Matt O'Regan

Matt O'Regan
Stockholm University | SU · Department of Geological Sciences

PhD, Docent

About

182
Publications
53,667
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
6,402
Citations
Introduction
Matt O'Regan graduated from the University of Rhode Island in 2007 with a PhD in Geological Oceanography. His thesis was on the Cenozoic paleoceanography of central the Arctic Ocean. Arctic marine geology and paleoceanography remains his primary research focus. He currently works at the Department of Geological Sciences, Stockholm University, as a Research Scientist (Docent) in sediment physical properties.

Publications

Publications (182)
Preprint
Full-text available
Arctic marine ecosystems have undergone notable reconfigurations in response to Holocene environmental shifts. Yet our understanding of how marine mammal occurrence was impacted remains limited, due to their relative scarcity in the fossil record. We reconstructed the occurrence of marine mammals across the past 12,000 years through genetic detecti...
Article
Full-text available
Plain Language Summary The Last Interglacial (LIG; 129–116 Kyr before present) represents the most recent period with Arctic summer temperatures significantly higher than during the pre‐industrial era. This warming results from higher insolation than today in the Arctic, and is associated with changes in Arctic sea ice that are potentially comparab...
Article
Full-text available
Despite extensive chronological studies, the relationship between the age and sub-seafloor depth of Arctic Ocean sediments remains ambiguous. This prevents confident identification of paleoceanographic changes in the Arctic during the Quaternary. Currently, age-depth models derived from uranium-series decay in Arctic sediments diverge by hundreds o...
Article
Full-text available
Central Arctic, interglacial intervals have traditionally been associated with diverse and intense bioturbation, and abundant foraminifera, interpreted as indicating relatively low sea-ice concentrations and productive surface waters, while glacial intervals, typically barren, support the inverse. In this respect, the Yermak Plateau is anomalous. B...
Article
Full-text available
The extent and seasonality of Arctic sea ice during the Last Interglacial (129,000 to 115,000 years before present) is poorly known. Sediment-based reconstructions have suggested extensive ice cover in summer, while climate model outputs indicate year-round conditions in the Arctic Ocean ranging from ice free to fully ice covered. Here we use micro...
Article
Full-text available
Using a conceptual model, we examine how hydraulically controlled exchange flows in silled fjords affect the relationship between the basal glacier melt and the features of warm intermediate Atlantic Water (AW) outside the fjords. We show that an exchange flow can be forced to transit into the hydraulic regime if the AW interface height decreases,...
Article
Full-text available
We report the results of amino acid racemization (AAR) analyses of aspartic acid (Asp) and glutamic acid (Glu) in the planktic Neogloboquadrina pachyderma, and the benthic Cibicidoides wuellerstorfi, foraminifera species collected from sediment cores from the Arctic Ocean. The cores were retrieved at various deep-sea sites of the Arctic, which cove...
Article
Full-text available
According to climate models, the Lincoln Sea, bordering northern Greenland and Canada, will be the final stronghold of perennial Arctic sea-ice in a warming climate. However, recent observations of prolonged periods of open water raise concerns regarding its long-term stability. Modelling studies suggest a transition from perennial to seasonal sea-...
Article
Full-text available
The oxygen isotopic composition of benthic foraminiferal tests (δ18Ob) is one of the pre-eminent tools for correlating marine sediments and interpreting past terrestrial ice volume and deep-ocean temperatures. Despite the prevalence of δ18Ob applications to marine sediment cores over the Quaternary, its use is limited in the Arctic Ocean because of...
Article
Full-text available
Dolomites in Arctic Ocean sediments are widely attributed to erosion and transport of sediments from northern Canada and Greenland. Coarse-grained dolomite-rich ice-rafted debris is often linked to iceberg transport, but the origin of fine-grained dolomite is less well constrained. A presumed source is the Mackenzie River. In this article, we finge...
Preprint
Full-text available
Using a conceptual model, we examine how hydraulically-controlled exchange flows in silled fjords affect the relationship between the basal glacier melt and the features of warm intermediate Atlantic Water (AW) outside the fjords. We show that an exchange flow can be forced to transit into the hydraulic regime if the AW interface height decreases,...
