Matt Kaeberlein

Matt Kaeberlein
  • Ph.D.
  • Professor (Full) at University of Washington

About

452
Publications
118,794
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
29,277
Citations
Current institution
University of Washington
Current position
  • Professor (Full)
Additional affiliations
May 2010 - present
Guangdong Medical College
March 2006 - present
University of Washington
June 2003 - February 2006
University of Washington
Position
  • Post-doctoral Fellowship
Education
September 1997 - February 2002
January 1994 - June 1997
Western Washington University
Field of study
  • Biochemistry
January 1994 - June 1997
Western Washington University
Field of study
  • Mathematics

Publications

Publications (452)
Preprint
Full-text available
The ageing population worldwide faces an increasing burden of age-related conditions, with Alzheimer′s disease being a prominent neurodegenerative concern. Drug repurposing, the practice of identifying new therapeutic applications for existing drugs, offers a promising avenue for accelerated intervention. In this study, we utilized the yeast S. cer...
Article
Full-text available
Background Alternative dog diets, such as home‐cooked and raw, have grown in popularity. Claims regarding health benefits for these diets have limited supporting evidence. Objectives To evaluate whether feeding home‐cooked, commercial raw, or homemade raw diets is associated with health conditions compared to extruded diets. Animals Twenty‐seven...
Article
Full-text available
The metazoan lifespan is determined in part by a complex signaling network that regulates energy metabolism and stress responses. Key signaling hubs in this network include insulin/IGF‐1, AMPK, mTOR, and sirtuins. The Hippo/Mammalian Ste20‐like Kinase1 (MST1) pathway has been reported to maintain lifespan in Caenorhabditis elegans, but its role has...
Article
A significant challenge in multi-omic geroscience research is the collection of high quality, fit-for-purpose biospecimens from a diverse and well-characterized study population with sufficient sample size to detect age-related changes in physiological biomarkers. The Dog Aging Project designed the precision cohort to study the mechanisms underlyin...
Article
Companion dogs are a powerful model for aging research given their morphologic and genetic variability, risk for age-related disease, and habitation of the human environment. In addition, the shorter life expectancy of dogs compared to human beings provides a unique opportunity for an accelerated timeline to test interventions that might extend hea...
Article
Small molecule interventions that directly target the molecular mechanisms of aging have the potential to revolutionize 21st century health and preventative medicine. Altering the trajectory of aging holds incredible economic value in humans, companion pets, and other animals. The longevity biotechnology sector is quickly growing to meet this oppor...
Article
Full-text available
Background Aging leads to a decline in muscle mass and strength, contributing to frailty and decreased quality of life. Sirolimus (rapamycin) , an mTOR inhibitor, has shown potential in preclinical studies to extend lifespan and improve health span. This study evaluates the safety and efficacy of once-weekly sirolimus (rapamycin) administration on...
Article
Full-text available
Folate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low-folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms. We then restri...
Preprint
Full-text available
Background Aging leads to a decline in muscle mass and strength, contributing to frailty and decreased quality of life. Sirolimus (Rapamycin), an mTOR inhibitor, has shown potential in preclinical studies to extend lifespan and improve healthspan. This study evaluates the safety and efficacy of once-weekly Sirolimus (Rapamycin) administration on mu...
Article
Full-text available
Caloric restriction (CR) is known to extend lifespan across different species and holds great promise for preventing human age-onset pathologies. However, two major challenges exist. First, despite extensive research, the mechanisms of lifespan extension in response to CR remain elusive. Second, genetic differences causing variations in response to...
Article
Full-text available
Little is known about the possibility of reversing age-related biological changes when they have already occurred. To explore this, we have characterized the effects of reducing insulin/IGF-1 signaling (IIS) during old age. Reduction of IIS throughout life slows age-related decline in diverse species, most strikingly in the nematode Caenorhabditis...
