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Realistic nano-polycrystalline microstructures:

beyond the classical Voronoi tessellation
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A modified Voronoi tessellation (MVT) is proposed for the computer
simulation of realistic microstructures. Compared with standard tessella-
tions, the present algorithm provides the desired grain size distribution
in a one-step, non-evolutionary procedure. This is obtained by relaxing
the constraints of Voronoi tessellation on position and orientation of the
grain boundaries, with the only side effect being the formation of a limited
amount of eliminable voids. As an example, it is shown how to directly
obtain a distribution of grains of given variance and with a shape
statistically close to the lognormal one.

Keywords: nanograined structure; microstructure; molecular dynamics;
Voronoi tessellation; grain size distribution

1. Introduction

Atomistic modelling is increasingly employed for the study and prediction of the
properties of materials at the nano scale. The starting point of all these studies
is a realistic model for the microstructure [1–3], including grain shape and size
distribution, chemical composition, atomic positions, as well as specific models
of grain boundaries. The microstructure, in fact, plays a key role in determining
the mechanical and physical properties of a polycrystalline aggregate [4–7]: poor
microstructure modelling might lead to results that, albeit correct, are not represen-
tative of a real object [8]. Statistical properties are especially relevant: grain
arrangement, shape and size distributions, as typically observed by a transmission
electron microscope, have usually a peculiar behaviour that is far from being random
[9] and thus needs to be accurately reproduced.

To simulate amicrostructure, a net of connected closed cells should be created. The
operation, also known as space tessellation, is not trivial. Several algorithms have been
proposed for periodic [10], aperiodic [11–13] and for stochastic tessellation:
Delaunay triangulation (DT [14,15]), Voronoi tessellation (VT [16–21]), Laguerre
tessellation (LT [22,23]) and Johnson–Mehl tessellation (JMT [24,25]) are tradition-
ally employed to create interconnected cells with no gaps [3]. The starting point
for all tessellations is a box, in most cases with imposed periodic boundary conditions
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(PBCs), in which a set of points (centres or generators) is laid. The point creation
process and the algorithm generating the associated cells differentiate the various
tessellation methods. A homogeneous Poisson point process with parameter � is a
convenient and commonly adopted generator, as it is compatible with the study
of aggregates obtained from random nucleation sites [19,20,26].

Voronoi tessellation (VT) is the most popular in several fields of research [27–29]
owing to its simplicity [30–33], space-filling nature and to the availability of
theoretical results on the topological properties (especially in the case of Poisson–
Voronoi tessellation (PVT)) [19,20,26,34–40]. Although VT leads to microstructures
closely resembling real ones, topological and statistical properties (e.g. dihedral
angles, number of triple junctions, area of grain boundaries and junction lengths)
are not always compatible with experimental results [41]. For instance, in a PVT the
cell volumes follow a distribution close to a gamma distribution [6,18], certainly not
the most common in the literature on materials analysis where the lognormal
distribution prevails [1–2,6,42–45]. To obtain grains with a different distribution, the
available options are to employ a different point process (e.g. Ginibre–Voronoi [33]
or Laguerre–Voronoi [46–48] tessellations), or to start with a traditional VT
and to modify the positions of the generators using an evolutionary approach,
e.g. constrained Voronoi tessellation (CVT) [8,41] or the method of Suzudo and
Kaburaki [49].

Neither the traditional tessellation algorithms, nor these alternative methods,
however, are able to directly produce an ensemble of cells with a lognormal
distribution of volumes of arbitrary variance. The CVT has in principle the flexibility
to do that for distributions narrower than the PVT, but always with tedious extra
computing and at the expenses of the grain shape that becomes arbitrary.

In this paper we propose a new method, the modified Voronoi tessellation
(MVT), that eliminates most limitations of traditional tessellations and provides
a network of cells with a given size distribution, albeit at the expenses of leaving some
eliminable small voids. To be fully correct, the result is therefore a pattern and not
a tessellation. It will be also shown that a distribution of domains possessing a target
variance and a shape statistically close to the lognormal can be obtained directly
from a random distribution of centres, without the need for extra evolutionary steps.
The topological properties of the obtained ensemble will be presented and compared
with the existing literature.