Preprint
Full-text available
We report the results of amino acid racemization (AAR) analyses of aspartic and glutamic acids in the planktic foraminifera, Neogloboquadrina pachyderma, and the benthic species, Cibicidoides wuellerstorfi, collected from sediment cores from the Arctic Ocean. The cores were retrieved at various deep-sea sites of the Arctic, which cover a large geog...
Article
We reconstructed Holocene paleoceanography of the Sherard Osborn Fjord (SOF), N Greenland, and Lincoln Sea in the eastern Arctic Ocean using sediment properties and micropaleontology from cores obtained during the Ryder 2019 Expedition. Our aims were to better understand faunal indicators of water mass influence on Ryder Glacier and the Lincoln Sea...
Article
Full-text available
Continental margin sediments contain large reservoirs of methane stored as gas hydrate. Ocean warming will partly destabilize these reservoirs which may lead to the release of substantial, yet unconstrained, amounts of methane. Anaerobic oxidation of methane is the dominant biogeochemical process to reduce methane flux, estimated to consume 90% of...
Technical Report
Full-text available
The future climate evolution and the impact it might have on a repository for radioactive waste is important when assessing the long-term safety. In a project funded by SSM (Holmlund et al. 2016), bathymetric data from the Southern Quark area between Sweden and Åland, provided by the Swedish Maritime Administration, were analysed, as well as terres...
Article
Full-text available
The geomagnetic field behavior in polar regions remains poorly understood and documented. Although a number of Late Holocene paleomagnetic secular variation (PSV) records exist from marginal settings of the Amerasian Basin in the Arctic Ocean, their age control often relies on a handful of radiocarbon dates to constrain ages over the past 4,200 yea...
Article
Based on sediment cores and geophysical data collected from Petermann Fjord and northern Nares Strait, NW Greenland, an Arctic ice shelf sediment facies is presented that distinguishes sub and pro ice shelf environments. Sediment cores were collected from sites beneath the present day Petermann Ice Tongue (PIT) and in deglacial sediments of norther...
Article
Full-text available
The Petermann 2015 expedition to Petermann Fjord and adjacent Hall Basin recovered a transect of cores, extending from Nares Strait to underneath the 48 km long ice tongue of Petermann glacier, offering a unique opportunity to study ice–ocean–sea ice interactions at the interface of these realms. First results suggest that no ice tongue existed in...
Article
Full-text available
Establishing a solid chronological framework for Arctic marine sediments is a critical first step towards glacial and palaeoceanographic reconstructions. However, this has historically been more challenging than elsewhere in the world, and often results in core chronologies and subsequent paleoenvironmental reconstructions being questioned and over...
Article
Full-text available
The northern sector of the Greenland Ice Sheet is considered to be particularly susceptible to ice mass loss arising from increased glacier discharge in the coming decades. However, the past extent and dynamics of outlet glaciers in this region, and hence their vulnerability to climate change, are poorly documented. In the summer of 2019, the Swedi...
Article
Full-text available
Record-high air temperatures were observed over Greenland in the summer of 2019 and melting of the northern Greenland Ice Sheet was particularly extensive. Here we show, through direct measurements, that near surface ocean temperatures in Sherard Osborn Fjord, northern Greenland, reached 4 °C in August 2019, while in the neighboring Petermann Fjord...
Preprint
Full-text available
The Petermann 2015 Expedition to Petermann Fjord and adjacent Hall Basin recovered a transect of cores from Nares Strait to under the 48 km long ice tongue of Petermann glacier, offering a unique opportunity to study ice-ocean-sea ice interactions at the interface of these realms. First results suggest that no ice tongue existed in Petermann Fjord...
Article
Full-text available
Two different biostratigraphic approaches are used to identify Marine Isotope Stage 11 (MIS 11) in Arctic Ocean sediments. On the Lomonosov Ridge, globally calibrated nannofossil bioevents constrain the age of sediments back to MIS 13 (Core LOMROG12-3PC). In the Amerasian Basin the unique occurrence of the planktonic foraminifer Turborotalita egeli...