Article
Rapamycin (sirolimus) is an FDA approved drug with immune modulating properties that is being prescribed off-label in adults as a preventative therapy to maintain healthspan. We recently published one of the first reports on 333 adults with a history of off-label rapamycin use. Along with presenting evidence that rapamycin can be used safely in adu...
Article
Full-text available
OBJECTIVE To identify the safest, most efficient method for hair sample collection from companion dogs among clippers, scissors, and razors and to validate obtained samples with cortisol concentration analysis. ANIMALS 25 healthy, privately owned dogs. METHODS 2 hair samples were collected from each dog’s ischiatic region with different implement...
Preprint
Full-text available
Caloric restriction (CR) is known to extend lifespan across different species and holds great promise for preventing human age-onset pathologies. However, two major challenges exist. First, despite extensive research, the mechanisms of lifespan extension in response to CR remain elusive. Second, genetic differences causing variations in response to...
Article
Full-text available
Rapamycin is an mTOR inhibitor that has been shown to extend the lifespan of laboratory model organisms. In humans, rapamycin is used at higher doses as an immunosuppressive medication to prevent organ rejection. Numerous adverse effects are seen with rapamycin treatment in humans, with one of the most common being dysregulation of lipid metabolism...
Article
Full-text available
Introduction Large scale data on the prevalence of diverse medical conditions among dog breeds in the United States are sparse. This cross-sectional study sought to estimate the lifetime prevalence of medical conditions among US dogs and to determine whether purebred dogs have higher lifetime prevalence of specific medical conditions compared to mi...
Article
Research in aging has significantly advanced; scientists are now able to identify interventions that slow the biologic aging processes (i.e., the “hallmarks of aging”), thus delaying the onset and progression of multiple diseases, including oral conditions. Presentations given during the 3-part session “Geroscience: Aging and Oral Health Research,”...
Preprint
Full-text available
Although lifespan extension remains the gold standard for assessing interventions hypothesized to impact the biology of aging, there are important limitations to this approach. Our reanalysis of lifespan studies from multiple sources suggests that the use of short-lived control cohorts tends to exaggerate the relative efficacy of putative longevity...
Article
Full-text available
Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and...
Article
With the rapid expansion of aging biology research, the identification and evaluation of longevity interventions in humans have become key goals of this field. Biomarkers of aging are critically important tools in achieving these objectives over realistic time frames. However, the current lack of standards and consensus on the properties of a relia...
Article
With the rapid expansion of aging biology research, the identification and evaluation of longevity interventions in humans have become key goals of this field. Biomarkers of aging are critically important tools in achieving these objectives over realistic time frames. However, the current lack of standards and consensus on the properties of a relia...
Article
Targeting aging is the future of twenty-first century preventative medicine. Small molecule interventions that promote healthy longevity are known, but few are well-developed and discovery of novel, robust interventions has stagnated. To accelerate longevity intervention discovery and development, high-throughput systems are needed that can perform...
Article
Full-text available
Mitochondrial diseases represent a spectrum of disorders caused by impaired mitochondrial function, ranging in severity from mortality during infancy to progressive adult-onset disease. Mitochondrial dysfunction is also recognized as a molecular hallmark of the biological ageing process. Rapamycin, a drug that increases lifespan and health during n...
Article
Full-text available
Aging is associated with changes in circulating levels of various molecules, some of which remain undefined. We find that concentrations of circulating taurine decline with aging in mice, monkeys, and humans. A reversal of this decline through taurine supplementation increased the health span (the period of healthy living) and life span in mice and...
Article
Full-text available
Introduction Geroscience studies of low-dose rapamycin in laboratory species have identified numerous benefits, including reversing age-related cardiac dysfunction. Cardiovascular benefits have been observed in dogs with 10 weeks of treatment, raising questions about possible benefits and adverse effects of long-term use of low-dose rapamycin. The...