2. Modified Voronoi tessellation (MVT)

Voronoi tessellation enforces a dependence of the cell shape on the mutual
positioning of the generators: this limits and constrains the possible configurations
and topological properties that can be obtained when describing the packed
arrangements of objects with a given distribution. To better clarify this point and its
implications, let’s consider the simple case of a cluster of randomly arranged spheres
(effectively mimicking an aggregate of equiaxed grains) with a lognormal distribu-
tion of diameters (see Figure 1a). Clearly, the Voronoi tessellation obtained from the
centres of the spheres does not match the actual microstructure (see the dashed lines
and the shaded area in Figure 1a). Voronoi tessellation is in fact unable to randomly
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pack a given set of unequal spheres: once a (quasi-)spherical shape of the cells is
chosen and a given sphere is selected (grey cell in Figure 1b), the possible size and
position of the neighbouring cells is determined. Given a point, the direction where
to place a neighbour determines the orientation of a face of the cell (direction
and face are orthogonal), whereas the distance fixes the cell size along that direction.
To avoid the unphysical resulting superposition (cf. Figure 1b), the neighbouring
objects should then elongate (Figure 1c). This is an intrinsic limitation of Voronoi
tessellation that goes beyond the sophisticate evolutionary procedures employed
e.g. by Gross and Li [8] and by Suzudo and Kaburaki [49] to build a microstructure
with a given distribution. The impossibility of VT to pack equiaxed objects is also
the main reason why any evolutionary method inevitably creates non-spherical cell
shapes (see Figure 1c).

As a matter of fact, any tessellation based on the classical norm (excluding the
JMT) would lead, in a real case, to polyhedral grains approximating the spheres
and not to true spheres. The microstructure of Figure 1a is actually compatible
with a Laguerre tessellation with generators in the centres of the spheres; to obtain
a Laguerre tessellation of a given sphere set, first a random close packing of spheres
(RCPS) must be calculated [47]. This computationally-intensive step cannot be
avoided and is not easily parallelisable.

To quickly and directly reproduce an arrangement like the one depicted in
Figure 1a starting from randomly positioned centres, we propose a modified
Voronoi tessellation (MVT). The main differences between PVT (but also VT in
general) and MVT lays in the configuration of the cell–cell interface. In particular, its
position along the distance of neighbouring centres (plane interface position, PIP)
and its orientation with respect to the plane orthogonal to that vector (plane
interface orientation, PIO) are modified. Changing these factors, i.e. going towards a
more realistic nucleation/growth process (as in the LT and JMT methods), allows
the simulation of realistic microstructures with various statistical distributions of
geometrical properties and grain types.

The release of position and orientation of the plane interface is obtained
by introducing two additional factors in the geometric procedure of the VT

Figure 1. (a) Random packing of spheres with a lognormal distribution of diameters. The
centres of the spheres form the dashed Voronoi net. (b) Trying to pack spherical objects
around a given (quasi-)spherical one (grey). The Voronoi points needed to create the grey
object must be centres of intersecting spheres. (c) To avoid intersections, the neighbouring
objects have to be deformed.
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(cf. Figure 2): a growth factor (GF) displacing each PIP from the mid-point between

two generators and a rotation factor (RF) that changes the associated PIO.

The growth factor is obtained as the product of a cell growth factor (CGF) isotropic

for the cell, plus a face growth factor (FGF) taking into account a directional

dependence of the cell expansion (or contraction). The PIP along the segment

connecting two nearest centres A and B is obtained by equilibrating the GF of the

corresponding grains, as in:

GFA ¼ CGFA � FGFAB, GFB ¼ CGFB � FGFBA,

PIP ¼ dABGFA=ðGFA þGFBÞ,
ð1Þ

where dAB is the distance between A and B.
To allow for PIOs not permitted by the Voronoi tessellation, the rotation factors

(or better the rotation angles ( , �) along two normal axes centred on the Voronoi

