About
265
Publications
44,508
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
11,662
Citations
Citations since 2017
Introduction
I am Professor of Polar Geodesy, University of Tasmania. My field of expertise is geodetic observation of the global water cycle, including ice sheet mass balance and sea level change and particularly using the Global Positioning System (GPS) and the Gravity Recovery and Climate Experiment (GRACE). I also work on reduction of systematic and random errors in these techniques in order to maximise the information content in the data and improve the reliability of the interpretations.
Additional affiliations
September 2012 - present
August 2001 - December 2013
Education
February 1998 - August 2002
Publications
Publications (265)
While satellite altimeters have revolutionized ocean science, validation measurements in high wave environments are rare. Using geodetic Global Navigation Satellite System (GNSS) data collected from the Southern Ocean Flux Station (SOFS, −47°S, 142°E) since 2019, as part of the Southern Ocean Time Series (SOTS), we present a validation of satellite...
In preparation for validation of the swath-based altimetry mission (Surface Water Oceanography Topography, SWOT), we developed a buoy array, equipped with Global Navigation Satellite System/Inertial Navigation System, capable of accurately observing sea surface height (SSH), wave information and tropospheric delay. Here we present results from an 8...
GNSS equipped buoys remain an important tool in altimetry validation. Progressive advances in altimetry missions require associated development in such validation tools. In this paper, we enhanced an existing buoy approach and gained further understanding of the buoy dynamics based on in situ observations. First, we implemented the capability to se...
We further developed a space–time Kalman approach to investigate time-fixed and time-variable signals in vertical land motion (VLM) and residual altimeter systematic errors around the Australian coast, through combining multi-mission absolute sea-level (ASL), relative sea-level from tide gauges (TGs) and Global Positioning System (GPS) height time...
The East Antarctic Ice Sheet contains the vast majority of Earth’s glacier ice (about 52 metres sea-level equivalent), but is often viewed as less vulnerable to global warming than the West Antarctic or Greenland ice sheets. However, some regions of the East Antarctic Ice Sheet have lost mass over recent decades, prompting the need to re-evaluate i...
Tides influence basal melting of individual Antarctic ice shelves, but their net impact on Antarctic-wide ice–ocean interaction has yet to be constrained. Here we quantify the impact of tides on ice shelf melting and the continental shelf seas using a 4 km resolution circum-Antarctic ocean model. Activating tides in the model increases the total ba...
We present a finite-element model of post-seismic solid
Earth deformation built in the software package Abaqus (version 2018). The model
is global and spherical, includes self-gravitation and is built for the
purpose of calculating post-seismic deformation in the far field
(>∼300 km) of major earthquakes. An earthquake is
simulated by prescribing s...
Plain Language Summary
The bedrock around the Antarctic Ice Sheet is moving in response to past and present changes in the weight of the ice sheet. Identifying the response to past ice‐sheet changes (since ∼20,000 years ago) is important since it is an important correction to satellite measurements used to obtain present‐day changes of the ice shee...
In Antarctica, Global Positioning System (GPS) vertical time series exhibit non‐linear signals over a wide range of temporal scales. To explain these non‐linearities, a number of hypotheses have been proposed, among them the short‐term rapid solid Earth response to contemporaneous ice mass change. Here we use GPS vertical time series to reveal the...
We constrain viscoelastic Earth rheology and recent ice‐mass change in the northern Marguerite Bay region of the Antarctic Peninsula. Global Positioning System (GPS) time series from Rothera and San Martin stations show bedrock uplift range of ∼−0.8–1.8 mm/year over 1999–2005 and 2016–2020 but ∼3.5–6.0 mm/year over ∼2005–2016. Digital elevation mod...
We further developed a space-time Kalman approach to estimate time-variable signals in residual altimeter systematic errors and vertical land motion (VLM) around the Australian coast since the 1990s, through combining multi-mission absolute sea-level (ASL), relative sea-level (RSL) from tide gauges (TGs) and GPS heights records. Our results confirm...
Accurate measurement of the local component of geodetic motion at GPS stations presents a challenge due to the need to separate this signal from the tectonic plate rotation. A pressing example is the observation of glacial isostatic adjustment (GIA) which constrains the Earth's response to ice unloading, and hence, contributions of ice-covered regi...
Physical processes within geoscientific models are sometimes described by simplified schemes known as parameterisations. The values of the parameters within these schemes can be poorly constrained by theory or observation. Uncertainty in the parameter values translates into uncertainty in the outputs of the models. Proper quantification of the unce...