Article
Rapamycin (sirolimus) is an FDA-approved drug with immune-modulating and growth-inhibitory properties. Preclinical studies have shown that rapamycin extends lifespan and healthspan metrics in yeast, invertebrates, and rodents. Several physicians are now prescribing rapamycin off-label as a preventative therapy to maintain healthspan. Thus far, howe...
Preprint
Full-text available
The declining capacity of cells to maintain a functional proteome is a major driver of cellular dysfunction and decreased fitness in aging. Here we assess the impact of aging on multiple proteome dimensions, which are reflective of function, across the replicative lifespan of Saccharomyces cerevisiae. We quantified protein abundance, protein turnov...
Article
Current advances in geroscience are due in part to the discovery of biomarkers with high predictive ability in short-lived laboratory animals such as flies and mice. These model species, however, do not always adequately reflect human physiology and disease, highlighting the need for a more comprehensive and relevant model of human aging. Domestic...
Article
Dietary restriction (DR) increases lifespan in many organisms, but its underlying mechanisms are not fully understood. Mitochondria play a central role in metabolic regulation and are known to undergo changes in structure and function in response to DR. Mitochondrial membrane potential (Δψm) is the driving force for ATP production and mitochondrial...
Article
Full-text available
Mitochondrial dysfunction caused by aberrant Complex I assembly and reduced activity of the electron transport chain is pathogenic in many genetic and age-related diseases. Mice missing the Complex I subunit NADH dehydrogenase [ubiquinone] iron-sulfur protein 4 (NDUFS4) are a leading mammalian model of severe mitochondrial disease that exhibit many...
Preprint
Full-text available
Altered mitochondrial function is tightly linked to lifespan regulation, but underlying mechanisms remain unclear. Here, we report the chronological and replicative lifespan variation across 168 yeast knock-out strains, each lacking a single nuclear-coded mitochondrial gene, including 144 genes with human homologs, many associated with diseases. We...
Article
Full-text available
Mitochondrial dysfunction plays a central role in aging but the exact biological causes are still being determined. Here, we show that optogenetically increasing mitochondrial membrane potential during adulthood using a light-activated proton pump improves age-associated phenotypes and extends lifespan in Caenorhabditis elegans. Our findings provid...
Preprint
Dietary restriction (DR) increases lifespan in many organisms, but its underlying mechanisms are not fully understood. Mitochondria play a central role in metabolic regulation and are known to undergo changes in structure and function in response to DR. Mitochondrial membrane potential (Δψ m ) is the driving force for ATP production and mitochondri...
Article
Full-text available
Mitochondrial dysfunction is one of the hallmarks of biological aging, as well as the driving factor for mitochondrial diseases. Up to 30% of mitochondrial disorders are due to mutations affecting the activity of Complex I in the electron transport chain. Loss of the Complex I subunit Ndufs4 recapitulates symptoms of Leigh Syndrome, a pediatric mit...
Preprint
Full-text available
Genetic activation of the hypoxia response robustly extends lifespan in C. elegans , while environmental hypoxia shows more limited benefit. Here we describe an intermittent hypoxia therapy (IHT) able to double the lifespan of wildtype worms. The lifespan extension observed in IHT does not require HIF-1 but is partially blocked by loss of DAF-16/FO...
Preprint
Full-text available
Background: An individual's biological age is a measurement of health status and provides a mechanistic understanding of aging. Age clocks estimate a biological age of an individual based on their various features. Existing clocks have key limitations caused by the undesirable tradeoff between accuracy (i.e., predictive performance for chronologica...
Article
Full-text available
Background Unlike linear models which are traditionally used to study all-cause mortality, complex machine learning models can capture non-linear interrelations and provide opportunities to identify unexplored risk factors. Explainable artificial intelligence can improve prediction accuracy over linear models and reveal great insights into outcomes...