PIP) are introduced. Clearly, the VT is obtained from MVT assuming constant GF

and null RFs.
The analogies between MVT and VT suggest the possibility to apply an

evolutionary procedure (that can be seen as a combination of those proposed

in [8,49]) to further refine the resulting microstructure and to virtually obtain any

predetermined statistical property for the aggregate. This constrained modified

Voronoi tessellation (CMVT) will be presented elsewhere [50].
The cells in MVT are convex polyhedra, but they are usually not space filling:

some void regions are created at the cell junctions, as the relaxation of the Voronoi

tessellation constraints does not guarantee the compatibility of the geometry of the

cells. These voids can be seen as a closed porosity and can form connected networks

so counting them has a limited meaning. The presence of the voids is not a serious

limitation for the aim of the present work, i.e. the application of the MVT to build

a microstructure. Independently of the porosity, the boundary microstructures

obtained by filling the cells with atoms are non-physical and need at least a MD

equilibration [41,51]. Therefore, as there is no definitive experimental result on the

Figure 2. Neighbouring grains. (a) Traditional Voronoi tessellation. Poisson–Voronoi
generators A and B and corresponding Voronoi PIP (P). The distance between the generators
dAB and the distance of the PIP from A (rA) are also shown. (b) Modified Voronoi tessellation.
The three possible operations introduced by the modified method, i.e. shift and two rotations
of the plane interface.

Philosophical Magazine 989

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 d

i T
re

nt
o]

 a
t 0

1:
59

 2
1 

Ju
ly

 2
01

2 



boundary structure [52], several methods can be proposed to take the voids into
account or to eliminate them when filling the cells with atoms: some alternatives
will be proposed in next section.

As shown in the following, a certain deterministic nature exists in the MVT,
thus allowing for a direct linking of input parameters and statistical properties of the
resulting simulated models.

3. MVT simulations: results and discussion

3.1. Atomic density and voids in MVT-derived microstructures

To visually compare the effects induced by different point growth factors on the
resulting microstructure, a pseudo-planar case was simulated. A set of centres
was produced using a Poisson process with �¼ 1 on a square planar region with
periodic boundary conditions. Starting from the same set of 14 points, four
different microstructures were generated using different MVT setups (see Figure 3).
In Figure 3a, the classical PVT is shown: the interfaces are halfway between
neighbouring points and space filling is guaranteed. In Figure 3b a lognormal
distribution of CGF described as:

f xð Þ ¼
1

x�
ffiffiffiffiffiffi
2�
p exp �

ln x� �

2�

� �2
 !

ð2Þ

with �¼ 0.30, �¼ 1.00 was chosen. The shape and size of the domains modifies and
a fraction of empty volume is generated in the impingement points of three or more

Figure 3. Changes in the microstructure caused by a different choice of model parameters.
(a) Voronoi construction. (b) MVT with a lognormal distribution of CGF, �¼ 1, �¼ 0.30.
(c) MVT with different FGF (100 for h1 0 0i, 75 for h1 1 1i and 50 for h0 1 1i). (d) MVT with
random perturbation of the PIO (limited to �20�). In (e), (f), (g) and (h), the detailed
construction of a cell with the conditions (a), (b), (c) and (d), respectively. The dashed lines
show the modifications occurring to the Voronoi cell in the various cases.
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grains. The quantity and the extension of the void regions can be changed by using

a more complex set of parameters: in Figure 3c for instance three different FGF

(100 for h1 0 0i, 75 for h1 1 1i and 50 for h0 1 1i; directions referred to the orientation

of the local crystallographic reference chosen for each cell) are selected, whereas in

Figure 3d a random perturbation of the interface angles (in the �20.0� range) is

applied.
The incoherent positioning of the interfaces is the cause for the presence of voids

in the MVT: this results in a larger flexibility, as a large spread in atomic density

can be obtained by suitably choosing the modelling parameters and by careful filling

of the voids. Coherent modifications in the position of the interfaces would have

resulted in space filling, but at the expenses of MVT generality.
Voids are filled when the atoms are placed inside the pattern of cells. Four

alternatives are here proposed (Figure 4):

(1) leaving voids empty (Figure 4a): this would effectively simulate a packed

aggregate of grains as obtained, e.g. in a packed powder;
(2) filling voids with a glass phase of given density (Figure 4b). This would allow

a system with completely incoherent grain boundaries to be simulated;
(3) filling voids with additional grains possessing independent orientation

(Figure 4c). A fully crystalline structure is obtained, but a possibly unphysical

large fraction of very small grains is introduced in the system;
(4) growing neighbouring grains into the voids (Figure 4d). Slightly irregular

grain shapes are obtained, but maximum density can be reached. The process

is similar to the Johnson–Mehl growing but here a more complex picture of

CGF and FGF can be taken into account.