Article
Full-text available
Carbon cycle models suggest that past warming events in the Arctic may have caused large-scale permafrost thaw and carbon remobilization, thus affecting atmospheric CO 2 levels. However, observational records are sparse, preventing spatially extensive and time-continuous reconstructions of permafrost carbon release during the late Pleistocene and e...
Article
Full-text available
The Arctic Ocean region is currently undergoing dramatic changes, which will likely alter the nutrient cycles that underpin Arctic marine ecosystems. Phosphate is a key limiting nutrient for marine life but gaps in our understanding of the Arctic phosphorus (P) cycle persist. In this study, we investigate the benthic burial and recycling of phospho...
Article
Full-text available
Continental margins are hot spots for iron (Fe) and manganese (Mn) cycling. In the Arctic Ocean, these depositional systems are experiencing rapid changes that could significantly impact biogeochemical cycling. In this study, we investigate whether continental margin sediments north of Svalbard represent a source or sink of Fe and Mn to the water c...
Article
Full-text available
Poor age control in Pleistocene sediments of the central Arctic Ocean generates considerable uncertainty in paleoceanographic reconstructions. This problem is rooted in the perplexing magnetic polarity patterns recorded in Arctic marine sediments and the paucity of microfossils capable of providing calibrated biostratigraphic biohorizons or continu...
Article
Full-text available
Cryospheric events in the Arctic Ocean have been largely studied through the imprints of ice sheets, ice shelves and icebergs in the seafloor morphology and sediment stratigraphy. Subglacial morphologies have been identified in the shallowest regions of the Arctic Ocean, up to 1200 m water depth, revealing the extent and dynamics of Arctic ice shee...
Article
Full-text available
We present a new marine chronostratigraphy from a high-accumulation rate Arctic Ocean core at the intersection of the Lomonosov Ridge and the Siberian margin, spanning the last ∼ 30 kyr. The chronology was derived using a combination of bulk 14C dating and stratigraphic correlation to Greenland ice-core records. This was achieved by applying an app...
Article
Full-text available
Palaeomagnetic records obtained from Arctic Ocean sediments are controversial because they include numerous and anomalous geomagnetic excursions. Age models that do not rely on palaeomagnetic interpretations reveal that the majority of the changes in inclination do not concur with the established global magnetostratigraphy. Seafloor oxidation of (t...
Article
Full-text available
Submarine groundwater discharge (SGD) influences ocean chemistry, circulation, and the spreading of nutrients and pollutants; it also shapes sea floor morphology. In the Baltic Sea, SGD was linked to the development of terraces and semicircular depressions mapped in an area of the southern Stockholm archipelago, Sweden, in the 1990s. We mapped addi...
Article
Full-text available
Marine Isotope Stage 11 from ~424 to 374 ka experienced peak interglacial warmth and highest global sea level ~410–400 ka. MIS 11 has received extensive study on the causes of its long duration and warmer than Holocene climate, which is anomalous in the last half million years. However, a major geographic gap in MIS 11 proxy records exists in the A...
Article
Full-text available
Amino acid racemization (AAR) geochronology is a powerful tool for dating Quaternary marine sediments across the globe, yet its application to Arctic Ocean sediments has been limited. Anomalous rates of AAR in foraminifera from the central Arctic were reported in previously published studies, indicating that either the rate of racemization is highe...
Article
Full-text available
We present a new marine chronostratigraphy from a high-accumulation rate Arctic Ocean core at the intersection of the Lomonosov Ridge and the Siberian margin, spanning the last ~30 kyr. The chronology was derived using a combination of bulk 14 C dating and stratigraphic correlation to Greenland ice-core records. This was achieved by applying an app...
Article
Full-text available
Groundwater discharge into lakes is an important component of the fluid and nutrient budgets, and a possible route for contaminant transport. However, groundwater flow beneath lakes is difficult to investigate due to the need for drilling deep boreholes. In 2012, a 2,000 m deep borehole was drilled in Lake Vättern, the second largest lake in Sweden...