Article
Full-text available
Mice bred in 2017 and entered into the C2017 cohort were tested for possible lifespan benefits of (R/S)‐1,3‐butanediol (BD), captopril (Capt), leucine (Leu), the Nrf2‐activating botanical mixture PB125, sulindac, syringaresinol, or the combination of rapamycin and acarbose started at 9 or 16 months of age (RaAc9, RaAc16). In male mice, the combinat...
Article
Full-text available
functional variants in ~ 660 mitonuclear candidate genes discovered by target capture sequencing analysis of 496 centenarians and 572 controls of Ashkenazi Jewish descent. We identify and prioritize longevity-associated variants, genes, and mitochondrial pathways that are enriched with rare variants. We provide functional gene variants such as thos...
Article
Full-text available
At the cellular level, many aspects of aging are conserved across species. This has been demonstrated by numerous studies in simple model organisms like Saccharomyces cerevisiae , Caenorhabdits elegans , and Drosophila melanogaster . Because most genetic screens examine loss of function mutations or decreased expression of genes through reverse gen...
Preprint
Despite longstanding scientific interest in the centrality of mitochondria to biological aging, directly controlling mitochondrial function to test causality has eluded researchers. We show that specifically boosting mitochondrial membrane potential through a light-activated proton pump reversed age-associated phenotypes and extended C. elegans lif...
Article
A variety of diets have been studied for possible anti-aging effects. In particular, studies of intermittent fasting and time-restricted feeding in laboratory rodents have found evidence of beneficial health outcomes. Companion dogs represent a unique opportunity to study diet in a large mammal that shares human environments. The Dog Aging Project...
Preprint
Full-text available
At the cellular level, many aspects of aging are conserved across species. This has been demonstrated by numerous studies in simple model organisms like Saccharomyces cerevisiae, Caenorhabdits elegans, and Drosophila melanogaster. Because most genetic screens examine loss of function mutations or decreased expression of genes through reverse geneti...
Preprint
Full-text available
Iron dyshomeostasis contributes to aging, but little information is available about the molecular mechanisms. Here, we provide evidence that, in Saccharomyces cerevisiae, aging is associated with altered expression of genes involved in iron homeostasis. We further demonstrate that defects in the conserved mRNA-binding protein Cth2, which controls s...
Article
The Dog Aging Project is a long-term longitudinal study of ageing in tens of thousands of companion dogs. The domestic dog is among the most variable mammal species in terms of morphology, behaviour, risk of age-related disease and life expectancy. Given that dogs share the human environment and have a sophisticated healthcare system but are much s...
Preprint
Full-text available
Mitochondrial diseases represent a spectrum of disorders caused by impaired mitochondrial function ranging in severity from mortality during infancy to progressive adult-onset disease. Mitochondrial dysfunction is also recognized as a molecular hallmark of the biological aging process. Rapamycin, a drug that increases lifespan and health during nor...
Article
Full-text available
Aging is the single largest risk factor for most chronic diseases, and thus possesses large socioeconomic interest to continuously aging societies. Consequently, the field of aging research is expanding alongside a growing focus from the industry and investors in aging research. This year's 8th Annual Aging Research and Drug Discovery (ARDD) meetin...
Article
Full-text available
Besides aging, obesity is the greatest risk factor for numerous chronic pathologies, including metabolic syndrome, type 2 diabetes, cardiovascular disease, hypertension, and cancer. Preventing and treating obesity would greatly reduce healthcare costs and the impact of the aging process, with estimated savings up to $145,000,000,000. Pharmacologica...
Article
Caution around the fountain of youth The scientific and popular literature is full of claims for diets that delay or reverse the aging process (at least in model organisms). But how do these interventions work? Is it the amount of food, the timing of food intake, the proportion of certain macronutrients? In a Review, Lee et al . explore the fact an...
Article
Full-text available
To understand the genetic basis and selective forces acting on longevity, it is useful to examine lifespan variation among closely related species, or ecologically diverse isolates of the same species, within a controlled environment. In particular, this approach may lead to understanding mechanisms underlying natural variation in lifespan. Here, w...