The maximum quantity of atoms that can be placed in the box is not fixed, but

depends on factors such as:

. the method used to fill in the cells with the crystallographic structure

(for example, a realistic microstructure can be obtained by deleting atoms

closer than 85% of the first neighbours distance [41]);
. the way the pattern of cells is built, and the statistical properties of the

microstructure (size distribution, grains number and shape type).

However, independently of all other parameters, the number of grains

(i.e. centres) is the key factor to determine the relative atomic density (AD, defined

Figure 4. Filling of the void resulting from the MVT with (a) empty space (no filling),
(b) amorphous phase, (c) crystalline phase and (d) extension of the grains. See text for details.
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as the ratio between the actual atomic density and the maximum one) for a cluster

(cf. Figure 5a). Due to the presence of voids, the atomic density obtained with the

MVT is intrinsically lower than that given by the PVT; the difference disappears

when the voids are filled using the fourth model (see list above, cf. Figure 5a).
Increasing the number of centres N causes a decreases of the atomic density and

a corresponding increase in the surface-area-to-volume ratio (SA/V): the two curves

in Figure 5a can be well reproduced by the two exponentials AD¼ 0.92455þ

0.05106exp(N/290.938) and SA/V¼ 0.14626 – 0.1669exp(–N/306.434).
Even for a single grain, full atomic density is never obtained in the general case

unless box and lattice are suitably chosen (e.g. box scaled with respect to the unit cell

and box corners sitting on lattice points).
In any case, nanomaterials cannot be simulated with full atomic density owing to

the presence of a large fraction of lower-density grain boundaries where empty

volume accumulates. The situation presented in Figure 5a, however, refers only

to the geometrical construction: changes are expected when the geometrical

microstructure is evolved using, e.g. molecular statics or molecular dynamics.
The actual values of the input parameters of MVT have a strong effect on the

space filling ability. A decrease in space filling ability is usually observed when

increasing the dispersion of growth and rotation factors: however, the trend is not

monotonous and it is possible to find combinations of parameters which give a better

filling of the space. The relative space filling (SF, fraction of volume occupied by

the cells in a unity volume inside the box) is independent of the density of centres in

the simulation box and decreases steadily for increasing breadth of the input

distribution. As an example, Figure 5b shows the case of a lognormal distribution of

CGF with �¼ 1. The curve can be well modelled as SF¼ 1 – 0.01449� – 0.069477�2.
When increasing the breadth of the input distribution of CGFs, the distribution of

the SF becomes more symmetrical (the skewness approaches zero) and its standard

deviation becomes proportionally larger (see Figure 5b). It is clear that the higher the

� (i.e. the wider the distribution of sizes), the more difficult is to get a random spatial

arrangement of the objects, thus the higher the chances that empty regions (voids)

remain (lower space fill). An increase in space filling with respect to Figure 5b can be

obtained by using the CMVT method [50].

3.2. Statistical properties of the MVT

It is quite interesting to study further the microstructures obtained by MVT when

imposing a lognormal distribution of CGF, all other modification parameters being

zero (i.e. GF equal to CGF). Figure 6a shows the average cell volume (V)

distributions for the microstructures resulting from the application of the MVT

method to the same set of 5000 centres using different lognormal distributions of

CGF. The specimens will be identified as MVT x L y, where x is the number

of centres and y is the � of the lognormal distribution of CGF (�¼ 1.0). Lognormal

curve fits are also provided in Figure 6a as a guide for the eye. For a given

distribution of CGF, the result does not modify if the CGF associated to each centre,

the � of the CGF and the box dimensions are changed.
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(a)

(b)

Figure 5. (Colour online). (a) Relative atomic density and surface-area-to-volume ratio versus
number of centres for four pattern methods: (i) PVT (circle), (ii) CVT with target lognormal
distribution �¼ 0.15 (square), (iii) MVT with a lognormal distribution of CGF having
�¼ 0.10 (diamond) and (iv) same as (iii) but with voids filled according to model F4 (triangle).
(b) Statistical properties (mean and standard deviation) of the relative space filling in the
model versus lognormal � for the MVT as a function of the number of centres: 1000 (circle),
2000 (square), 3000 (diamond), 4000 (down triangle) and 5000 (up triangle).
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(a)