Article
Full-text available
Assessments of future climate-warming-induced seafloor methane (CH4) release rarely include anaerobic oxidation of methane (AOM) within the sediments. Considering that more than 90 % of the CH4 produced in ocean sediments today is consumed by AOM, this may result in substantial overestimations of future seafloor CH4 release. Here, we integrate a fu...
Article
Full-text available
Baltic Sea bathymetric properties are analysed here using the newly released digital bathymetric model (DBM) by the European Marine Observation and Data Network (EMODnet). The analyses include hypsometry, volume, descriptive depth statistics, and kilometre-scale seafloor ruggedness, i.e. terrain heterogeneity, for the Baltic Sea as a whole as well...
Article
Full-text available
The Yermak Plateau is one of several regions in the Arctic Ocean where paleomagnetism yields controversial results. Despite low sedimentation rates, late Pleistocene paleomagnetic excursions have been reconstructed from many cores in the region, but they are characterized by considerably longer durations when compared to established ones. Self‐reve...
Article
Full-text available
Turborotalita quinqueloba is a species of planktic foraminifera commonly found in the sub-polar North Atlantic along the pathway of Atlantic waters in the Nordic seas and sometimes even in the Arctic Ocean, although its occurrence there remains poorly understood. Existing data show that T. quinqueloba is scarce in Holocene sediments from the centra...
Article
Full-text available
Climate warming is expected to destabilize permafrost carbon (PF‐C) by thaw‐erosion and deepening of the seasonally thawed active layer and thereby promote PF‐C mineralization to CO2 and CH4. A similar PF‐C remobilization might have contributed to the increase in atmospheric CO2 during deglacial warming after the last glacial maximum. Using carbon...
Article
Full-text available
Ice stream configuration and sedimentary processes in Albertini Trough, north of Nordaustlandet, were studied using multibeam bathymetry, seismic reflection and sub-bottom profiles together with sediment gravity cores. Progradational sediment packages in the outer Albertini Trough suggest that streaming ice reached the shelf edge multiple times dur...
Article
Full-text available
Pacific water inflow to the Arctic Ocean occurs through the shallow Bering Strait. With a present sill depth of only 53 m, this gateway has been frequently closed during glacial sea-level low stands of the Pleistocene. Here, we investigate the sedimentological and mineralogical response to sea-level rise and the opening of the Bering Strait during...
Article
Our understanding of past climate conditions in the Arctic Ocean has been hampered by poor age control caused in part by low sedimentation rates (<1 cm/kyr), hiatuses during glacial intervals as well as the scarcity and poor preservation of calcareous nanno- and microfossils in the sediments. Although recent advances using variations in single elem...
Article
Deglacial and Holocene relative sea level (RSL) in the Canadian Beaufort Sea was influenced by the timing and extent of glacial ice in the Mackenzie River corridor and adjacent coastal plains. Considerable evidence indicates extensive ice cover in this region of northwestern Canada during the Late Wisconsinan. However, no absolute ages exist to con...
Conference Paper
Full-text available
Arctic warming is expected to activate largepermafrost organic carbon stocks (PF-C)and stimulate their mineralization to greenhouse gases (CO2 and CH4). Marine geoarchivessuggest that the remobilization of PF-C was higherduring theabrupt MIS2/MIS1 transition (early Holocenefrom 11.7 ka BP) than in themodern system. This study characterizes OC fluxe...
Article
Full-text available
The onset of the North Atlantic Deep Water formation is thought to have coincided with Antarctic ice-sheet growth about 34 million years ago (Ma). However, this timing is debated, in part due to questions over the geochemical signature of the ancient Northern Component Water (NCW) formed in the deep North Atlantic. Here we present detailed geochemi...
Article
We explore the use of Mg/Ca ratios in six Arctic Ocean benthic foraminifera species as bottom water palaeothermometers and expand published Mg/Ca-temperature calibrations to the coldest bottom temperatures (<1 °C). Foraminifera were analyzed in surface sediments at 27 sites in the Chukchi Sea, East Siberian Sea, Laptev Sea, Lomonosov Ridge and Pete...