Preprint
Mitochondrial dysfunction caused by aberrant Complex I assembly and reduced activity of the electron transport chain is pathogenic in many genetic and age-related diseases. Mice missing the Complex I subunit NADH dehydrogenase [ubiquinone] iron-sulfur protein 4 (NDUFS4) are a leading mammalian model of severe mitochondrial disease that exhibit many...
Article
Full-text available
Alzheimer’s disease(AD) is an age-associated neurodegenerative disease that results in deterioration of memory and cognitive function. As a currently untreatable disorder, AD has emerged as one of the defining biomedical challenges of our time. Thus, new approaches that can examine the cellular and molecular mechanisms underlying age-related AD pat...
Article
Full-text available
In fluctuating environments, switching between different growth strategies, such as those affecting cell size and proliferation, can be advantageous to an organism. Trade-offs arise, however. Mechanisms that aberrantly increase cell size or proliferation—such as mutations or chemicals that interfere with growth regulatory pathways—can also shorten...
Article
Full-text available
Aging and obesity are common risk factors for numerous chronic pathologies, and the compounding effects of old age and increased adiposity pose a serious threat to public health. Starting from the assumption that aging and obesity may have shared underpinnings, we investigated the antiobesogenic potential of a successful longevity intervention, the...
Article
Full-text available
Alzheimer’s disease (AD) is a significant burden for human health that is increasing in prevalence as the global population ages. There is growing recognition that current preclinical models of AD are insufficient to recapitulate key aspects of the disease. Laboratory models for AD include mice, which do not naturally develop AD-like pathology duri...
Article
Full-text available
As the molecular mechanisms of biological aging become better understood, there is growing interest in identifying interventions that target those mechanisms to promote extended health and longevity. The budding yeast Saccharomyces cerevisiae has served as a premier model organism for identifying genetic and molecular factors that modulate cellular...
Article
The University of Washington Nathan Shock Center of Excellence in the Basic Biology of Aging provides leadership and resources to support the geroscience community locally, nationally, and internationally. Services are provided through our Resource Cores and funds are available annually to support pilot projects by external investigators. Aging-rel...
Article
Full-text available
The AGE Presents Introduction to Geroscience video lecture series is a collection of high-quality didactic video lectures and associated teaching materials focused on foundational topics in aging biology. The videos are made freely available on YouTube and are targeted toward an audience familiar with concepts learned in the first year of a college...
Article
Full-text available
Background: Interventional clinical trials intended to maintain health in aging dogs are unusual and require particular attention to exclusion criteria. Objectives: To describe reasons for exclusion when a mature adult and senior canine population with normal health status was sought. Animals: Fifty six companion dogs nominated for a randomized con...
Chapter
Mice missing the Complex I subunit NADH:Ubiquinone Oxidoreductase Fe-S Protein 4 (NDUFS4) of the electron transport chain are a leading model of the severe mitochondrial disease Leigh syndrome. These mice have enabled a better understanding of mitochondrial dysfunction in human disease, as well as in the discovery of interventions that can potentia...
Article
Mitochondria are organelles that provide energy to cells through ATP production. Mitochondrial dysfunction has long been postulated to mediate cellular declines that drive biological aging. Many well-characterized hallmarks of aging may involve underlying energetic defects that stem from loss of mitochondrial function with age. Why and how mitochon...
Article
Full-text available
Histone acetylations are important epigenetic markers for transcriptional activation in response to metabolic changes and various stresses. Using the high-throughput SEquencing-Based Yeast replicative Lifespan screen method and the yeast knockout collection, we demonstrate that the HDA complex, a class-II histone deacetylase (HDAC), regulates aging...
Article
Full-text available
The University of Washington Nathan Shock Center of Excellence in the Biology of Aging in conjunction with the Healthy Aging and Longevity Research Institute held its annual geroscience symposium virtually on October 23, 2020. The symposium was divided into three sessions: (I) organ aging and growth signaling, (II) neurodegeneration and metabolism,...