(b)

Figure 6. (Colour online). Cell volume distribution for a few MVT 5000 samples obtained (a)
with different CGF distributions and (b) with fixed distribution (�¼ 0.1) and increasing box
size expressed as number of unit cells along the edge: 100 (circle), 150 (square), 200 (diamond),
250 (up triangle), 300 (down triangle). In (c) and (d), respectively, the distributions of total cell
surface area and number of faces per cell. The curve proposed by Tanemura [56] is shown in
(d) as continuous line.
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The cell volume is just a possible parameter to characterise the size of irregular
objects such as the tessellation cells. The equivalent volume cell radius, total cell
surface area, face surface area and number of faces per cell (NF), are also employed
to characterise the topology of the resulting objects. It can be observed that the
distributions of cell radius and cell surface area obtained with a lognormal
distribution of CGF are close to lognormal too. The cumulative distribution
functions (CDFs) were compared in the case of some samples made by several

(c)

(d)

Figure 6. (Colour online). Continued.
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number of centres (1000 to 5000) and lognormal variances of the CGFs (�¼ 0.10 to
0.50). The largest difference between the observed and the best fitted lognormal
CDFs are below the 5% critical Kolmogorov–Smirnov limit. Moreover, the smaller
the number of centres and the variance of the lognormal distribution of the CGFs,
the higher is the level of significance. For instance, significance is larger than 10%
in the case of MVT 1000 samples. The mean of the resulting distribution depends
on box size and number of points, i.e. on the average volume per point, whereas the
variance depends only on the input parameters and is unaffected by the box size.
This is clearly shown in Figure 6b, which shows analysis of some MVT 5000 samples
made with the same lognormal distribution of CGFs (�¼ 1.0 and �¼ 0.10) but
increasing box size. The independence on box size of the statistical properties allows
a coherent scaling of the results obtained on a sample to any other one.

As expected (Figure 6c), the surface area of the faces and their frequency are
almost inversely related. Quite different is the behaviour of NF shown in Figure 6d:
all simulated microstructures show exactly the same distribution whose mean
(15.5352) is very close to the average facedness of the PVT (2þ 48�2/35� 15.53547
[26,53,54]) and whose shape is compatible with the slightly-skewed generalised
gamma distribution proposed by Tanemura [54]. The agreement comes from the fact
that the mutual arrangement of the centres and thus the average number of near
neighbours, is not changed by the MVT.

The number of faces is sufficient to characterise several topological properties
of the cell. In fact, by using Euler’s formula for convex polyhedra we can relate
NF with the number of vertices (NV) and the number of edges (NE) of a cell as NV –
NEþNF¼ 2. The NV can in turn be computed using the equation: NV¼ 2NF – 4.
The changes in NF and in the average volume of the corresponding cell are usually
linearly correlated through Lewis’ law [55]: hV iNF¼ �L(NF – NF0). In the present
case, however, a parabolic trend is evident (cf. Figure 7a): a parabolic violation of
Lewis’ law has been already pointed out in both simulated and measured dispersed
polycrystalline microstructures [46,41,56–58].

The nonlinear trend seems associated to the process employed to lay the centres
in the box. In fact, limiting the minimum distance between centres eliminates the
nonlinearity: Figure 7b, for instance, shows the modification occurring to Figure 7a
on increasing to 20 Å the minimum distance between generators. Small deviations
from the trends occur at the edges of the NF curve owing to the limited statistics
(number of grains) associated to those points. The parameters of the curves slightly
change with the increase in the standard deviation of the cell volume distributions,
but invariably intercept the axis at NF¼ 3 (degenerate case). This suggests that the
deviation in the slopes of the MVT models is due to the presence of voids, decreasing
the cell volume especially of the larger cells. The influence of the voids decreases with
the cell size and the axis intercept agree with the impossibility to define a closed
polyhedron with less than four faces.