Vertical land motion (VLM) is the connection between absolute sea-level (ASL) from a satellite altimeter (ALT) and relative sea-level from a tide gauge (TG). VLM is often sparsely observed yet is required for understanding sea-level rise. Many studies have sought to exploit ALT and TG data to infer VLM, yet regionally correlated systematic errors i...
Plain Language Summary
The solid Earth changes shape due to the changing weight of the ocean as the ocean tides rise and fall. Measuring this change and comparing it to predictions can yield insights into the interior properties of the Earth, tens to hundreds of kilometers below the surface. We used GPS to measure the changing shape of New Zealand...
Within the past 125,000 years, variations in Earth’s climate have resulted in global sea levels fluctuating from 130 to 140 m lower than present day to 6 to 9 m higher. Presently, global mean sea level is rising at its fastest rate in the past 6000 years (at ~ 3.6 mm/year for 2006–2015) and is accelerating. In this chapter, we discuss both the caus...
Physical processes within geoscientific models are sometimes described by simplified schemes known as parameterisations. The values of the parameters within these schemes can be poorly constrained by theory or observation. Uncertainty in the parameter values translates into uncertainty in the outputs of the models. Proper quantification of the unce...
The Antarctic Ice Sheet (AIS) is out of equilibrium with the current anthropogenic‐enhanced climate forcing. Paleo‐environmental records and ice sheet models reveal that the AIS has been tightly coupled to the climate system during the past, and indicate the potential for accelerated and sustained Antarctic ice mass loss into the future. Modern obs...
Ground displacements due to ocean tide loading have previously been successfully observed using Global Positioning System (GPS) data, and such estimates for the principal lunar M2 constituent have been used to infer the rheology and structure of the asthenosphere. The GPS orbital repeat period is close to that of several other major tidal constitue...
Global Navigation Satellite System (GNSS)-equipped buoys have a fundamental role in the validation of satellite altimetry. Requirements to validate next generation altimeter missions are demanding and call for a greater understanding of the systematic errors associated with the buoy approach. In this paper, we assess the present-day buoy precision...
Accurate measurement of the local component of geodetic motion at GPS stations presents a challenge due to the need to separate this signal from the tectonic plate rotation. A pressing example is the observation of glacial isostatic adjustment (GIA) which constrains the Earth’s response to ice unloading, and hence, contributions of ice-covered regi...
We consider the viscoelastic rheology of the solid Earth under the Antarctic Peninsula due to ice mass loss that commenced after the breakup of the Larsen-B ice shelf. We extend the previous analysis of nearby continuous GPS time-series to include five additional years and the additional consideration of the horizontal components of deformation. Th...
Tides influence basal melting of individual Antarctic ice shelves, but their net impact on Antarctic-wide ice-ocean interaction has yet to be constrained. Here we quantify the impact of tides on ice shelf melting and the continental shelf seas by means of a 4 km resolution circum-Antarctic ocean model. Activating tides in the model increases the to...
Tides influence basal melting of individual Antarctic ice shelves, but their net impact on Antarctic-wide ice-ocean interaction has yet to be constrained. Here we quantify the impact of tides on ice shelf melting and the continental shelf seas by means of a 4 km resolution circum-Antarctic ocean model. Activating tides in the model increases the to...
We present a finite-element model of postseismic solid Earth deformation built in the software package ABAQUS (version 2018). The model is global and spherical, and includes self-gravitation and is built for the purpose of calculating postseismic deformation in the far-field (> ~ 300 km) of major earthquakes. An earthquake is simulated by prescribi...
Plain Language Summary
The rate of snowfall in Antarctica varies over months to millennia. Snowfall is expected to increase over coming decades as the climate warms and evaporates more water from the Southern Ocean and then falls as snow. The question we focus on is “when can we be sure a new trend has emerged?”. To help answer this question we exa...
Understanding the processes involved in basal melting of Antarctic ice shelves is important to quantify the rate at which Antarctica will lose mass. Current research of of ice shelf-ocean interaction is almost exclusively guided by satellite derived estimates of Antarctic-wide ice shelf melting, which highlight deep warm water intrusions and meltin...
Mass loss from the Antarctic ice sheet is sensitive to conditions in ice shelf grounding zones, the transition between grounded and floating ice. To observe tidal dynamics in the grounding zone, we moored an ocean pressure sensor to Ross Ice Shelf, recording data for 54 days. In this region the ice shelf is brought out of hydrostatic equilibrium by...