Article
There is tremendous variationin biological traits, and much of it is not accounted for by variation in DNA sequence, including human diseases and lifespan. Emerging evidence points to differences in the execution of the genetic program as a key source of variation, be it stochastic variation or programmed variation. Here we discuss variation in gen...
Preprint
Full-text available
Objective To determine the blood concentration and pharmacokinetic parameters of rapamycin in companion dogs following long-term, low-dose oral administration of rapamycin. Animals Four healthy, middle-aged, medium-to-large breed privately owned dogs participated. Procedures All dogs had been receiving oral rapamycin at a dose of 0.025 mg/kg on Mon...
Article
Full-text available
A goal of gerontology-related research is to develop therapies to improve the healthy period of life by understanding and targeting the molecular hallmarks of biological aging. Much progress has been made toward understanding the genetic and biochemical nature of these hallmarks through studies using simple invertebrate model organisms, such as the...
Article
Full-text available
Mitochondrial dysfunction causes many poorly understood diseases, such as Leigh Syndrome, that are often caused by dysfunctions in proteins involved in the electron transport chain. My lab previously reported mTOR is pathologically involved in the neurodegenerative phenotype and premature death of mice missing the Complex I subunit Ndufs4 (Ndufs4-/...
Article
Full-text available
Mitochondrial diseases are pathologies characterized by impairment in mitochondrial function. Mitochondrial dysfunction is also a hallmark of the aging process. Rapamycin, a drug that increases lifespan and reduces the incidence of age-related pathologies in multiple models, increases survival and reduces the impact of neurological symptoms in a mo...
Article
Full-text available
There is a high level of interest in drugs that may delay or even reverse the functional declines and disease risks that accompany biological aging. Several interventions have been shown to improve age-related outcomes and increase lifespan in laboratory animals by targeting the hallmarks of aging. A number of these small molecules are being clinic...
Conference Paper
Full-text available
The privately owned companion dog is an increasingly important model in aging research because it shares the human environment, is exposed to similar environmental risk factors, receives comparable medical care, and develops many of the same age-related pathologies. One such pathology is Canine Cognitive Dysfunction (CCD), which shares many of the...
Article
Full-text available
Leigh syndrome is a fatal neurometabolic disorder caused by defects in mitochondrial function. Mechanistic target of rapamycin (mTOR) inhibition with rapamycin attenuates disease progression in a mouse model of Leigh syndrome (Ndufs4 knock-out (KO) mouse); however, the mechanism of rescue is unknown. Here we identify protein kinase C (PKC) downregu...
Preprint
Full-text available
The question of why and how some species or individuals within a population live longer than others is among the most important questions in the biology of aging. A particularly useful model to understand the genetic basis and selective forces acting on the plasticity of lifespan are closely related species or ecologically diverse individuals of th...
Article
Full-text available
Cellular aging is a multifactorial process that is characterized by a decline in homeostatic capacity, best described at the molecular level. Physicochemical properties such as pH and macromolecular crowding are essential to all molecular processes in cells and require maintenance. Whether a drift in physicochemical properties contributes to the ov...
Article
Full-text available
Cellular aging is a multifactorial process that is characterized by a decline in homeostatic capacity, best described at the molecular level. Physicochemical properties such as pH and macromolecular crowding are essential to all molecular processes in cells and require maintenance. Whether a drift in physicochemical properties contributes to the ov...
Article
Full-text available
Cellular aging is a multifactorial process that is characterized by a decline in homeostatic capacity, best described at the molecular level. Physicochemical properties such as pH and macromolecular crowding are essential to all molecular processes in cells and require maintenance. Whether a drift in physicochemical properties contributes to the ov...