A final check for the properties of the cell ensemble is provided by the ratio
between the average number of faces in all neighbouring cells to a cell of NF faces
(m(NF)) and the number of faces per cell. The relationship is well described by the
Aboav–Weaire law [59]:

NFmðNFÞ ¼ NF½hNFi � �� þ ½hNFi�þ �2�, ð3Þ
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(b)

(a)

Figure 7. (Colour online). (a, b) Lewis plots for the MVT 5000 samples of Figure 6a. The plot
in (b) was obtained by limiting the minimum distance between centres to 20 Å. In (c) the
Aboav–Weaire plot is shown for the MVT 5000 samples of Figure 6a. Fits are proposed for
the limiting cases MVT5000 L 0.1 and MVT 5000L 0.5.
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where � and �2 are fitting parameters. Mathematically, this expresses the tendency
for any random tessellation to have small grains surrounded by large ones and vice
versa.

Plots for the cases analysed here are shown in Figure 7c: the MVT and PVT
methods show exactly the same slope and the same deviation from the best linear fit.
Different distributions, resulting from the PVT and MVT with lognormal CGF, lead
to analogous trends: this is consistent with the fact that both algorithms start with
a similar random arrangement of points and that the MVT does not heavily modify
the number of faces of Voronoi cells (cf. Figure 6). A small downward curvature
in Figure 7c seems to be present, confirming the observation of Hilhorst [53],
thus strengthening the idea that the Aboav-Weaire law might be just a good local
approximation for the correct trend. In the range shown, the modified curve
proposed in [53], i.e. NFm(NF)¼ 8NFþ 23.15NF5/6

� 15.96NF2/3 does not appre-
ciably depart from Equation (3).

3.3. Relationship between input parameters and resulting microstructure

A systematic relationship exists between the input CGF distribution and the
resulting cell size distribution. It should be stressed that different choices can lead
to completely different resulting distributions. For the sake of brevity, just the
lognormal case is analysed in detail. Without losing in generality, a collection of
samples was simulated with increasing number of centres and different lognormal
CGF distributions with lognormal mean �¼ 1. A cubic box with PBCs and a side

(c)

Figure 7. (Colour online). Continued.
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of 100 unit cells was employed. The same naming convention for the samples
proposed before will be used here.

As an example, Figure 8 shows the relationship between the input CGF and the
corresponding mean and standard deviation of the (lognormal) grain volume

(a)

(b)

Figure 8. (Colour online). Mean (a) and standard deviation (b) of the normalised cell volume
distributions as a function of the normalised CGF (whereVCGF is the volume of the cells having
a reference CGF). Data relative to the MVT5000 L 0.10 (circle), MVT5000 L 0.20 (square),
MVT5000 L 0.3 (diamond),MVT5000 L 0.4 (down triangle) andMVT5000 L 0.50 (up triangle).
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distribution. The direct dependence between CGF and mean cell volume (or size

in general) expresses the fact that if the centres would be isolated, their size at a given

time would be proportional to their growth rate. The standard deviation for

each CGF value, on the other hand, is related to the magnitude of the difference

between isolated growth and actual growth (constrained by the interference with the

other centres). Therefore, the growth rate represents somehow the probability

of interference between neighbouring centres. In particular, centres with a small

growth rate (small CGF) interfere with the neighbouring centres after a longer time

than those with a higher growth rate (high CGF).
The PVT method is the simplest case of constant-rate growth. Therefore, the

cell size distribution of a PVT reflects exactly the distribution of the half distances of

the neighbouring centres. In a sample created by the PVT method, the cell radius

computed from the cell volume and from the mean PIs distance show exactly the

same distribution and almost the same values. A change in the size distribution is

strictly connected to any change of the arrangement of the centres. For instance, the

CVT method drives the centres towards a configuration where the distribution

of plane interface distances is comparable with the target cell volume distribution.

As previously noted, this leads to non spherical cells; in particular, cells with the

largest standard deviation are more anisotropic [41]. Removing the constraints

imposed by the Voronoi construction, allows moving the centres independently of

the cell shape: a full control over anisotropy (and therefore roundness of the cells) is

thus possible.
Figure 9 shows a clear parabolic relationship between � of the CGF (�in)

and both � and � of the corresponding cell volume distribution. Independent of the

number of centres, the two parabolas can be parameterised as �¼�0.0674�
2.0149 �2in and �¼ 0.4454þ 2.2455 �2in.

The result is compatible with the PVT where �¼ 0.445 is obtained when fitting

the resulting distribution with a lognormal [26]. The data spread around the best

fit in Figure 9 can be related to the statistics of the corresponding distributions.

