Matteo Frigo

Matteo Frigo
University of Padova | UNIPD · Department of Civil, Environmental and Architectural Engineering ICEA

About

23
Publications
2,002
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
67
Citations

Publications

Publications (23)
Article
Full-text available
Linear solvers usually are the most time- and memory-demanding part of a full coupled hydromechanical simulation. The typical block structure of the linearized systems arising from a fully-implicit solution approach requires the development of specialized algorithms, ensuring both robustness and computational efficiency. In particular, the design o...
Article
Frictional contact is one of the most challenging problems in computational mechanics. Typically, it is a tough non-linear problem often requiring several Newton iterations to converge and causing troubles also in the solution to the related linear systems. When contact is modeled with the aid of Lagrange multipliers, the impenetrability condition...
Article
The relaxed physical factorization (RPF) preconditioner is a recent algorithm allowing for the efficient and robust solution to the block linear systems arising from the three-field displacement-velocity-pressure formulation of coupled poromechanics. For its application, however, it is necessary to invert blocks with the algebraic form Cˆ=(C+βFFT),...
Preprint
Full-text available
Frictional contact is one of the most challenging problems in computational mechanics. Typically, it is a tough nonlinear problem often requiring several Newton iterations to converge and causing troubles also in the solution to the related linear systems. When contact is modeled with the aid of Lagrange multipliers, the impenetrability condition i...
Article
Full-text available
Anthropogenic land subsidence can be evaluated and predicted by numerical models, which are often built over deterministic analyses. However, uncertainties and approximations are present, as in any other modeling activity of real-world phenomena. This study aims at combining data assimilation techniques with a physically-based numerical model of an...
Article
Full-text available
A Correction to this paper has been published: https://doi.org/10.1007/s10596-021-10079-6
Article
Full-text available
Aseismic earth fissures are among the most dangerous by-products of excessive groundwater exploitation in many subsiding sedimentary basins. Improving our understanding of the mechanisms of earth fissuring is important for land planning and risk management. We employ an advanced finite-element interface-element modeling approach to understand the g...
Preprint
Full-text available
The numerical simulation of the physical systems has become in recent years a fundamental tool to perform analyses and predictions in several application fields, spanning from industry to the academy. As far as large scale simulations are concerned, one of the most computationally expensive task is the solution of linear systems arising from the di...
Chapter
The use of Data Assimilation (DA) techniques is receiving an increasing interest in geomechanical applications, with the aim to assess and reduce uncertainties associated to numerical outcomes by model constrain with available measurements. In geomechanical simulations, ensemble-based DA approaches are usually preferred. Among such techniques, Ense...
Chapter
We focus on a three-field (displacement-velocity-pressure) stabilized mixed method for poroelasticity based on piecewise trilinear (Q1), lowest order Raviart-Thomas (RT0), and piecewise constant (P0) approximations for displacement, Darcy’s velocity and fluid pore pressure, respectively. Since the selected discrete spaces do not intrinsically satis...
Article
We consider a mixed hybrid finite element formulation for coupled poromechanics. A stabilization strategy based on a macro-element approach is advanced to eliminate the spurious pressure modes appearing in undrained/incompressible conditions. The efficient solution of the stabilized mixed hybrid block system is addressed by developing a class of bl...
Preprint
Full-text available
In this work, we focus on the relaxed physical factorization (RPF) preconditioner for the block linear systems arising from the three-field formulation (displacement/velocity/pressure) of coupled poromechanics. Inspired by the relaxed dimensional factorization developed for the Navier-Stokes equations by Benzi et al. [J. Comput. Phys., 230 (2011),...
Article
Full-text available
The numerical prediction of land subsidence above producing reservoirs can be affected by a number of uncertainties, related for instance to the deep rock constitutive behavior, geomechanical properties, boundary and forcing conditions, etc. The quality and the amount of the available observations can help reduce such uncertainties by constraining...
Article
Full-text available
The regular monitoring of the relative position of a sequence of radioactive bullets shot through the well of a vertical borehole can provide in-situ measurements of deep rock compaction. Developed in the '70s, this technology has experienced a growing interest in the '90s, but in recent years, its use and relevance in land subsidence management ab...
Article
Full-text available
The use of numerical models for land subsidence prediction above producing hydrocarbon reservoirs has become a common and well-established practice since the early '90s. Usually, uncertainties in the deep rock behavior, which can affect the forecast capability of the models, have been taken into account by running multiple simulations with differen...
Article
Full-text available
Earth fissures accompanying anthropogenic land subsidence due to excessive aquifer exploitation create significant geohazards in China. Numerical models represent a unique scientific approach to predict the generation and development of earth fissures. However, the common geomechanical simulators fail to reproduce fissure development because they c...
Article
Full-text available
A critical issue concerning geomechanical safety for UGS (underground gas storage) in compartmentalized reservoirs is fault reactivation. Indeed, the displacement (land subsidence, land upheaval) and the stress fields caused by the seasonal injection and production of CH4 into and from deep reservoirs is peculiar. The need of improving our understa...
Preprint
Full-text available
We consider a mixed hybrid finite element formulation for coupled poromechanics. A stabilization strategy based on a macro-element approach is advanced to eliminate the spurious pressure modes appearing in undrained/incompressible conditions. The efficient solution of the stabilized mixed hybrid block system is addressed by developing a class of bl...
Article
Full-text available
A modeling analysis is used to investigate the relative susceptibility of various hydrogeologic configurations to aseismic rupture generation due to deformation of aquifer systems accompanying groundwater pumping. An advanced numerical model (GEPS3D) is used to simulate rupture generation and propagation for three typical processes: (i) reactivatio...
Conference Paper
The use of numerical models in geomechanics implicitly assumes a number of approximations and uncertainties, even though they are usually regarded as deterministic tools. Simplifications in the constitutive law, uncertainties in geomechanical parameters values, imposition of boundary conditions are only few examples of the probabilistic factors tha...
Conference Paper
Underground gas storage (UGS) is a practice that is becoming widely implemented to cope with seasonal peaks of gas consumption. When the target reservoir is located in a faulted basin, a major safety issue concerns the reactivation of pre-existing faults, possibly inducing (micro-) seismicity. Faults are reactivated when the shear stress exceeds th...

Network

Cited By