Article
Full-text available
Caloric restriction (CR) is known to extend life span across species; however, the molecular mechanisms are not well understood. We investigate the mechanism by which glucose restriction (GR) extends yeast replicative life span, by combining ribosome profiling and RNA-seq with microfluidic-based single-cell analysis. We discovered a cross-talk betw...
Article
Full-text available
The data on COVID-19 is clear on at least one point: Older adults are most vulnerable to hospitalization, disability and death following infection with the novel coronavirus. Therefore, therapeutically addressing degenerative aging processes as the main risk factors appears promising for tackling the present crisis and is expected to be relevant wh...
Preprint
Full-text available
Organisms often commit to one of two strategies: living fast and dying young or living slow and dying old. In fluctuating environments, however, switching between these two strategies could be advantageous. Lifespan is often inversely correlated with cell size and proliferation, which are both limited by protein synthesis. Here we report that a hig...
Article
Full-text available
The nematode Caenorhabditis elegans has been instrumental in the identification of evolutionarily conserved mechanisms of aging. C. elegans also has recently been found to have evolutionarily conserved extracellular vesicle (EV) signaling pathways. We have been developing tools that allow for the detailed study of EV biology in C. elegans. Here we...
Article
Full-text available
Background The privately owned companion dog is an emerging model in comparative medicine, notably because it shares the human environment including its risk factors, is affected by many analogous age-related diseases, receives comparable medical care, and has excellent veterinary medical data available. Past studies of dog lifespan have used aca...
Article
Full-text available
A long-standing problem is how cells that lack one of the highly similar ribosomal proteins (RPs) often display distinct phenotypes. Yeast and other organisms live longer when they lack specific ribosomal proteins, especially of the large 60S subunit of the ribosome. However, longevity is neither associated with the generation time of RP deletion m...
Article
Full-text available
A long-standing problem is how cells that lack one of the highly similar ribosomal proteins (RPs) often display distinct phenotypes. Yeast and other organisms live longer when they lack specific ribosomal proteins, especially of the large 60S subunit of the ribosome. However, longevity is neither associated with the generation time of RP deletion m...
Article
Full-text available
A long-standing problem is how cells that lack one of the highly similar ribosomal proteins (RPs) often display distinct phenotypes. Yeast and other organisms live longer when they lack specific ribosomal proteins, especially of the large 60S subunit of the ribosome. However, longevity is neither associated with the generation time of RP deletion m...
Article
Full-text available
Periodontal disease is an age-associated disorder clinically defined by periodontal bone loss, inflammation of the specialized tissues that surround and support the tooth, and microbiome dysbiosis. Currently, there is no therapy for reversing periodontal disease, and treatment is generally restricted to preventive measures or tooth extraction. The...
Article
Full-text available
Periodontal disease is an age-associated disorder clinically defined by periodontal bone loss, inflammation of the specialized tissues that surround and support the tooth, and microbiome dysbiosis. Currently, there is no therapy for reversing periodontal disease, and treatment is generally restricted to preventive measures or tooth extraction. The...
Article
Full-text available
Periodontal disease is an age-associated disorder clinically defined by periodontal bone loss, inflammation of the specialized tissues that surround and support the tooth, and microbiome dysbiosis. Currently, there is no therapy for reversing periodontal disease, and treatment is generally restricted to preventive measures or tooth extraction. The...
Article
Leigh Syndrome (LS) is a mitochondrial disorder defined by progressive focal neurodegenerative lesions in specific regions of the brain. Defects in NDUFS4, a subunit of complex I of the mitochondrial electron transport chain, cause LS in humans; the Ndufs4 knockout mouse (Ndufs4(KO)) closely resembles the human disease. Here, we probed brain region...
Preprint
Full-text available
Lifespan of model organisms can be extended by genetic, dietary and pharmacological interventions, but these effects may be negated by other factors. To understand robustness of longevity interventions within and across species, we analyzed age-dependent mortality of yeast, fruit flies, nematodes and mice subjected to thousands of genetic, pharmaco...

Network

Cited By