The picture does not change if the size of the box, the number of centres and the � of

the lognormal CGF distribution are changed.
Systematic effects related to the simulation parameters can be detected also

for other topological properties such as the average cell surface density (CSD),

i.e. the ratio between the cumulative cell surface and the box volume. Figure 10

shows the trend of the CSD versus the � of the input distribution of CGF.
The average cell surface density decreases with increasing distribution width.

The trend is similar independently of the number of centres, but the actual values

steadily increase with the increasing quantity of generators. An increase of the

standard deviations of CGF distribution causes a general decrease of the global

surface of the cells: in fact, the larger the spread of the cell sizes, the smaller the

volumetric contribution of smaller cells for a constant box volume. It is well

know that in a box of constant volume a system of smaller spheres would have a

larger surface than a system of large ones. For a given distribution, moreover,

an increase in the number of centres causes a decrease of the mean cell size, and

therefore a corresponding increase in the cell surface density, as experimentally

observed.
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(b)

(a)

Figure 9. Relationship between the � of the input lognormal distribution of CGF and the
parameters � and � ((a) and (b), respectively) of the resulting best fitted lognormal output
distribution of V/hV i for specimens of increasing number of centres (1000: up triangle, 2000:
down triangle, 3000: diamond, 4000: square, 5000: circle).
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3.4. Computing performance

We have shown that the MVT can directly provide a microstructure with a given size
distribution variance and with a shape close to lognormal. Unlike the VT, however,
computing time for the MVT is not linearly related to the number of centres, but it
depends on the actual properties of the input distribution. This is a consequence of
simultaneously dealing with all centres and corresponding growth factors to compute
the shape of the resulting cell, while keeping full record of the voids.

The increase in computing time is clear in Figure 11, which shows the total time
required to build a model of 1000 grains in a box with PBCs when increasing the � of
the CGF distribution. Calculations were performed on an Intel Core 2 processor
(4 physical cores) at 2.8GHz in multithread mode (4 computing threads). Clearly the
MVT needs a longer time to deal with the cases where a centre is surrounded by
other centres having a wide variety of CGF: a broader CGF distribution increases
the probability of this condition to be met. Of course, as previously pointed out, the
broader the distribution, the larger the fraction of void space (cf. Figure 5b), thus the
longer time and memory for bookkeeping of information about intersection of
interface planes.

When compared with the few available literature data on advanced tessellation
methods (cf. [49]), the actual values in Figure 11 suggest that MVT can be orders of
magnitude faster than the available algorithms to obtain a target distribution of cells.
In fact, to obtain a target lognormal distribution of 1000 grains on a computer with
80 cores, Suzudo and Kaburaki [49] needed at least 1150 seconds of CPU time

Figure 10. Dependence of the cell surface density versus the � of the input CGF for an
increasing number of centres (1000: up triangle, 2000: down triangle, 3000: diamond, 4000:
square, 5000: circle).
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(the actual value might be higher depending on the target precision). Scaled to a 4-
cores machine such as the one employed here, this would correspond to more than
23,000 s, clearly out of range with respect to Figure 11. No data are available for the
CVT proposed in [41]: however, the authors state that at least 500 steps are needed to
reach a good level of convergence, versus a single step required by MVT.

4. Conclusion

A modified Voronoi tessellation (MVT) has been proposed to simulate a realistic
microstructure. To obtain that, MVT starts with a random distribution of centres in
a box (with or without periodic boundary conditions) and builds the corresponding
cells by relaxing the Voronoi constraints on the cell–cell interfaces, i.e. by shifting
and rotating them with respect to the midpoint between neighbouring centres.
The resulting microstructure (pattern) is characterised by the presence of voids that
can be easily eliminated when filling the cells with atoms. A one-to-one relationship
between the input model parameters and the characteristics of the output
distribution has been found, allowing a target distribution to be directly obtained.
For instance, a lognormal distribution of grain sizes can be directly simulated with a
5% level of significance. Computing time increases with the target distribution width,
but it is highly competitive to literature alternatives providing similar results.
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Figure 11. Time required by the MVT method to compute the microstructure (i.e. to identify
the faces of all cells) for the MVT 1000 set of specimens.
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