We present a new, open-source viscoelastic solid earth deformation model, Elmer/Earth. Using the multi-physics finite-element package Elmer, a model to compute viscoelastic material deformation has been implemented into the existing linear elasticity solver routine. Unlike approaches often implemented in engineering codes, our solver accounts for t...
Ground displacements due to ocean tide loading have previously been successfully observed using GPS data, and such estimates for the principal lunar M2 constituent have been used to infer the rheology and structure of the asthenosphere. The GPS orbital repeat period is close to several other major tidal constituents (K1, K2, S2) thus GPS-estimates...
The secular rate of Australia's vertical surface deformation due to past ice‐ocean loading changes is not consistent with present vertical velocities observed by a previously sparse network of Global Positioning System (GPS) sites. Current understanding of the Earths rheology suggests that the expected vertical motion of the crust should be close t...
We show the results from the analysis of 2 MultiGNSS datasets: UK (21 stations) and NZ (77 stations). We assessed the possible PPP processing strategies: GPS-only, GLONASS-only and GPS+GLONASS for recovery of eight major OTL constituents.
Our results suggest that no single strategy provides consistently better constituent estimates across all coor...
Recent studies suggest that Antarctica has the potential to contribute up to ~15 m of sea-level rise over the next few centuries. The evolution of the Antarctic Ice Sheet is driven by a combination of climate forcing and non-climatic feedbacks. In this review we focus on feedbacks between the Antarctic Ice Sheet and the solid Earth, and the role of...
Abstract. We present a new, open source visco-elastic Earth-deformation model, Elmer/Earth. Using the multi-physics Finite Element package Elmer, a model to compute visco-elastic material deformation has been implemented into the existing linear elasticity solver routine. Unlike approaches often implemented in engineering codes, our solver accounts...
Satellite altimetry provides the ongoing sea level climate data record that provides evidence for one of the most significant manifestations of climate change on Earth. External and independent validation of satellite altimetry is a core component of mission design, providing confidence in such a seminal climate record. The global tide gauge networ...
The Antarctic Ice Sheet (AIS) holds the largest potential source of sea-level rise in a warming world. Remote sensing observations of the change in AIS mass reveals that it is only just beginning to respond to anthropogenic climate warming. Estimates of AIS contribution to sea-level rise to the year 2100 have continued to evolve since the Intergove...
Developing a hybrid approach for Ocean Tide Loading constituents extraction with GPS and GLONASS. We focus on 8 major constituents showing that extraction of K1 and K2 from GLONASS-only with the rest of constituents from GPS+GLONASS returns minimized OTL residuals. Also, we assessed the impact of integer ambiguity resolution and the effect from inc...
Antarctica is often associated with images of masculine figures battling against the blizzard. The pervasiveness of heroic white masculine leadership and exploration in Antarctica and, more broadly, in Science, Technology, Engineering, Mathematics, and Medicine (STEMM) research cultures, has meant women have had lesser access to Antarctic research...
Spatially correlated common mode error (CME) always exists in regional, or-larger, global positioning system (GPS) networks. We applied independent component analysis (ICA) to GPS vertical coordinate time-series in Antarctica from 2010 to 2014 and made a comparison with the principal component analysis (PCA). Using PCA/ICA, the time-series can be d...
p>Many glaciers in the Antarctic Peninsula are now rapidly losing mass. Understanding of the dynamics of these fast-flowing glaciers, and their potential future behaviour, can be improved through ice sheet modelling studies. Inverse methods are commonly used in ice sheet models to infer the spatial distribution of a basal friction coefficient, whic...
The Wordie Ice Shelf–Fleming Glacier system in the southern Antarctic
Peninsula has experienced a long-term retreat and disintegration of its ice
shelf in the past 50 years. Increases in the glacier velocity and dynamic
thinning have been observed over the past two decades, especially after 2008
when only a small ice shelf remained at the Fleming G...
Marine-terminating ice sheets are of interest due to their potential
instability, making them vulnerable to rapid retreat. Modelling the evolution
of glaciers and ice streams in such regions is key to understanding their
possible contribution to sea level rise. The friction caused by the sliding
of ice over bedrock and the resultant shear stress ar...
Glacial isostatic adjustment (GIA) is the response of the solid Earth to past ice loading, primarily, since the Last Glacial Maximum, about 20 K yr BP. Modelling GIA is challenging because of large uncertainties in ice loading history and also the viscosity of the upper and lower mantle. GPS data contain the signature of GIA in their uplift rates b...
