referred to the local crystalline symmetry (see text for details).

Fig. 11. Volumetric (a) and deviatoric (b) strain at the atomic level along a line section through the cluster.

Figure 10 shows the distribution of the volumetric and
deviatoric strains at the atomic level associated to the local
crystalline symmetry. The latter was defined as:
(i) the number of missing neighbours in the case coordi-
nation is less than 12;
(ii) the number of contiguous shells having fully coordi-
nated neighbours in the case of fully coordinated position.

An inverse correlation is found between the local crys-
talline symmetry and the variance of the distributions, for
both the volumetric and deviatoric components. A sharp
discontinuity in the trends appears when crossing the con-
dition of full coordination. While the position of the volu-
metric strain distribution is weekly dependent on the local
crystalline symmetry, the deviatoric distribution tends to
shift to higher strains for decreasing coordination.
The three principal types of strain in the system (usually

quoted when dealing with stress and diffraction29) can be
clearly identified from the mean volumetric and deviatoric
strain computed along a line section in the model (Fig. 11).
An isotropic compression of 0.030 and anisotropic compo-
nents of 0.005 are found as the I type of the local strain in
AF model. The type II and type III of both the volumetric
and the deviatoric strains are close to zero. In the case
of the SF model a significantly broader strain fluctuation

J. Nanosci. Nanotechnol. 12, 8546–8553, 2012 8551
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appears. This feature hides the marked changes in the
strain intensity close to the defects, rendering more diffi-
cult to correctly identify the boundary regions. In AF, how-
ever, the transition from the core to the boundary zones is
clear and extremely sharp. Moreover, the deviatoric strain
in the SF model and in the AF model shown an evident
gap due to the dynamic component. This behaviour further
confirms the intrinsic isotropic deformation of the crystal-
lographic structures in the core of the grains. Hence, when
a time average computation is employed, the anisotropic
contribution in the grain cores tends to disappear.

4. CONCLUSION

A new method has been presented for computing the strain
at the atomic level. Grouped under the name of Voronoi
Cell Deformation (VCD), the different forms of the pro-
posed algorithm are all based on a Voronoi Tessellation
to identify the local atomic arrangement. The principal
stretch ratios are computed from the differences of the
inertia between the real and a reference configuration, also
considering a uniform or a concentrated distribution of
mass. The use of tessellation allows strains to be computed
also in the grain boundary regions where traditional meth-
ods based on the local crystallography cannot be used.
The VCD was compared with the known CCD method

for the analysis of a simulated nano-polycrystalline
microstructure. Contrary to the CCD, which does not allow
highly distorted regions to be considered, the VCD is
able to provide information in any point in the cluster.
A marked difference in behaviour is detected in the grains
between core and boundary. A distribution of the strain
with large changes at the interface between grains is shown
by studying the strain along linear sections in the cluster.
Differences between the results of CCD and VCD are as
expected, as the latter considers all atoms, including those
in highly deformed positions, as in the grain boundary
regions.

APPENDIX A

Deformation of Convex Polyhedra
from Volume Properties

The deformation of a convex polyhedron is proportional
to the change in the geometric properties such as the
moments of volume. The latter are easily computed e.g.,
by the equations proposed by Tuzikov et al.30 In particu-
lar, as the VCs are convex polyhedra (bound by polygonal
faces), they can be decomposed into tetrahedra that divide
the faces into triangles (Fig. 12).
If we define the matrix:

A=

⎛
⎜⎜⎝
a1 b1 c1

a2 b2 c2

a3 b3 c3

⎞
⎟⎟⎠ (6)

Fig. 12. Geometric description of a tetrahedron in space.

we can calculate the moment of mass of the whole poly-
hedron P :

mP�str =
∑
T

mT � str (7)

in terms of the moments of mass of the N composing
tetrahedra T :

mT �str =
∫
T
�xs

i x
t
jx

r
k�dxidxj dxk

i�j�k=1�����3 i �= j �=k (8)

Just three moments of mass for each tetrahedron:

mT �100 =
1
24

�A��a1+b1+ c1� (9)

mT �101 =
1

120
�A��2a1a3+a1b3+a1c3+a3b+2b1b3

+b1c3+ c1a3+ c1b3+2c1c3� (10)

mT �200 =
1
60

�A��a2
1+b2

1 + c21 +a1b1+a1c1+b1c1� (11)

suffice to calculate the whole moment of inertia tensor IP :

IP

=
⎛
⎝mP�020+mP�002 −mP�110 −mP�101

−mP�110 mP�200+mP�002 −mP�110

−mP�101 −mP�110 mP�200+mP�020

⎞
⎠ (12)

The principal moments and directions of inertia can be
then computed as the eigenvalues and eigenvectors of IP :

I0P =

⎛
⎜⎜⎝
Iii 0 0

0 Ijj 0

0 0 Ikk

⎞
⎟⎟⎠ (13)

Linking the inertia values of the VCs to the equivalent
parallelepiped solids, the three positive stretch ratios are
fully defined by the equations:

�n =
LF �n

L0�n

⇔ xF �n = �nx0�n n= i� j� k (14)

8552 J. Nanosci. Nanotechnol. 12, 8546–8553, 2012
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Jkk = �Iii+ Ijj − Ikk�/2=
xixjx

3
k

12
(15)

JF �kk
J0� kk

= xF � ixF jx
3
F �k

12
12

x0� ix0� jx
3
0� k

= �x0� ix0� jx
3
0� k��i�j�

3
k

�x0�ix0� jx
3
0� k�

= �i�j�
3
k (16)

�k =
[(

JF �kk
J0� kk

)4/(
JF � iiJF � jj

J0� iiJ0� jj

)]1/10

(17)

where LF and L0 are the final (F ) and initial (0) lengths,
respectively.

APPENDIX B

Deformation of Convex Polyhedra
from Mass Properties

When concentrated masses are considered, Eq. (7) is
replaced by:

mP�str =
∑
T

wT x
s
i x

t
jx

r
k (18)

where wT = ST /SP or wT = 1 for the weighted and
unweighted VmmCD, respectively. The term ST is the sur-
face area of the face of tetrahedron T shared with the
polyhedron P , whereas SP is the total surface area of the
polyhedron.
The stretch ratios along the principal directions can

be directly computed without any additional assumption
from the principal inertia of the deformed and reference
structures:

�k =
[
IF � ii+ IF � jj − IF �kk

I0�ii+ I0�jj − I0�kk

]1/2

(19)
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