Recent studies have identified climatic drivers of the east-west see-saw of Pacific Ocean satellite altimetry era sea level trends and a number of sea-level trend and acceleration assessments attempt to account for this. We investigate the effect of Pacific climate variability, together with temporally-correlated noise, on linear trend error estima...
The Wordie Ice Shelf-Fleming Glacier system in the southern Antarctic Peninsula has experienced a long-term retreat and disintegration of its ice shelf in the past 50 years. Upstream glacier acceleration and dynamic thinning have been observed over the past two decades, especially after 2008 when only a little constraining ice shelf remained at the...
Many glaciers in West Antarctica and the Antarctic Peninsula are now rapidly losing ice mass. Understanding of the dynamics of these fast-flowing glaciers, and their potential future behavior, can be improved through ice sheet modeling studies. Inverse methods are commonly used in ice sheet models to infer the basal shear stress, which has a large...
We present a compilation of GPS time series, including those for previously unpublished sites, showing that flow across the entire Ronne Ice Shelf and its adjoining ice streams is strongly affected by ocean tides. Previous observations have shown strong horizontal diurnal and semidiurnal motion of the ice shelf, and surface flow speeds of Rutford I...
Present-day mass redistribution increases the total ocean mass and, on average, causes the ocean bottom to subside elastically. Therefore, barystatic sea-level rise is larger than the resulting global-mean geocentric sea-level rise, observed by satellite altimetry and GPS-corrected tide gauges. We use realistic estimates of mass redistribution from...
One of the initial challenges of the GRACE mission is to validate the accuracy of the time-variable gravity fields. These gravity fields contain both spatially correlated (systematic) and random noise and hence spatial averaging needs to be implemented. Before the fields may be interpreted, optimum averaging radii need to be determined through comp...
Changes in J2, resulting from past and present changes in Earth’s climate, are traditionally observed by Satellite Laser ranging (SLR). Assuming an elastic Earth, it is possible to infer changes in J2 from changes in Earth’s shape observed by GPS. We compare estimates of non-secular J2 changes from GPS, SLR, GRACE and a load model. The GPS and SLR...
In recent years, Ocean Tide Loading Displacements (OTLD) have been measured using the Global Positioning System (GPS) and Very Long Baseline Interferometry (VLBI). This study assesses the accuracy of GPS measurements of OTLD by comparison with VLBI measurements and estimates derived from numerical ocean tide models. A daily precise point positionin...
Antarctic Peninsula (AP) ice core records indicate significant accumulation increase since 1855, and any resultant ice mass increase has the potential to contribute substantially to present-day Glacial Isostatic Adjustment (GIA). We derive empirical orthogonal functions from climate model output to infer typical spatial patterns of accumulation ove...
We examine tidal flexure in the grounding zone of the
McMurdo Ice Shelf, Antarctica, using a combination of TerraSAR-X
repeat-pass radar interferometry, a precise digital elevation model, and GPS
ground validation data. Satellite and field data were acquired in tandem
between October and December 2014. Our GPS data show a horizontal modulation
of u...
Marine terminating ice sheets are of interest due to their potential instability, making them vulnerable to rapid retreat. Modelling the evolution of glaciers and ice streams in such regions is key to understanding their possible contribution to sea level rise. The friction caused by the sliding of ice over bedrock, and the resultant shear stress,...
We present a compilation of GPS time series, including those for previously unpublished sites, showing that flow across the entire Ronne Ice Shelf and its adjoining ice streams is strongly affected by ocean tides. Previous observations have shown strong diurnal and semidiurnal motion of the ice shelf and surface flow speeds of Rutford Ice Stream (R...
Rapid regional warming in the Antarctic Peninsula has led to the significant retreat and eventual collapse of several major ice shelves since the 1970s, triggering the subsequent acceleration and thinning of their feeding glaciers. The Wordie Ice Shelf, lying off the west coast of the Antarctic Peninsula, has undergone long-term disintegration sinc...
Locally and regionally varying sea level trends and in particular the trend uncertainties are investigated in the context of temporally-correlated noise. We focus on the Indo-Pacific region because there has been considerable recent progress on understanding the effect of climatic variability, mass redistribution by surface wind variability and the...
Global mean sea level (GMSL) has been rising at a faster rate
during the satellite altimetry period (1993–2014) than previous
decades, and is expected to accelerate further over the coming
century1.However, the accelerations observedover centuryand
longer periods2 have not been clearly detected in altimeter data
spanning the past two decades3–5. He...